CFITSIO User’s Reference Guide

An Interface to FITS Format Files

for C Programmers

Version 4.2

HEASARC
Code 662
Goddard Space Flight Center
Greenbelt, MD 20771
USA

Nov 2022

ii

Contents

1 Introduction

1.1 A Brief Overview e
1.2 Sources of FITS Software and Information
1.3 Acknowledgments
1.4 Legal Stuff

Creating the CFITSIO Library

2.1 Building the Library e
2.1.1 Unix Systems L e e
2.1.2 VMS . e
2.1.3 Windows PCs
2.1.4 Macintosh PCs

2.2 Testing the Library e

2.3 Linking Programs with CFITSIO

2.4 Using CFITSIO in Multi-threaded Environments

2.5 Getting Started with CFITSIO

2.6 Example Program e

A FITS Primer

Programming Guidelines

4.1 CFITSIO Definitions 0
4.2 Current Header Data Unit (CHDU)
4.3 Function Names and Variable Datatypes
4.4 Support for Unsigned Integers and Signed Bytes
4.5 Dealing with Character Strings

iii

10

13

iv

CONTENTS

4.6 Implicit Data Type Conversion 23
4.7 Data Scaling 23
4.8 Support for IEEE Special Values 24
4.9 FError Status Values and the Error Message Stack 25
4.10 Variable-Length Arrays in Binary Tables 25
4.11 Multiple Access to the Same FITSFile 27
4.12 When the Final Size of the FITS HDU is Unknown 28
4.13 CFITSIO Size Limitations et 28
Basic CFITSIO Interface Routines 31
5.1 CFITSIO Error Status Routines 31
5.2 FITS File Access Routines 32
5.3 HDU Access Routines 35
5.4 Header Keyword Read/Write Routines, 37
5.4.1 Keyword Reading Routines 38
5.4.2 Keyword Writing Routines oo 41
5.5 Primary Array or IMAGE Extension I/O Routines 43
5.6 Image Compression L e 47
5.7 ASCII and Binary Table Routines 52
5.7.1 Create New Table 52
5.7.2 Column Information Routines, 53
5.7.3 Routines to Edit Rows or Columns 56
5.7.4 Read and Write Column Data Routines 58
5.7.5 Row Selection and Calculator Routines 61
5.7.6 Column Binning or Histogramming Routines 62
5.8 Utility Routines oL e 65
5.8.1 File Checksum Routines 65
5.8.2 Date and Time Utility Routines, 66
5.8.3 General Utility Routines 67
The CFITSIO Iterator Function 79
6.1 The Iterator Work Function 80
6.2 The Iterator Driver Function 82

6.3 Guidelines for Using the Iterator Function 83

CONTENTS

6.4 Complete List of Iterator Routines

7 World Coordinate System Routines
7.1 Self-contained WCS Routines

8 Hierarchical Grouping Routines
8.1 Grouping Table Routines
8.2 Group Member Routines L

9 Specialized CFITSIO Interface Routines
9.1 FITS File Access Routines
9.1.1 File Access e
9.1.2 Download Utility Functions
9.2 HDU Access Routines
9.3 Specialized Header Keyword Routines
9.3.1 Header Information Routines
9.3.2 Read and Write the Required Keywords
9.3.3 Write Keyword Routines o,
9.3.4 Imsert Keyword Routines
9.3.5 Read Keyword Routines
9.3.6 Modify Keyword Routines
9.3.7 Update Keyword Routines
9.4 Define Data Scaling and Undefined Pixel Parameters
9.5 Specialized FITS Primary Array or IMAGE Extension I/O Routines
9.6 Specialized FITS ASCII and Binary Table Routines
9.6.1 General Column Routines
9.6.2 Low-Level Table Access Routines
9.6.3 Write Column Data Routines
9.6.4 Read Column Data Routines

10 Extended File Name Syntax
10.1 OVverview o o oo o e e
10.2 Filetype o
10.2.1 Notes about HTTP proxy servers

84

87
88

91
92
94

97

97

97
101
102
104
104
104
106
108
109
111
112
113
114
117
117
119
119
120

vi CONTENTS
10.2.2 Notes about HT'TPS and FTPS fileaccess 129
10.2.3 Notes about the stream filetype driver 130
10.2.4 Notes about the gsiftp filetype L. 131
10.2.5 Notes about the root filetypeo 131
10.2.6 Notes about the shmem filetype: 133

10.3 Base Filename 133
10.4 Output File Name when Opening an Existing File 135
10.5 Template File Name when Creating a New File 137
10.6 Image Tile-Compression Specification 137
10.7 HDU Location Specification o 137
10.8 TImage Section L 139
10.9 Image Transform Filters L 140
10.10Column and Keyword Filtering Specification 141
10.11Row Filtering Specification L o o 145
10.11.1 General Syntax oL e e 145
10.11.2Bit Masks e 148
10.11.3 Vector Columns L e 149
10.11.4Row ACCESS . . . o o v i e e 151
10.11.5 Good Time Interval Filtering and Calculation 151
10.11.6 Spatial Region Filtering oL 153
10.11.7 Example Row Filters 156
10.12 Binning or Histogramming Specification 157
11 Template Files 161
11.1 Detailed Template Line Format 161
11.2 Auto-indexing of Keywords 162
11.3 Template Parser Directives o 163
11.4 Formal Template Syntax o 164
11.5 Errors o e 164
11.6 Examples e 164
12 Local FITS Conventions 167
12.1 64-Bit Long Integers e 167
12.2 Long String Keyword Values. 167

CONTENTS vii

12.3 Arrays of Fixed-Length Strings in Binary Tables 169
12.4 Keyword Units Strings 169
12.5 HIERARCH Convention for Extended Keyword Names 169
12.6 Tile-Compressed Image Format 170
13 Optimizing Programs 173
13.1 How CFITSIO Manages Data I/O 173
13.2 Optimization Strategies o 174
A Index of Routines 179
B Parameter Definitions 185
C CFITSIO Error Status Codes 191

viii CONTENTS

Chapter 1

Introduction

1.1 A Brief Overview

CFITSIO is a machine-independent library of routines for reading and writing data files in the FITS
(Flexible Image Transport System) data format. It can also read IRAF format image files and raw
binary data arrays by converting them on the fly into a virtual FITS format file. This library
is written in ANSI C and provides a powerful yet simple interface for accessing FITS files which
will run on most commonly used computers and workstations. CFITSIO supports all the features
described in the official definition of the FITS format and can read and write all the currently
defined types of extensions, including ASCII tables (TABLE), Binary tables (BINTABLE) and
IMAGE extensions. The CFITSIO routines insulate the programmer from having to deal with the
complicated formatting details in the FITS file, however, it is assumed that users have a general
knowledge about the structure and usage of FITS files.

CFITSIO also contains a set of Fortran callable wrapper routines which allow Fortran programs
to call the CFITSIO routines. See the companion “FITSIO User’s Guide” for the definition of the
Fortran subroutine calling sequences. These wrappers replace the older Fortran FITSIO library
which is no longer supported.

The CFITSIO package was initially developed by the HEASARC (High Energy Astrophysics Science
Archive Research Center) at the NASA Goddard Space Flight Center to convert various existing
and newly acquired astronomical data sets into FITS format and to further analyze data already in
FITS format. New features continue to be added to CFITSIO in large part due to contributions of
ideas or actual code from users of the package. The Integral Science Data Center in Switzerland,
and the XMM/ESTEC project in The Netherlands made especially significant contributions that
resulted in many of the new features that appeared in v2.0 of CFITSIO.

1.2 Sources of FITS Software and Information

The latest version of the CFITSIO source code, documentation, and example programs are available
on the Web or via anonymous ftp from:

2 CHAPTER 1. INTRODUCTION

http://heasarc.gsfc.nasa.gov/fitsio
ftp://legacy.gsfc.nasa.gov/software/fitsio/c

Any questions, bug reports, or suggested enhancements related to the CFITSIO package should be
sent to the FTOOLS Help Desk at the HEASARC:

http://heasarc.gsfc.nasa.gov/cgi-bin/ftoolshelp

This User’s Guide assumes that readers already have a general understanding of the definition
and structure of FITS format files. Further information about FITS formats is available from the
FITS Support Office at http://fits.gsfc.nasa.gov. In particular, the 'FITS Standard’ gives
the authoritative definition of the FITS data format. Other documents available at that Web site
provide additional historical background and practical advice on using FITS files.

The HEASARC also provides a very sophisticated FITS file analysis program called ‘Fv’ which can
be used to display and edit the contents of any FITS file as well as construct new FITS files from
scratch. Fv is freely available for most Unix platforms, Mac PCs, and Windows PCs. CFITSIO
users may also be interested in the FTOOLS package of programs that can be used to manipulate
and analyze FITS format files. Fv and FTOOLS are available from their respective Web sites at:

http://fv.gsfc.nasa.gov
http://heasarc.gsfc.nasa.gov/ftools

1.3 Acknowledgments

The development of the many powerful features in CFITSIO was made possible through collabora-
tions with many people or organizations from around the world. The following in particular have
made especially significant contributions:

Programmers from the Integral Science Data Center, Switzerland (namely, Jurek Borkowski, Bruce
O’Neel, and Don Jennings), designed the concept for the plug-in I/O drivers that was introduced
with CFITSIO 2.0. The use of ‘drivers’ greatly simplified the low-level I/O, which in turn made
other new features in CFITSIO (e.g., support for compressed FITS files and support for IRAF
format image files) much easier to implement. Jurek Borkowski wrote the Shared Memory driver,
and Bruce O’Neel wrote the drivers for accessing FITS files over the network using the FTP, HTTP,
and ROOT protocols. Also, in 2009, Bruce O’Neel was the key developer of the thread-safe version
of CFITSIO.

The ISDC also provided the template parsing routines (written by Jurek Borkowski) and the
hierarchical grouping routines (written by Don Jennings). The ISDC DAL (Data Access Layer)
routines are layered on top of CFITSIO and make extensive use of these features.

Giuliano Taffoni and Andrea Barisani, at INAF, University of Trieste, Italy, implemented the I/O
driver routines for accessing FITS files on the computational grids using the gridftp protocol.

Uwe Lammers (XMM/ESA/ESTEC, The Netherlands) designed the high-performance lexical pars-
ing algorithm that is used to do on-the-fly filtering of FITS tables. This algorithm essentially

1.3. ACKNOWLEDGMENTS 3

pre-compiles the user-supplied selection expression into a form that can be rapidly evaluated for
each row. Peter Wilson (RSTX, NASA/GSFC) then wrote the parsing routines used by CFITSIO
based on Lammers’ design, combined with other techniques such as the CFITSIO iterator routine
to further enhance the data processing throughput. This effort also benefited from a much earlier
lexical parsing routine that was developed by Kent Blackburn (NASA /GSFC). More recently, Craig
Markwardt (NASA/GSFC) implemented additional functions (median, average, stddev) and other
enhancements to the lexical parser.

The CFITSIO iterator function is loosely based on similar ideas developed for the XMM Data
Access Layer.

Peter Wilson (RSTX, NASA /GSFC) wrote the complete set of Fortran-callable wrappers for all the
CFITSIO routines, which in turn rely on the CFORTRAN macro developed by Burkhard Burow.

The syntax used by CFITSIO for filtering or binning input FITS files is based on ideas developed
for the AXAF Science Center Data Model by Jonathan McDowell, Antonella Fruscione, Aneta

Siemiginowska and Bill Joye. See http://heasarc.gsfc.nasa.gov/docs/journal /axaf7.html for further
description of the AXAF Data Model.

The file decompression code were taken directly from the gzip (GNU zip) program developed by
Jean-loup Gailly and others.

The new compressed image data format (where the image is tiled and the compressed byte stream
from each tile is stored in a binary table) was implemented in collaboration with Richard White
(STScI), Perry Greenfield (STScI) and Doug Tody (NOAO).

Doug Mink (SAO) provided the routines for converting IRAF format images into FITS format.

Martin Reinecke (Max Planck Institute, Garching)) provided the modifications to cfortran.h that
are necessary to support 64-bit integer values when calling C routines from fortran programs. The
cfortran.h macros were originally developed by Burkhard Burow (CERN).

Julian Taylor (ESO, Garching) provided the fast byte-swapping algorithms that use the SSE2 and
SSSE3 machine instructions available on x86_64 CPUs.

In addition, many other people have made valuable contributions to the development of CFITSIO.
These include (with apologies to others that may have inadvertently been omitted):

Steve Allen, Carl Akerlof, Keith Arnaud, Morten Krabbe Barfoed, Kent Blackburn, G Bodammer,
Romke Bontekoe, Lucio Chiappetti, Keith Costorf, Robin Corbet, John Davis, Richard Fink, Ning
Gan, Emily Greene, Gretchen Green, Joe Harrington, Cheng Ho, Phil Hodge, Jim Ingham, Yoshi-
taka Ishisaki, Diab Jerius, Mark Levine, Todd Karakaskian, Edward King, Scott Koch, Claire
Larkin, Rob Managan, Eric Mandel, Richard Mathar, John Mattox, Carsten Meyer, Emi Miyata,
Stefan Mochnacki, Mike Noble, Oliver Oberdorf, Clive Page, Arvind Parmar, Jeff Pedelty, Tim
Pearson, Philippe Prugniel, Maren Purves, Scott Randall, Chris Rogers, Arnold Rots, Rob Sea-
man, Barry Schlesinger, Robin Stebbins, Andrew Szymkowiak, Allyn Tennant, Peter Teuben, James
Theiler, Doug Tody, Shiro Ueno, Steve Walton, Archie Warnock, Alan Watson, Dan Whipple, Wim
Wimmers, Peter Young, Jianjun Xu, and Nelson Zarate.

4 CHAPTER 1. INTRODUCTION
1.4 Legal Stuff

Copyright (Unpublished—all rights reserved under the copyright laws of the United States), U.S.
Government as represented by the Administrator of the National Aeronautics and Space Adminis-
tration. No copyright is claimed in the United States under Title 17, U.S. Code.

Permission to freely use, copy, modify, and distribute this software and its documentation without
fee is hereby granted, provided that this copyright notice and disclaimer of warranty appears in all
copies.

DISCLAIMER:

THE SOFTWARE IS PROVIDED °’AS IS’ WITHOUT ANY WARRANTY OF ANY KIND, EI-
THER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO,
ANY WARRANTY THAT THE SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT THE DOC-
UMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE
SOFTWARE WILL BE ERROR FREE. IN NO EVENT SHALL NASA BE LIABLE FOR ANY
DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CON-
SEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CON-
NECTED WITH THIS SOFTWARE, WHETHER OR NOT BASED UPON WARRANTY, CON-
TRACT, TORT , OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY PER-
SONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED
FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SER-
VICES PROVIDED HEREUNDER.”

Chapter 2

Creating the CFITSIO Library

2.1 Building the Library

The CFITSIO code is contained in about 40 C source files (*.c) and header files (*.h). On
VAX/VMS systems 2 assembly-code files (vmsieeed.mar and vmsieeer.mar) are also needed.

CFITSIO is written in ANCI C and should be compatible with most existing C and C++ compilers.
Cray supercomputers are currently not supported.

2.1.1 Unix Systems

The CFITSIO library is built on Unix systems by typing:

> ./configure [--prefix=/target/installation/path] [--enable-reentrant]
[--enable-sse2] [--enable-ssse3]

> make (or ‘’make shared’)

> make install (this step is optional)

at the operating system prompt. The configure command customizes the Makefile for the particular
system, then the ‘make’ command compiles the source files and builds the library. Type ‘./configure’
and not simply ‘configure’ to ensure that the configure script in the current directory is run and
not some other system-wide configure script. The optional ’prefix’ argument to configure gives the
path to the directory where the CFITSIO library and include files should be installed via the later
'make install’ command. For example,

> ./configure --prefix=/usril/local

will cause the 'make install’ command to copy the CFITSIO libcfitsio file to /usrl/local/lib and the
necessary include files to /usrl/local/include (assuming of course that the process has permission
to write to these directories).

All the available configure options can be seen by entering the command

5

6 CHAPTER 2. CREATING THE CFITSIO LIBRARY

> ./configure --help

Some of the more useful options are described below:

The —enable-reentrant option will attempt to configure CFITSIO so that it can be used in multi-
threaded programs. See the ”Using CFITSIO in Multi-threaded Environments” section, below, for
more details.

The —enable-sse2 and —enable-ssse3 options will cause configure to attempt to build CFITSIO using
faster byte-swapping algorithms. See the ” Optimizing Programs” chapter of this manual for more
information about these options.

The —with-gsiftp-flavour and —with-gsiftp options enable support for the Globus Toolkit gsiftp
protocal. See the ”Extended File Name Syntax” chapter for more information.

The —with-bzip2 option enables support for reading FITS files that have been externally compressed
by the bzip2 algorithm. This requires that the CFITSIO library, and all applications program that
use CFITSIO, to be linked to include the libbz2 library.

The 'make shared’ option builds a shared or dynamic version of the CFITSIO library. When using
the shared library the executable code is not copied into your program at link time and instead the
program locates the necessary library code at run time, normally through LD_LIBRARY _PATH or
some other method. The advantages of using a shared library are:

1. Less disk space if you build more than 1 program
Less memory if more than one copy of a program using the shared
library is running at the same time since the system is smart
enough to share copies of the shared library at run time.

3. Possibly easier maintenance since a new version of the shared
library can be installed without relinking all the software
that uses it (as long as the subroutine names and calling
sequences remain unchanged) .

4. No run-time penalty.

The disadvantages are:

1. More hassle at runtime. You have to either build the programs
specially or have LD_LIBRARY_PATH set right.

2. There may be a slight start up penalty, depending on where you are
reading the shared library and the program from and if your CPU is
either really slow or really heavily loaded.

On Mac OS X platforms the 'make shared” command works like on other UNIX platforms, but a
.dylib file will be created instead of .so. If installed in a nonstandard location, add its location to
the DYLD_LIBRARY _PATH environment variable so that the library can be found at run time.

On HP/UX systems, the environment variable CFLAGS should be set to -Ae before running con-
figure to enable ”extended ANSI” features.

2.2. TESTING THE LIBRARY 7

By default, a set of Fortran-callable wrapper routines are also built and included in the CFITSIO
library. If these wrapper routines are not needed (i.e., the CFITSIO library will not be linked
to any Fortran applications which call FITSIO subroutines) then they may be omitted from the
build by typing 'make all-nofitsio’ instead of simply typing 'make’. This will reduce the size of the
CFITSIO library slightly.

It may not be possible to statically link programs that use CFITSIO on some platforms (namely,
on Solaris 2.6) due to the network drivers (which provide FTP and HTTP access to FITS files). It
is possible to make both a dynamic and a static version of the CFITSIO library, but network file
access will not be possible using the static version.

2.1.2 VMS

On VAX/VMS and ALPHA /VMS systems the make_gfloat.com command file may be executed to
build the cfitsio.olb object library using the default G-floating point option for double variables.
The make_dfloat.com and make_ieee.com files may be used instead to build the library with the
other floating point options. Note that the getcwd function that is used in the group.c module may
require that programs using CFITSIO be linked with the ALPHASLIBRARY:VAXCRTL.OLB
library. See the example link line in the next section of this document.

2.1.3 Windows PCs

A precompiled DLL version of CFITSIO (not necessarily the latest version) is available on the
CFITSIO web site. The CFITSIO library may also be built from the source code using the CMake
build system. See the ”"README.win” file in the CFITSIO source distribution for more informa-
tion.

2.1.4 Macintosh PCs

When building on Mac OS-X, users should follow the Unix instructions, above. See the README.MacOS
file for instructions on building a Universal Binary that supports both Intel and PowerPC CPUs.

2.2 Testing the Library

The CFITSIO library should be tested by building and running the testprog.c program that is
included with the release. On Unix systems, type:

% make testprog

% testprog > testprog.lis

% diff testprog.lis testprog.out
% cmp testprog.fit testprog.std

On VMS systems, (assuming cc is the name of the C compiler command), type:

8 CHAPTER 2. CREATING THE CFITSIO LIBRARY

$ cc testprog.c
$ link testprog, cfitsio/lib, alpha$library:vaxcrtl/lib
$ run testprog

The test program should produce a FITS file called ‘testprog.fit’ that is identical to the ‘test-
prog.std” FITS file included with this release. The diagnostic messages (which were piped to the
file testprog.lis in the Unix example) should be identical to the listing contained in the file test-
prog.out. The ’diff’ and ’emp’ commands shown above should not report any differences in the
files. (There may be some minor format differences, such as the presence or absence of leading
zeros, or 3 digit exponents in numbers, which can be ignored).

The Fortran wrappers in CFITSIO may be tested with the testf77 program on Unix systems with:

% gfortran -o testf77 testf77.f -L. -lcfitsio -1z -lcurl
% testf77 > testf77.lis

% diff testf77.lis testf77.out

% cmp testf77.fit testf77.std

On machines running SUN O/S, Fortran programs must be compiled with the ’-f’ option to force
double precision variables to be aligned on 8-byte boundarys to make the fortran-declared variables
compatible with C. A similar compiler option may be required on other platforms. Failing to use
this option may cause the program to crash on FITSIO routines that read or write double precision
variables.

Also note that on some systems, the output listing of the testf77 program may differ slightly from
the testf77.std template, if leading zeros are not printed by default before the decimal point when
using F format.

A few other utility programs are included with CFITSIO; the first four of this programs can be
compiled an linked by typing ‘make program_name’ where ‘program_name’ is the actual name of
the program:

speed - measures the maximum throughput (in MB per second)
for writing and reading FITS files with CFITSIO.
listhead - lists all the header keywords in any FITS file

fitscopy - copies any FITS file (especially useful in conjunction
with the CFITSIO’s extended input filename syntax).

cookbook - a sample program that performs common read and
write operations on a FITS file.

iter_a, iter_b, iter_c - examples of the CFITSIO iterator routine

2.3. LINKING PROGRAMS WITH CFITSIO 9

2.3 Linking Programs with CFITSIO

When linking applications software with the CFITSIO library, several system libraries usually need
to be specified on the link command line. On Unix systems, the most reliable way to determine
what libraries are required is to type 'make testprog’ and see what libraries the configure script has
added. The typical libraries that need to be added are -lm (the math library) and -Insl and -lsocket
(needed only for FTP and HTTP file access). These latter 2 libraries are not needed on VMS and
Windows platforms, because FTP file access is not currently supported on those platforms.

Note that when upgrading to a newer version of CFITSIO it is usually necessary to recompile, as
well as relink, the programs that use CFITSIO, because the definitions in fitsio.h often change.

2.4 Using CFITSIO in Multi-threaded Environments

CFITSIO can be used either with the POSIX pthreads interface or the OpenMP interface for
multi-threaded parallel programs. When used in a multi-threaded environment, the CFITSIO
library *must® be built using the -D_REENTRANT compiler directive. This can be done using the
following build commands:

>./configure --enable-reentrant
> make

A function called fits_is_reentrant is available to test whether or not CFITSIO was compiled with
the -D_REENTRANT directive. When this feature is enabled, multiple threads can call any of the
CFITSIO routines to simultaneously read or write separate FITS files. Multiple threads can also
read data from the same FITS file simultaneously, as long as the file was opened independently by
each thread. This relies on the operating system to correctly deal with reading the same file by
multiple processes. Different threads should not share the same ’fitsfile’ pointer to read an opened
FITS file, unless locks are placed around the calls to the CFITSIO reading routines. Different
threads should never try to write to the same FITS file.

2.5 Getting Started with CFITSIO

In order to effectively use the CFITSIO library it is recommended that new users begin by reading
the “CFITSIO Quick Start Guide”. It contains all the basic information needed to write programs
that perform most types of operations on FITS files. The set of example FITS utility programs that
are available from the CFITSIO web site are also very useful for learning how to use CFITSIO. To
learn even more about the capabilities of the CFITSIO library the following steps are recommended:

1. Read the following short ‘FITS Primer’ chapter for an overview of the structure of FITS files.

2. Review the Programming Guidelines in Chapter 4 to become familiar with the conventions used
by the CFITSIO interface.

3. Refer to the cookbook.c, listhead.c, and fitscopy.c programs that are included with this re-
lease for examples of routines that perform various common FITS file operations. Type 'make

10 CHAPTER 2. CREATING THE CFITSIO LIBRARY

program_name’ to compile and link these programs on Unix systems.

4. Write a simple program to read or write a FITS file using the Basic Interface routines described
in Chapter 5.

5. Scan through the more specialized routines that are described in the following chapters to
become familiar with the functionality that they provide.

2.6 Example Program

The following listing shows an example of how to use the CFITSIO routines in a C program.
Refer to the cookbook.c program that is included with the CFITSIO distribution for other example
routines.

This program creates a new FITS file, containing a FITS image. An ‘EXPOSURE’ keyword is
written to the header, then the image data are written to the FITS file before closing the FITS file.

#include "fitsio.h" /* required by every program that uses CFITSIO */

main()

{
fitsfile *fptr; /* pointer to the FITS file; defined in fitsio.h */
int status, ii, jj;
long fpixel = 1, naxis = 2, nelements, exposure;
long naxes[2] = { 300, 200 }; /* image is 300 pixels wide by 200 rows */
short array[200] [300];

status = 0; /* initialize status before calling fitsio routines */
fits_create_file(&fptr, "testfile.fits", &status); /* create new file */

/* Create the primary array image (16-bit short integer pixels x/
fits_create_img(fptr, SHORT_IMG, naxis, naxes, &status);

/* Write a keyword; must pass the ADDRESS of the value */

exposure = 1500.;

fits_update_key(fptr, TLONG, "EXPOSURE", &exposure,
"Total Exposure Time", &status);

/* Initialize the values in the image with a linear ramp function */
for (jj = 0; jj < maxes[1]; jj++)
for (ii = 0; ii < naxes[0]; ii++)
array[jjl[ii] = ii + jj;

nelements = naxes[0] * naxes[1]; /* number of pixels to write */

/* Write the array of integers to the image */
fits_write_img(fptr, TSHORT, fpixel, nelements, array[0], &status);

2.6. EXAMPLE PROGRAM

fits_close_file(fptr, &status);

fits_report_error(stderr, status);
return(status);

/* close the file */

/* print out any error messages */

11

12

CHAPTER 2.

CREATING THE CFITSIO LIBRARY

Chapter 3

A FITS Primer

This section gives a brief overview of the structure of FITS files. Users should refer to the doc-
umentation available from the FITS Support OFfice, as described in the introduction, for more
detailed information on FITS formats.

FITS was first developed in the late 1970’s as a standard data interchange format between various
astronomical observatories. Since then FITS has become the standard data format supported by
most astronomical data analysis software packages.

A FITS file consists of one or more Header + Data Units (HDUs), where the first HDU is called
the ‘Primary HDU’, or ‘Primary Array’. The primary array contains an N-dimensional array of
pixels, such as a 1-D spectrum, a 2-D image, or a 3-D data cube. Six different primary data types
are supported: Unsigned 8-bit bytes, 16-bit, 32-bit, and 64-bit signed integers, and 32 and 64-bit
floating point reals. FITS also has a convention for storing 16, 32-bit, and 64-bit unsigned integers
(see the later section entitled ‘Unsigned Integers’ for more details). The primary HDU may also
consist of only a header with a null array containing no data pixels.

Any number of additional HDUs may follow the primary array; these additional HDUs are called
FITS ‘extensions’. There are currently 3 types of extensions defined by the FITS standard:

e Image Extension - a N-dimensional array of pixels, like in a primary array
e ASCII Table Extension - rows and columns of data in ASCII character format
e Binary Table Extension - rows and columns of data in binary representation
In each case the HDU consists of an ASCII Header Unit followed by an optional Data Unit. For

historical reasons, each Header or Data unit must be an exact multiple of 2880 8-bit bytes long.
Any unused space is padded with fill characters (ASCII blanks or zeros).

FEach Header Unit consists of any number of 80-character keyword records or ‘card images’ which
have the general form:

KEYNAME = value / comment string
NULLKEY / comment: This keyword has no value

13

14 CHAPTER 3. A FITS PRIMER

The keyword names may be up to 8 characters long and can only contain uppercase letters, the
digits 0-9, the hyphen, and the underscore character. The keyword name is (usually) followed by an
equals sign and a space character (=) in columns 9 - 10 of the record, followed by the value of the
keyword which may be either an integer, a floating point number, a character string (enclosed in
single quotes), or a boolean value (the letter T or F'). A keyword may also have a null or undefined
value if there is no specified value string, as in the second example, above

The last keyword in the header is always the ‘END’ keyword which has no value or comment fields.
There are many rules governing the exact format of a keyword record (see the FITS Standard) so
it is better to rely on standard interface software like CFITSIO to correctly construct or to parse
the keyword records rather than try to deal directly with the raw FITS formats.

Fach Header Unit begins with a series of required keywords which depend on the type of HDU.
These required keywords specify the size and format of the following Data Unit. The header may
contain other optional keywords to describe other aspects of the data, such as the units or scaling
values. Other COMMENT or HISTORY keywords are also frequently added to further document
the data file.

The optional Data Unit immediately follows the last 2880-byte block in the Header Unit. Some
HDUs do not have a Data Unit and only consist of the Header Unit.

If there is more than one HDU in the FITS file, then the Header Unit of the next HDU immediately
follows the last 2880-byte block of the previous Data Unit (or Header Unit if there is no Data Unit).

The main required keywords in FITS primary arrays or image extensions are:

e BITPIX — defines the data type of the array: 8, 16, 32, 64, -32, -64 for unsigned 8-bit byte,
16-bit signed integer, 32-bit signed integer, 32-bit IEEE floating point, and 64-bit IEEE
double precision floating point, respectively.

e NAXIS — the number of dimensions in the array, usually 0, 1, 2, 3, or 4.

e NAXISn — (n ranges from 1 to NAXIS) defines the size of each dimension.

FITS tables start with the keyword XTENSION = ‘TABLE’ (for ASCII tables) or XTENSION =
‘BINTABLE’ (for binary tables) and have the following main keywords:

e TFIELDS — number of fields or columns in the table

e NAXIS2 — number of rows in the table

e TTYPEn - for each column (n ranges from 1 to TFIELDS) gives the name of the column
e TFORMn — the data type of the column

e TUNITn — the physical units of the column (optional)

Users should refer to the FITS Support Office at http://fits.gsfc.nasa.gov for further infor-
mation about the FITS format and related software packages.

Chapter 4

Programming Guidelines

4.1 CFITSIO Definitions

Any program that uses the CFITSIO interface must include the fitsio.h header file with the state-
ment

#include "fitsio.h"

This header file contains the prototypes for all the CFITSIO user interface routines as well as the
definitions of various constants used in the interface. It also defines a C structure of type ‘fitsfile’
that is used by CFITSIO to store the relevant parameters that define the format of a particular
FITS file. Application programs must define a pointer to this structure for each FITS file that is
to be opened. This structure is initialized (i.e., memory is allocated for the structure) when the
FITS file is first opened or created with the fits_open_file or fits_create_file routines. This fitsfile
pointer is then passed as the first argument to every other CFITSIO routine that operates on the
FITS file. Application programs must not directly read or write elements in this fitsfile structure
because the definition of the structure may change in future versions of CFITSIO.

A number of symbolic constants are also defined in fitsio.h for the convenience of application
programmers. Use of these symbolic constants rather than the actual numeric value will help to
make the source code more readable and easier for others to understand.

String Lengths, for use when allocating character arrays:

#define FLEN_FILENAME 1025 /* max length of a filename x/
#define FLEN_KEYWORD 72 /* max length of a keyword */
#define FLEN_CARD 81 /* max length of a FITS header card x/
#define FLEN_VALUE 71 /* max length of a keyword value string x/
#define FLEN_COMMENT 73 /* max length of a keyword comment string */
#define FLEN_ERRMSG 81 /* max length of a CFITSIO error message x/
#define FLEN_STATUS 31 /* max length of a CFITSIO status text string */

Note that FLEN_KEYWORD is longer than the nominal 8-character keyword

15

16

CHAPTER 4.

PROGRAMMING GUIDELINES

name length because the HIERARCH convention supports longer keyword names.

Access modes when opening a FITS file:

#define
#define

READONLY O
READWRITE 1

BITPIX data type code values for FITS images:

#define
#define
#define
#define
#define
#define

BYTE_IMG 8
SHORT_IMG 16
LONG_IMG 32
LONGLONG_IMG 64

FLOAT_IMG -32
DOUBLE_IMG -64

/%
/*
/%
/*
/%
/*

8-bit unsigned integers
16-bit signed integers
32-bit signed integers
64-bit signed integers
32-bit single precision floating point */
64-bit double precision floating point */

*/
*/
*/
*/

The following 4 data type codes are also supported by CFITSIO:

/* 8-bit signed integers, equivalent to */
/* BITPIX = 8, BSCALE = 1, BZERO = -128 %/
/* 16-bit unsigned integers, equivalent to */
/* BITPIX = 16, BSCALE = 1,
/* 32-bit unsigned integers,
/* BITPIX = 32, BSCALE = 1,
/* 64-bit unsigned integers,
/* BITPIX = 64, BSCALE = 1,

#define
#define
#define

#define

Codes for
data type

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

SBYTE_IMG 10

USHORT_IMG 20

ULONG_IMG 40

ULONGLONG_IMG 80

BZERO = 32768 */

equivalent to */

BZERO = 2147483648 */
equivalent to */

BZERO = 9223372036854775808%/

the data type of binary table columns and/or for the
of variables when reading or writing keywords or data:

TBIT 1
TBYTE 11
TLOGICAL 14
TSTRING 16
TSHORT 21
TLONG 41
TLONGLONG 81
TFLOAT 42
TDOUBLE 82
TCOMPLEX 83
TDBLCOMPLEX 163

The following data type

#define
#define

TINT 31
TSBYTE 12

/*
/%
/*
/%
/*
/%
/*
/%
/*
/%
/*
/%

DATATYPE

TFORM CODE

8-bit unsigned byte,

logicals (int

for keywords

and char for table cols

ASCII string,
signed short,
signed long,

64-bit long signed integer
single precision float,
double precision float,
complex (pair of floats)
double complex (2 doubles)

D' */
>B> */

*/
1,0 */
TA0 */
1 */

*/
K2 */
b Rl */
D’ */
c o/
M? */

codes are also supported by CFITSIO:

/%

int

/* 8-bit signed byte,

*/
g0 */

4.1. CFITSIO DEFINITIONS

#define TUINT 30 /* unsigned int AR V4
#define TUSHORT 20 /* unsigned short U2 x/
#define TULONG 40 /* unsigned long x/
#define TULONGLONG 80 /* unsigned long long Wox/

The following data type code is only for use with fits_get_coltype
#define TINT32BIT 41 /* signed 32-bit int, 2J0 %/
HDU type code values (value returned when moving to new HDU):
#define IMAGE_HDU O /* Primary Array or IMAGE HDU */
#define ASCII_TBL 1 /* ASCII table HDU */
#define BINARY_TBL 2 /* Binary table HDU x/
#define ANY_HDU -1 /* matches any type of HDU x/

Column name and string matching case-sensitivity:

#define CASESEN 1 /* do case-sensitive string match */
#define CASEINSEN O /* do case-insensitive string match */

Logical states (if TRUE and FALSE are not already defined):

#define TRUE 1
#define FALSE O

Values to represent undefined floating point numbers:

#define FLOATNULLVALUE -9.11912E-36F
#define DOUBLENULLVALUE -9.1191291391491E-36

Image compression algorithm definitions

#define RICE_1 11
#define GZIP_1 21
#define GZIP_2 22
#define PLIO_1 31

#define HCOMPRESS_1 41
#define NOCOMPRESS -1

#define NO_DITHER -1
#define SUBTRACTIVE_DITHER_1 1
#define SUBTRACTIVE_DITHER_2 2

17

18 CHAPTER 4. PROGRAMMING GUIDELINES

4.2 Current Header Data Unit (CHDU)

The concept of the Current Header and Data Unit, or CHDU, is fundamental to the use of the
CFITSIO library. A simple FITS image may only contain a single Header and Data unit (HDU),
but in general FITS files can contain multiple Header Data Units (also known as ‘extensions’),
concatenated one after the other in the file. The user can specify which HDU should be initially
opened at run time by giving the HDU name or number after the root file name. For example,
'myfile.fits[4]" opens the 5th HDU in the file (note that the numbering starts with 0), and 'my-
file.fits EVENTS] opens the HDU with the name '"EVENTS’ (as defined by the EXTNAME or
HDUNAME keywords). If no HDU is specified then CFITSIO opens the first HDU (the primary
array) by default. The CFITSIO routines which read and write data only operate within the opened
HDU, Other CFITSIO routines are provided to move to and open any other existing HDU within
the FITS file or to append or insert new HDUs in the FITS file.

4.3 Function Names and Variable Datatypes

Most of the CFITSIO routines have both a short name as well as a longer descriptive name. The
short name is only 5 or 6 characters long and is similar to the subroutine name in the Fortran-77
version of FITSIO. The longer name is more descriptive and it is recommended that it be used
instead of the short name to more clearly document the source code.

Many of the CFITSIO routines come in families which differ only in the data type of the associated
parameter(s). The data type of these routines is indicated by the suffix of the routine name. The
short routine names have a 1 or 2 character suffix (e.g., ’j’ in "fipkyj’) while the long routine names
have a 4 character or longer suffix as shown in the following table:

Long Short Data
Names Names Type
_bit X bit
_byt b unsigned byte
_sbyt sb signed byte
_sht i short integer
_1lng J long integer
_lnglng jj 8-byte LONGLONG integer (see note below)
_usht ui unsigned short integer
_ulng uj unsigned long integer
_ulnglng ujj wunsigned long long integer
_uint uk unsigned int integer
int k int integer
_flt e real exponential floating point (float)
_fixflt f real fixed-decimal format floating point (float)
_dbl d double precision real floating-point (double)
_fixdbl g double precision fixed-format floating point (double)
_cmp C complex reals (pairs of float values)

4.3. FUNCTION NAMES AND VARIABLE DATATYPES 19

_fixcmp fc complex reals, fixed-format floating point

_dblcmp m double precision complex (pairs of double values)
_fixdblcmp fm double precision complex, fixed-format floating point
_log 1 logical (int)

_str s character string

The logical data type corresponds to ‘int’ for logical keyword values, and ‘byte’ for logical binary
table columns. In other words, the value when writing a logical keyword must be stored in an
‘int’ variable, and must be stored in a ‘char’ array when reading or writing to ‘L’ columns in a
binary table. Implicit data type conversion is not supported for logical table columns, but is for
keywords, so a logical keyword may be read and cast to any numerical data type; a returned value
= 0 indicates false, and any other value = true.

The ‘int’ data type may be 2 bytes long on some old PC compilers, but otherwise it is nearly always
4 bytes long. Some 64-bit machines, like the Alpha/OSF, define the ‘short’, ‘int’, and ‘long’ integer
data types to be 2, 4, and 8 bytes long, respectively.

Because there is no universal C compiler standard for the name of the 8-byte integer datatype,
the fitsio.h include file typedef’s 'TLONGLONG’ to be equivalent to an appropriate 8-byte integer
data type on each supported platform. For maximum software portability it is recommended that
this LONGLONG datatype be used to define 8-byte integer variables rather than using the native
data type name on a particular platform. On most 32-bit Unix and Mac OS-X operating systems
LONGLONG is equivalent to the intrinsic ’long long’ 8-byte integer datatype. On 64-bit systems
(which currently includes Alpha OSF/1, 64-bit Sun Solaris, 64-bit SGI MIPS, and 64-bit Itanium
and Opteron PC systems), LONGLONG is simply typedef’ed to be equivalent to ’long’. Microsoft
Visual C++ Version 6.0 does not define a ’long long’ data type, so LONGLONG is typedef’ed to
be equivalent to the ’__int64’ data type on 32-bit windows systems when using Visual C++.

A related issue that affects the portability of software is how to print out the value of a 'LONG-
LONG’ variable with printf. Developers may find it convenient to use the following preprocessing
statements in their C programs to handle this in a machine-portable manner:

#if defined(_MSC_VER) /* Microsoft Visual C++ */
printf ("%I64d", longlongvalue);

#elif (USE_LL_SUFFIX == 1)
printf("%11d", longlongvalue);

#else
printf ("%1d", longlongvalue);
#endif

Similarly, the name of the C utility routine that converts a character string of digits into a 8-byte
integer value is platform dependent:

#if defined(_MSC_VER) /* Microsoft Visual C++ */
/* VC++ 6.0 does not seem to have an 8-byte conversion routine */

20 CHAPTER 4. PROGRAMMING GUIDELINES

#elif (USE_LL_SUFFIX == 1)
longlongvalue = atoll(*string);

#else
longlongvalue = atol(*string);
#endif

When dealing with the FITS byte data type it is important to remember that the raw values (before
any scaling by the BSCALE and BZERO, or TSCALn and TZEROn keyword values) in byte arrays
(BITPIX = 8) or byte columns (TFORMn = 'B’) are interpreted as unsigned bytes with values
ranging from 0 to 255. Some C compilers define a ’char’ variable as signed, so it is important to
explicitly declare a numeric char variable as 'unsigned char’ to avoid any ambiguity

One feature of the CFITSIO routines is that they can operate on a ‘X’ (bit) column in a binary table
as though it were a ‘B’ (byte) column. For example a ‘11X’ data type column can be interpreted
the same as a ‘2B’ column (i.e., 2 unsigned 8-bit bytes). In some instances, it can be more efficient
to read and write whole bytes at a time, rather than reading or writing each individual bit.

The complex and double precision complex data types are not directly supported in ANSI C so
these data types should be interpreted as pairs of float or double values, respectively, where the
first value in each pair is the real part, and the second is the imaginary part.

4.4 Support for Unsigned Integers and Signed Bytes

Although FITS does not directly support unsigned integers as one of its fundamental data types,
FITS can still be used to efficiently store unsigned integer data values in images and binary tables.
The convention used in FITS files is to store the unsigned integers as signed integers with an
associated offset (specified by the BZERO or TZEROn keyword). For example, to store unsigned
16-bit integer values in a FITS image the image would be defined as a signed 16-bit integer (with
BITPIX keyword = SHORT_IMG = 16) with the keywords BSCALE = 1.0 and BZERO = 32768.
Thus the unsigned values of 0, 32768, and 65535, for example, are physically stored in the FITS
image as -32768, 0, and 32767, respectively; CFITSIO automatically adds the BZERO offset to
these values when they are read. Similarly, in the case of unsigned 32-bit integers the BITPIX
keyword would be equal to LONGIMG = 32 and BZERO would be equal to 2147483648 (i.e. 2
raised to the 31st power).

The CFITSIO interface routines will efficiently and transparently apply the appropriate offset in
these cases so in general application programs do not need to be concerned with how the unsigned
values are actually stored in the FITS file. As a convenience for users, CFITSIO has several pre-
defined constants for the value of BITPIX (USHORT_.IMG, ULONG_IMG, ULONGLONG_IMG)
and for the TFORMn value in the case of binary tables (‘U’, ‘V’, and ‘W’) which programmers
can use when creating FITS files containing unsigned integer values. The following code fragment
illustrates how to write a FITS 1-D primary array of unsigned 16-bit integers:

unsigned short uarray[100];
int naxis, status;

4.4. SUPPORT FOR UNSIGNED INTEGERS AND SIGNED BYTES 21

long naxes[10], group, firstelem, nelements;

status = 0;
naxis = 1
naxes [0] 100;

fits_create_img(fptr, USHORT_IMG, naxis, naxes, &status);

| -

firstelem = 1;

100;

fits_write_img(fptr, TUSHORT, firstelem, nelements,
uarray, &status);

nelements

In the above example, the 2nd parameter in fits_create_img tells CFITSIO to write the header
keywords appropriate for an array of 16-bit unsigned integers (i.e., BITPIX = 16 and BZERO =
32768). Then the fits_write_img routine writes the array of unsigned short integers (uarray) into the
primary array of the FITS file. Similarly, a 32-bit unsigned integer image may be created by setting
the second parameter in fits_create_img equal to ‘ULONG_IMG’ and by calling the fits_write_img
routine with the second parameter = TULONG to write the array of unsigned long image pixel
values.

An analogous set of routines are available for reading or writing unsigned integer values and signed
byte values in a FITS binary table extension. When specifying the TFORMn keyword value which
defines the format of a column, CFITSIO recognizes 4 additional data type codes besides those
already defined in the FITS standard: ‘U’ meaning a 16-bit unsigned integer column, ‘V’ for a
32-bit unsigned integer column, ‘W’ for a 64-bit unsigned integer column, and ’S’ for a signed byte
column. These non-standard data type codes are not actually written into the FITS file but instead
are just used internally within CFITSIO. The following code fragment illustrates how to use these
features:

unsigned short uarray[100];
unsigned int varray[100];

int colnum, tfields, status;
long nrows, firstrow, firstelem, nelements, pcount;

char extname[] = "Test_table"; /* extension name */

/* define the name, data type, and physical units for 4 columns */

char *ttypel] { "Col_1", "Col_2", "Col_3", "Col_4" };

char *tform[] { "1iu", v, "W, "1S"}; /* special CFITSIO codes */
char *tunit [] { " u’ n u, n u’ non },

/* write the header keywords */
status = 0;
nrows =1;

22 CHAPTER 4. PROGRAMMING GUIDELINES

tfields = 3

pcount = O;

fits_create_tbl(fptr, BINARY_TBL, nrows, tfields, ttype, tform,
tunit, extname, &status);

/* write the unsigned shorts to the 1st column */

colnum =1;
firstrow = 1;
firstelem = 1;
nelements = 100;

fits_write_col(fptr, TUSHORT, colnum, firstrow, firstelem,
nelements, uarray, &status);

/* now write the unsigned longs to the 2nd column */
colnum = 2;
fits_write_col(fptr, TUINT, colnum, firstrow, firstelem,
nelements, varray, &status);

Note that the non-standard TFORM values for the 3 columns, ‘U’, ‘V’, and ‘W’ tell CFITSIO to
write the keywords appropriate for unsigned 16-bit, unsigned 32-bit and unsigned 64-bit integers,
respectively (i.e., TFORMn = ’1I" and TZEROn = 32768 for unsigned 16-bit integers, TFORMn =
"1J” and TZEROn = 2147483648 for unsigned 32-bit integers, and TFORMn = 1K’ and TZEROn
= 9223372036854775808 for unsigned 64-bit integers). The 'S’ TFORMn value tells CFITSIO to
write the keywords appropriate for a signed 8-bit byte column with TFORMn = 1B’ and TZEROn
= -128. The calls to fits_write_col then write the arrays of unsigned integer values to the columns.

4.5 Dealing with Character Strings

The character string values in a FITS header or in an ASCII column in a FITS table extension
are generally padded out with non-significant space characters (ASCII 32) to fill up the header
record or the column width. When reading a FITS string value, the CFITSIO routines will strip
off these non-significant trailing spaces and will return a null-terminated string value containing
only the significant characters. Leading spaces in a FITS string are considered significant. If the
string contains all blanks, then CFITSIO will return a single blank character, i.e, the first blank
is considered to be significant, since it distinguishes the string from a null or undefined string, but
the remaining trailing spaces are not significant.

Similarly, when writing string values to a FITS file the CFITSIO routines expect to get a null-
terminated string as input; CFITSIO will pad the string with blanks if necessary when writing it
to the FITS file.

The FITS standard does not require trailing spaces to be treated in this way, but it does allow a
more seamless transition from the FORTRAN FITS world where trailing spaces are often treated
as insignificant. Users who wish the greatest fidelity when transferring strings can use the _byt
variants of column readers and writers (functions fits_{read,write}_col_byt). These routines will

4.6. IMPLICIT DATA TYPE CONVERSION 23

transfer the raw fixed-length vectors of character bytes of the column, including any trailing blanks
of course. The _byt variants make no attempt to null-terminate any elements. A NULL string
would be indicated by its first character being a NUL byte.

When calling CFITSIO routines that return a character string it is vital that the size of the char
array be large enough to hold the entire string of characters, otherwise CFITSIO will overwrite
whatever memory locations follow the char array, possibly causing the program to execute incor-
rectly. This type of error can be difficult to debug, so programmers should always ensure that the
char arrays are allocated enough space to hold the longest possible string, including the terminat-
ing NULL character. The fitsio.h file contains the following defined constants which programmers
are strongly encouraged to use whenever they are allocating space for char arrays:

#define FLEN_FILENAME 1025 /* max length of a filename */

#define FLEN_KEYWORD 72 /* max length of a keyword */

#define FLEN_CARD 81 /* length of a FITS header card */

#define FLEN_VALUE 71 /* max length of a keyword value string */
#define FLEN_COMMENT 73 /* max length of a keyword comment string */
#define FLEN_ERRMSG 81 /* max length of a CFITSIO error message */
#define FLEN_STATUS 31 /* max length of a CFITSIO status text string */

For example, when declaring a char array to hold the value string of FITS keyword, use the following
statement:

char value[FLEN_VALUE];

Note that FLEN_KEYWORD is longer than needed for the nominal 8-character keyword name
because the HIERARCH convention supports longer keyword names.

4.6 Implicit Data Type Conversion

The CFITSIO routines that read and write numerical data can perform implicit data type conver-
sion. This means that the data type of the variable or array in the program does not need to be the
same as the data type of the value in the FITS file. Data type conversion is supported for numerical
and string data types (if the string contains a valid number enclosed in quotes) when reading a
FITS header keyword value and for numeric values when reading or writing values in the primary
array or a table column. CFITSIO returns status = NUM_OVERFLOW if the converted data value
exceeds the range of the output data type. Implicit data type conversion is not supported within
binary tables for string, logical, complex, or double complex data types.

In addition, any table column may be read as if it contained string values. In the case of numeric
columns the returned string will be formatted using the TDISPn display format if it exists.

4.7 Data Scaling

When reading numerical data values in the primary array or a table column, the values will be
scaled automatically by the BSCALE and BZERO (or TSCALn and TZEROn) header values if

24 CHAPTER 4. PROGRAMMING GUIDELINES

they are present in the header. The scaled data that is returned to the reading program will have
output value = (FITS value) * BSCALE + BZERO

(a corresponding formula using TSCALn and TZEROn is used when reading from table columns).
In the case of integer output values the floating point scaled value is truncated to an integer (not
rounded to the nearest integer). The fits_set_bscale and fits_set_tscale routines (described in the
‘Advanced’ chapter) may be used to override the scaling parameters defined in the header (e.g., to
turn off the scaling so that the program can read the raw unscaled values from the FITS file).

When writing numerical data to the primary array or to a table column the data values will
generally be automatically inversely scaled by the value of the BSCALE and BZERO (or TSCALn
and TZEROn) keyword values if they they exist in the header. These keywords must have been
written to the header before any data is written for them to have any immediate effect. One may
also use the fits_set_bscale and fits_set_tscale routines to define or override the scaling keywords in
the header (e.g., to turn off the scaling so that the program can write the raw unscaled values into
the FITS file). If scaling is performed, the inverse scaled output value that is written into the FITS
file will have

FITS value = ((input value) - BZERO) / BSCALE

(a corresponding formula using TSCALn and TZEROn is used when writing to table columns).
Rounding to the nearest integer, rather than truncation, is performed when writing integer data
types to the FITS file.

4.8 Support for IEEE Special Values

The ANSI/TEEE-754 floating-point number standard defines certain special values that are used to
represent such quantities as Not-a-Number (NaN), denormalized, underflow, overflow, and infinity.
(See the Appendix in the FITS standard or the FITS User’s Guide for a list of these values). The
CFITSIO routines that read floating point data in FITS files recognize these IEEE special values
and by default interpret the overflow and infinity values as being equivalent to a NaN, and convert
the underflow and denormalized values into zeros. In some cases programmers may want access
to the raw IEEE values, without any modification by CFITSIO. This can be done by calling the
fits_read_img or fits_read_col routines while specifying 0.0 as the value of the NULLVAL parameter.
This will force CFITSIO to simply pass the IEEE values through to the application program
without any modification. This is not fully supported on VAX/VMS machines, however, where
there is no easy way to bypass the default interpretation of the IEEE special values. This is also
not supported when reading floating-point images that have been compressed with the FITS tiled
image compression convention that is discussed in section 5.6; the pixels values in tile compressed
images are represented by scaled integers, and a reserved integer value (not a NaN) is used to
represent undefined pixels.

4.9. ERROR STATUS VALUES AND THE ERROR MESSAGE STACK 25

4.9 Error Status Values and the Error Message Stack

Nearly all the CFITSIO routines return an error status value in 2 ways: as the value of the last
parameter in the function call, and as the returned value of the function itself. This provides some
flexibility in the way programmers can test if an error occurred, as illustrated in the following 2
code fragments:

if (fits_write_record(fptr, card, &status))
printf (" Error occurred while writing keyword.");

or,

fits_write_record(fptr, card, &status);
if (status)
printf (" Error occurred while writing keyword.");

A listing of all the CFITSIO status code values is given at the end of this document. Programmers
are encouraged to use the symbolic mnemonics (defined in fitsio.h) rather than the actual integer
status values to improve the readability of their code.

The CFITSIO library uses an ‘inherited status’ convention for the status parameter which means
that if a routine is called with a positive input value of the status parameter as input, then the
routine will exit immediately without changing the value of the status parameter. Thus, if one
passes the status value returned from each CFITSIO routine as input to the next CFITSIO routine,
then whenever an error is detected all further CFITSIO processing will cease. This convention can
simplify the error checking in application programs because it is not necessary to check the value
of the status parameter after every single CFITSIO routine call. If a program contains a sequence
of several CFITSIO calls, one can just check the status value after the last call. Since the returned
status values are generally distinctive, it should be possible to determine which routine originally
returned the error status.

CFITSIO also maintains an internal stack of error messages (80-character maximum length) which
in many cases provide a more detailed explanation of the cause of the error than is provided by
the error status number alone. It is recommended that the error message stack be printed out
whenever a program detects a CFITSIO error. The function fits_report_error will print out the
entire error message stack, or alternatively one may call fits_read_errmsg to get the error messages
one at a time.

4.10 Variable-Length Arrays in Binary Tables

CFITSIO provides easy-to-use support for reading and writing data in variable length fields of a
binary table. The variable length columns have TFORMn keyword values of the form ‘1Pt(len)’ or
‘1Qt(len)” where ‘t’ is the data type code (e.g., I, J, E, D, etc.) and ‘len’ is an integer specifying
the maximum length of the vector in the table. The P’ type variable length columns use 32-bit
array length and byte offset values, whereas the ’Q’ type columns use 64-bit values, which may
be required when dealing with large arrays. CFITSIO supports a local convention that interprets

26 CHAPTER 4. PROGRAMMING GUIDELINES

the 'P’ type descriptors as unsigned 32-bit integers, which provides a factor of 2 greater range
for the array length or heap address than is possible with 32-bit ’signed’ integers. Note, however,
that other software packages may not support this convention, and may be unable to read thees
extended range variable length records.

If the value of ‘len’ is not specified when the table is created (e.g., if the TFORM keyword value is
simply specified as "1PE’ instead of "1PE(400)), then CFITSIO will automatically scan the table
when it is closed to determine the maximum length of the vector and will append this value to the
TFORMn value.

The same routines that read and write data in an ordinary fixed length binary table extension are
also used for variable length fields, however, the routine parameters take on a slightly different
interpretation as described below.

All the data in a variable length field is written into an area called the ‘heap’ which follows the
main fixed-length FITS binary table. The size of the heap, in bytes, is specified by the PCOUNT
keyword in the FITS header. When creating a new binary table, the initial value of PCOUNT should
usually be set to zero. CFITSIO will recompute the size of the heap as the data is written and will
automatically update the PCOUNT keyword value when the table is closed. When writing variable
length data to a table, CFITSIO will automatically extend the size of the heap area if necessary,
so that any following HDUs do not get overwritten.

By default the heap data area starts immediately after the last row of the fixed-length table. This
default starting location may be overridden by the THEAP keyword, but this is not recommended.
If additional rows of data are added to the table, CFITSIO will automatically shift the the heap
down to make room for the new rows, but it is obviously be more efficient to initially create the
table with the necessary number of blank rows, so that the heap does not needed to be constantly
moved.

When writing row of data to a variable length field the entire array of values for a given row of
the table must be written with a single call to fits_write_col. The total length of the array is given
by nelements + firstelem - 1. Additional elements cannot be appended to an existing vector at a
later time since any attempt to do so will simply overwrite all the previously written data and the
new data will be written to a new area of the heap. The fits_.compress_heap routine is provided
to compress the heap and recover any unused space. To avoid having to deal with this issue, it
is recommended that rows in a variable length field should only be written once. An exception to
this general rule occurs when setting elements of an array as undefined. It is allowed to first write
a dummy value into the array with fits_write_col, and then call fits_write_col_nul to flag the desired
elements as undefined. Note that the rows of a table, whether fixed or variable length, do not have
to be written consecutively and may be written in any order.

When writing to a variable length ASCII character field (e.g., TFORM = "1PA’) only a single
character string can be written. The ‘firstelem’ and ‘nelements’ parameter values in the fits_write_col
routine are ignored and the number of characters to write is simply determined by the length of
the input null-terminated character string.

The fits_write_descript routine is useful in situations where multiple rows of a variable length column
have the identical array of values. One can simply write the array once for the first row, and then
use fits_write_descript to write the same descriptor values into the other rows; all the rows will then
point to the same storage location thus saving disk space.

4.11. MULTIPLE ACCESS TO THE SAME FITS FILE 27

When reading from a variable length array field one can only read as many elements as actually
exist in that row of the table; reading does not automatically continue with the next row of the
table as occurs when reading an ordinary fixed length table field. Attempts to read more than this
will cause an error status to be returned. One can determine the number of elements in each row
of a variable column with the fits_read_descript routine.

4.11 Multiple Access to the Same FITS File

CFITSIO supports simultaneous read and write access to different HDUs in the same FITS file in
some circumstances, as described below:

e Multi-threaded programs

When CFITSIO is compiled with the -D_REENTRANT directive (as can be tested with the
fits_is_reentrant function) different threads can call any of the CFITSIO routines to simul-
taneously read or write separate FITS files. Multiple threads can also read data from the
same FITS file simultaneously, as long as the file was opened independently by each thread.
This relies on the operating system to correctly deal with reading the same file by multiple
processes. Different threads should not share the same ’fitsfile’ pointer to read an opened
FITS file, unless locks are placed around the calls to the CFITSIO reading routines. Different
threads should never try to write to the same FITS file.

e Multiple read access to the same FITS file within a single program /thread

A single process may open the same FITS file with READONLY access multiple times,
and thus create multiple 'fitsfile®” pointers to that same file within CFITSIO. This relies on
the operating system’s ability to open a single file multiple times and correctly manage the
subsequent read requests directed to the different C ’file*’ pointers, which actually all point to
the same file. CFITSIO simply executes the read requests to the differnet “fitsfile*’ pointers
the same as if they were physically different files.

e Multiple write access to the same FITS file within a single program/thread

CFITSIO supports opening the same FITS file multiple times with WRITE access, but it only
physically opens the file (at the operating system level) once, on the first call to fits_open_file.
If fits_open_file is subsequently called to open the same file again, CFITSIO will recognize
that the file is already open, and will return a new ’fitsfile*’ pointer that logically points to
the first fitsfile®’ pointer, without actually opening the file a second time. The application
program can then treat the 2 ’fitsfile*’ pointers as if they point to different files, and can
seemingly move to and write data to 2 different HDUs within the same file. However, each
time the application program switches which ’fitsfile*’ pointer it is writing to, CFITSIO will
flush any internal buffers that contain data written to the first ’fitsfile*’ pointer, then move to
the HDU that the other fitsfile®” pointer is writing to. Obviously, this may add a significant
amount of computational overhead if the application program uses this feature to frequently
switch back and forth between writing to 2 (or more) HDUs in the same file, so this capability
should be used judiciously.

Note that CFITSIO will not allow a FITS file to be opened a second time with READWRITE
access if it was opened previously with READONLY access.

28 CHAPTER 4. PROGRAMMING GUIDELINES

4.12 When the Final Size of the FITS HDU is Unknown

It is not required to know the total size of a FITS data array or table before beginning to write the
data to the FITS file. In the case of the primary array or an image extension, one should initially
create the array with the size of the highest dimension (largest NAXISn keyword) set to a dummy
value, such as 1. Then after all the data have been written and the true dimensions are known, then
the NAXISn value should be updated using the fits_update_key routine before moving to another
extension or closing the FITS file.

When writing to FITS tables, CFITSIO automatically keeps track of the highest row number that
is written to, and will increase the size of the table if necessary. CFITSIO will also automatically
insert space in the FITS file if necessary, to ensure that the data "heap’, if it exists, and/or any
additional HDUs that follow the table do not get overwritten as new rows are written to the table.

As a general rule it is best to specify the initial number of rows = 0 when the table is created,
then let CFITSIO keep track of the number of rows that are actually written. The application
program should not manually update the number of rows in the table (as given by the NAXIS2
keyword) since CFITSIO does this automatically. If a table is initially created with more than
zero rows, then this will usually be considered as the minimum size of the table, even if fewer
rows are actually written to the table. Thus, if a table is initially created with NAXIS2 = 20, and
CFITSIO only writes 10 rows of data before closing the table, then NAXIS2 will remain equal to
20. If however, 30 rows of data are written to this table, then NAXIS2 will be increased from 20
to 30. The one exception to this automatic updating of the NAXIS2 keyword is if the application
program directly modifies the value of NAXIS2 (up or down) itself just before closing the table. In
this case, CFITSIO does not update NAXIS2 again, since it assumes that the application program
must have had a good reason for changing the value directly. This is not recommended, however,
and is only provided for backward compatibility with software that initially creates a table with
a large number of rows, than decreases the NAXIS2 value to the actual smaller value just before
closing the table.

4.13 CFITSIO Size Limitations

CFITSIO places very few restrictions on the size of FITS files that it reads or writes. There are a
few limits, however, that may affect some extreme cases:

1. The maximum number of FITS files that may be simultaneously opened by CFITSIO is set by
NMAXFILES, as defined in fitsio2.h. The current default value is 1000, but this may be increased
if necessary. Note that CFITSIO allocates NIOBUF * 2880 bytes of I/O buffer space for each
file that is opened. The default value of NIOBUF is 40 (defined in fitsio.h), so this amounts to
more than 115K of memory for each opened file (or 115 MB for 1000 opened files). Note that the
underlying operating system, may have a lower limit on the number of files that can be opened
simultaneously.

2. Tt used to be common for computer systems to only support disk files up to 2**31 bytes =
2.1 GB in size, but most systems now support larger files. CFITSIO can optionally read and
write these so-called ’large files’ that are greater than 2.1 GB on platforms where they are sup-
ported, but this usually requires that special compiler option flags be specified to turn on this

4.13. CFITSIO SIZE LIMITATIONS 29

option. On linux and solaris systems the compiler flags are -D_LARGEFILE_SOURCE’ and ‘-
D_FILE_OFFSET_BITS=64". These flags may also work on other platforms but this has not been
tested. Starting with version 3.0 of CFITSIO, the default Makefile that is distributed with CFIT-
SIO will include these 2 compiler flags when building on Solaris and Linux PC systems. Users on
other platforms will need to add these compiler flags manually if they want to support large files.
In most cases it appears that it is not necessary to include these compiler flags when compiling
application code that call the CFITSIO library routines.

When CFITSIO is built with large file support (e.g., on Solaris and Linux PC system by default)
then it can read and write FITS data files on disk that have any of these conditions:

o FITS files larger than 2.1 GB in size
e FITS images containing greater than 2.1 G pixels

e FITS images that have one dimension with more than 2.1 G pixels (as given by one of the

NAXISn keyword)

e FITS tables containing more than 2.1E09 rows (given by the NAXIS2 keyword), or with rows
that are more than 2.1 GB wide (given by the NAXIS1 keyword)

e FITS binary tables with a variable-length array heap that is larger than 2.1 GB (given by
the PCOUNT keyword)

The current maximum FITS file size supported by CFITSIO is about 6 terabytes (containing 2**31
FITS blocks, each 2880 bytes in size). Currently, support for large files in CFITSIO has been tested
on the Linux, Solaris, and IBM AIX operating systems.

Note that when writing application programs that are intended to support large files it is important
to use 64-bit integer variables to store quantities such as the dimensions of images, or the number
of rows in a table. These programs must also call the special versions of some of the CFITSIO
routines that have been adapted to support 64-bit integers. The names of these routines end in ’1I’
(’el’ ’el’) to distinguish them from the 32-bit integer version (e.g., fits_get_num_rowsll).

30

CHAPTER 4.

PROGRAMMING GUIDELINES

Chapter 5

Basic CFITSIO Interface Routines

This chapter describes the basic routines in the CFITSIO user interface that provide all the func-
tions normally needed to read and write most FITS files. It is recommended that these routines
be used for most applications and that the more advanced routines described in the next chapter
only be used in special circumstances when necessary.

The following conventions are used in this chapter in the description of each function:

1. Most functions have 2 names: a long descriptive name and a short concise name. Both names are
listed on the first line of the following descriptions, separated by a slash (/) character. Programmers
may use either name in their programs but the long names are recommended to help document the
code and make it easier to read.

2. A right arrow symbol (>) is used in the function descriptions to separate the input parameters
from the output parameters in the definition of each routine. This symbol is not actually part of
the C calling sequence.

3. The function parameters are defined in more detail in the alphabetical listing in Appendix B.

4. The first argument in almost all the functions is a pointer to a structure of type ‘fitsfile’. Memory
for this structure is allocated by CFITSIO when the FITS file is first opened or created and is freed
when the FITS file is closed.

5. The last argument in almost all the functions is the error status parameter. It must be equal
to 0 on input, otherwise the function will immediately exit without doing anything. A non-zero
output value indicates that an error occurred in the function. In most cases the status value is also
returned as the value of the function itself.

5.1 CFITSIO Error Status Routines

1 Return a descriptive text string (30 char max.) corresponding to a CFITSIO error status code.
void fits_get_errstatus / ffgerr (int status, > char *err_text)

2 Return the top (oldest) 80-character error message from the internal CFITSIO stack of error
messages and shift any remaining messages on the stack up one level. Call this routine

31

32 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

repeatedly to get each message in sequence. The function returns a value = 0 and a null error
message when the error stack is empty.

int fits_read_errmsg / ffgmsg (char *err_msg)

3 Print out the error message corresponding to the input status value and all the error messages
on the CFITSIO stack to the specified file stream (normally to stdout or stderr). If the input
status value = 0 then this routine does nothing.

void fits_report_error / ffrprt (FILE *stream, status)

4 The fits_write_errmark routine puts an invisible marker on the CFITSIO error stack. The
fits_clear_errmark routine can then be used to delete any more recent error messages on the
stack, back to the position of the marker. This preserves any older error messages on the
stack. The fits_clear_errmsg routine simply clears all the messages (and marks) from the
stack. These routines are called without any arguments.

void fits_write_errmark / ffpmrk (void)
void fits_clear_errmark / ffcmrk (void)
void fits_clear_errmsg / ffcmsg (void)

5.2 FITS File Access Routines

1 Open an existing data file.

int fits_open_file / ffopen
(fitsfile **fptr, char *filename, int iomode, > int *status)

int fits_open_diskfile / ffdkopn
(fitsfile **xfptr, char *filename, int iomode, > int *status)

int fits_open_data / ffdopn
(fitsfile **fptr, char *filename, int iomode, > int *status)

int fits_open_table / fftopn
(fitsfile **xfptr, char *filename, int iomode, > int *status)

int fits_open_image / ffiopn
(fitsfile **xfptr, char *filename, int iomode, > int *status)

int fits_open_extlist / ffeopn
(fitsfile **fptr, char *filename, int iomode, char *extlist,
> int *hdutype, int *status)

5.2. FITS FILE ACCESS ROUTINES 33

The iomode parameter determines the read/write access allowed in the file and can have
values of READONLY (0) or READWRITE (1). The filename parameter gives the name of
the file to be opened, followed by an optional argument giving the name or index number of
the extension within the FITS file that should be moved to and opened (e.g., myfile.fits+3
or myfile.fits[3] moves to the 3rd extension within the file, and myfile.fits[events]
moves to the extension with the keyword EXTNAME = 'EVENTS’).

The fits_open_diskfile routine is similar to the fits_open_file routine except that it does not
support the extended filename syntax in the input file name. This routine simply tries to open
the specified input file on magnetic disk. This routine is mainly for use in cases where the
filename (or directory path) contains square or curly bracket characters that would confuse
the extended filename parser.

The fits_open_data routine is similar to the fits_open_file routine except that it will move to
the first HDU containing significant data, if a HDU name or number to open was not explicitly
specified as part of the filename. In this case, it will look for the first IMAGE HDU with
NAXIS greater than 0, or the first table that does not contain the strings ‘GTI’ (Good Time
Interval extension) or ‘OBSTABLE’ in the EXTNAME keyword value.

The fits_open_table and fits_open_image routines are similar to fits_open_data except they will
move to the first significant table HDU or image HDU in the file, respectively, if a HDU name
or number is not specified as part of the filename.

The fits_open_extlist routine opens the file and attempts to move to a ’useful’ HDU. If after
opening the file CFITSIO is pointing to null primary array, then CFITSIO will attempt
to move to the first extension that has an EXTNAME or HDUNAME keyword value that
matches one of the names in the input extlist space-delimited list of names (wildcards are
permitted). If that fails, then CFITSIO simply moves to the 2nd HDU in the file. Upon return,
the type of the HDU is returned in *hdutype, as described in 5.3 HDU Access Routines.

IRAF images (.imh format files) and raw binary data arrays may also be opened with READ-
ONLY access. CFITSIO will automatically test if the input file is an IRAF image, and if,
so will convert it on the fly into a virtual FITS image before it is opened by the application
program. If the input file is a raw binary data array of numbers, then the data type and
dimensions of the array must be specified in square brackets following the name of the file
(e.g. ’'rawfile.dat[i512,512]" opens a 512 x 512 short integer image). See the ‘Extended File
Name Syntax’ chapter for more details on how to specify the raw file name. The raw file
is converted on the fly into a virtual FITS image in memory that is then opened by the
application program with READONLY access.

Programs can read the input file from the ’stdin’ file stream if a dash character (*-’) is given
as the filename. Files can also be opened over the network using FTP or HT'TP protocols
by supplying the appropriate URL as the filename. The HTTPS and FTPS protocols are
also supported if the CFITSIO build includes the libcurl library. (If the CFITSIO ’configure’
script finds a usable libcurl library on your system, it will automatically be included in the
build.)

The input file can be modified in various ways to create a virtual file (usually stored in
memory) that is then opened by the application program by supplying a filtering or binning
specifier in square brackets following the filename. Some of the more common filtering meth-
ods are illustrated in the following paragraphs, but users should refer to the ’Extended File

34 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

Name Syntax’ chapter for a complete description of the full file filtering syntax.

When opening an image, a rectangular subset of the physical image may be opened by listing
the first and last pixel in each dimension (and optional pixel skipping factor):

myimage.fits[101:200,301:400]

will create and open a 100x100 pixel virtual image of that section of the physical image, and
myimage.fits[*,-*] opens a virtual image that is the same size as the physical image but
has been flipped in the vertical direction.

When opening a table, the filtering syntax can be used to add or delete columns or keywords
in the virtual table: myfile.fits[events] [col !time; PI = PHAx*1.2] opens a virtual ta-
ble in which the TIME column has been deleted and a new PI column has been added with
a value 1.2 times that of the PHA column. Similarly, one can filter a table to keep only
those rows that satisfy a selection criterion: myfile.fits[events] [pha > 50] creates and
opens a virtual table containing only those rows with a PHA value greater than 50. A large
number of boolean and mathematical operators can be used in the selection expression. One
can also filter table rows using ’Good Time Interval’ extensions, and spatial region filters as in
myfile.fits[events] [gtifilter()] andmyfile.fits[events] [regfilter("stars.rng")].

Finally, table columns may be binned or histogrammed to generate a virtual image. For ex-
ample, myfile.fits[events] [bin (X,Y)=4] will result in a 2-dimensional image calculated
by binning the X and Y columns in the event table with a bin size of 4 in each dimension.
The TLMINn and TLMAXn keywords will be used by default to determine the range of the
image.

A single program can open the same FITS file more than once and then treat the resulting
fitsfile pointers as though they were completely independent FITS files. Using this facility, a
program can open a FITS file twice, move to 2 different extensions within the file, and then
read and write data in those extensions in any order.

2 Create and open a new empty output FITS file.

int fits_create_file / ffinit
(fitsfile **fptr, char xfilename, > int *status)

int fits_create_diskfile / ffdkinit
(fitsfile **fptr, char *filename, > int *status)

An error will be returned if the specified file already exists, unless the filename is prefixed
with an exclamation point (!). In that case CFITSIO will overwrite (delete) any existing file
with the same name. Note that the exclamation point is a special UNIX character so if it
is used on the command line it must be preceded by a backslash to force the UNIX shell to
accept the character as part of the filename.

The output file will be written to the ’stdout’ file stream if a dash character (*-’) or the string
‘stdout’ is given as the filename. Similarly, ’-.gz’ or ’stdout.gz’ will cause the file to be gzip
compressed before it is written out to the stdout stream.

5.3. HDU ACCESS ROUTINES 35

Optionally, the name of a template file that is used to define the structure of the new file
may be specified in parentheses following the output file name. The template file may be
another FITS file, in which case the new file, at the time it is opened, will be an exact copy
of the template file except that the data structures (images and tables) will be filled with
zeros. Alternatively, the template file may be an ASCII format text file containing directives
that define the keywords to be created in each HDU of the file. See the 'Extended File Name
Syntax’ section for a complete description of the template file syntax.

The fits_create_diskfile routine is similar to the fits_create_file routine except that it does not
support the extended filename syntax in the input file name. This routine simply tries to
create the specified file on magnetic disk. This routine is mainly for use in cases where the
filename (or directory path) contains square or curly bracket characters that would confuse
the extended filename parser.

3 Close a previously opened FITS file. The first routine simply closes the file, whereas the second
one also DELETES the file, which can be useful in cases where a FITS file has been partially
created, but then an error occurs which prevents it from being completed. Note that these
routines behave differently than most other CFITSIO routines if the input value of the ‘status’
parameter is not zero: Instead of simply returning to the calling program without doing
anything, these routines effectively ignore the input status value and still attempt to close or
delete the file.

int fits_close_file / ffclos (fitsfile *fptr, > int *status)

int fits_delete_file / ffdelt (fitsfile *fptr, > int *status)

4 Return the name, I/O mode (READONLY or READWRITE), and/or the file type (e.g. ’file://’,
'ftp://’) of the opened FITS file.

int fits_file_name / ffflnm (fitsfile *fptr, > char *filename, int *status)
int fits_file_mode / ffflmd (fitsfile *fptr, > int *iomode, int *status)

int fits_url_type / ffurlt (fitsfile *fptr, > char *urltype, int *status)

5.3 HDU Access Routines

The following functions perform operations on Header-Data Units (HDUs) as a whole.

1 Move to a different HDU in the file. The first routine moves to a specified absolute HDU number
(starting with 1 for the primary array) in the FITS file, and the second routine moves a relative
number HDUs forward or backward from the current HDU. A null pointer may be given for
the hdutype parameter if it’s value is not needed. The third routine moves to the (first) HDU
which has the specified extension type and EXTNAME and EXTVER keyword values (or
HDUNAME and HDUVER keywords). The extname parameter may contain wildcards, as

36 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

accepted by fits_compare_str(). The hdutype parameter may have a value of IMAGE_HDU,
ASCII_TBL, BINARY_TBL, or ANY_HDU where ANY_HDU means that only the extname
and extver values will be used to locate the correct extension. If the input value of extver
is 0 then the EXTVER keyword is ignored and the first HDU with a matching EXTNAME
(or HDUNAME) keyword will be found. If no matching HDU is found in the file then the
current HDU will remain unchanged and a status = BAD_HDU_NUM will be returned.

int fits_movabs_hdu / ffmahd
(fitsfile *fptr, int hdunum, > int *hdutype, int *status)

int fits_movrel_hdu / ffmrhd
(fitsfile *fptr, int nmove, > int *hdutype, int *status)

int fits_movnam_hdu / ffmnhd
(fitsfile *fptr, int hdutype, char *extname, int extver, > int *status)

2 Return the total number of HDUs in the FITS file. This returns the number of completely
defined HDUs in the file. If a new HDU has just been added to the FITS file, then that last
HDU will only be counted if it has been closed, or if data has been written to the HDU. The
current HDU remains unchanged by this routine.

int fits_get_num_hdus / ffthdu
(fitsfile *fptr, > int *hdunum, int *status)

3 Return the number of the current HDU (CHDU) in the FITS file (where the primary array =
1). This function returns the HDU number rather than a status value.

int fits_get_hdu_num / ffghdn
(fitsfile *fptr, > int *hdunum)

4 Return the type of the current HDU in the FITS file. The possible values for hdutype are:
IMAGE_HDU, ASCII_TBL, or BINARY_TBL.

int fits_get_hdu_type / ffghdt
(fitsfile *fptr, > int *hdutype, int *status)

5 Copy all or part of the HDUs in the FITS file associated with infptr and append them to the end
of the FITS file associated with outfptr. If 'previous’ is true (not 0), then any HDUs preceding
the current HDU in the input file will be copied to the output file. Similarly, ’current’ and
"following’ determine whether the current HDU, and/or any following HDUs in the input file
will be copied to the output file. Thus, if all 3 parameters are true, then the entire input file
will be copied. On exit, the current HDU in the input file will be unchanged, and the last
HDU in the output file will be the current HDU.

5.4. HEADER KEYWORD READ/WRITE ROUTINES 37

int fits_copy_file / ffcpfl
(fitsfile =*infptr, fitsfile *outfptr, int previous, int current,
int following, > int *status)

6 Copy the current HDU from the FITS file associated with infptr and append it to the end of
the FITS file associated with outfptr. Space may be reserved for MOREKEYS additional
keywords in the output header.

int fits_copy_hdu / ffcopy
(fitsfile *infptr, fitsfile *outfptr, int morekeys, > int *status)

7 Write the current HDU in the input FITS file to the output FILE stream (e.g., to stdout).

int fits_write_hdu / ffwrhdu
(fitsfile *infptr, FILE *stream, > int *status)

8 Copy the header (and not the data) from the CHDU associated with infptr to the CHDU
associated with outfptr. If the current output HDU is not completely empty, then the CHDU
will be closed and a new HDU will be appended to the output file. An empty output data
unit will be created with all values initially = 0).

int fits_copy_header / ffcphd
(fitsfile *infptr, fitsfile *outfptr, > int *status)

9 Delete the CHDU in the FITS file. Any following HDUs will be shifted forward in the file, to
fill in the gap created by the deleted HDU. In the case of deleting the primary array (the
first HDU in the file) then the current primary array will be replace by a null primary array
containing the minimum set of required keywords and no data. If there are more extensions
in the file following the one that is deleted, then the the CHDU will be redefined to point to
the following extension. If there are no following extensions then the CHDU will be redefined
to point to the previous HDU. The output hdutype parameter returns the type of the new
CHDU. A null pointer may be given for hdutype if the returned value is not needed.

int fits_delete_hdu / ffdhdu
(fitsfile *fptr, > int *hdutype, int *status)

5.4 Header Keyword Read/Write Routines

These routines read or write keywords in the Current Header Unit (CHU). Wild card characters
(*, 7, or #) may be used when specifying the name of the keyword to be read: a’?’ will match any
single character at that position in the keyword name and a '*’ will match any length (including
zero) string of characters. The '#’ character will match any consecutive string of decimal digits (0
- 9). When a wild card is used the routine will only search for a match from the current header

38 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

position to the end of the header and will not resume the search from the top of the header back to
the original header position as is done when no wildcards are included in the keyword name. The
fits_read_record routine may be used to set the starting position when doing wild card searches. A
status value of KEY_NO_EXIST is returned if the specified keyword to be read is not found in the
header.

5.4.1 Keyword Reading Routines

1 Return the number of existing keywords (not counting the END keyword) and the amount of
space currently available for more keywords. It returns morekeys = -1 if the header has not
yet been closed. Note that CFITSIO will dynamically add space if required when writing new
keywords to a header so in practice there is no limit to the number of keywords that can be
added to a header. A null pointer may be entered for the morekeys parameter if it’s value is
not needed.

int fits_get_hdrspace / ffghsp
(fitsfile *fptr, > int *keysexist, int *morekeys, int *status)

2 Return the specified keyword. In the first routine, the datatype parameter specifies the desired
returned data type of the keyword value and can have one of the following symbolic constant
values: TSTRING, TLOGICAL (== int), TBYTE, TSHORT, TUSHORT, TINT, TUINT,
TLONG, TULONG, TLONGLONG, TFLOAT, TDOUBLE, TCOMPLEX, and TDBLCOM-
PLEX. Within the context of this routine, TSTRING corresponds to a ’char®” data type, i.e.,
a pointer to a character array. Data type conversion will be performed for numeric values if
the keyword value does not have the same data type. If the value of the keyword is undefined
(i.e., the value field is blank) then an error status = VALUE_UNDEFINED will be returned.

The second routine returns the keyword value as a character string (a literal copy of what is in
the value field) regardless of the intrinsic data type of the keyword. The third routine returns
the entire 80-character header record of the keyword, with any trailing blank characters
stripped off. The fourth routine returns the (next) header record that contains the literal
string of characters specified by the ’string’ argument.

If a NULL comment pointer is supplied then the comment string will not be returned.

int fits_read_key / ffgky
(fitsfile *fptr, int datatype, char *keyname, > DTYPE *value,
char *comment, int *status)

int fits_read_keyword / ffgkey
(fitsfile *fptr, char *keyname, > char *value, char *comment,
int *status)

int fits_read_card / ffgcrd
(fitsfile *fptr, char *keyname, > char *card, int *status)

int fits_read_str / ffgstr
(fitsfile *fptr, char *string, > char *card, int *status)

5.4. HEADER KEYWORD READ/WRITE ROUTINES 39

3 Read a string-valued keyword and return the string length, the value string, and /or the comment
field. The first routine, ffgksl, simply returns the length of the character string value of the
specified keyword. The second routine, ffgsky, also returns up to maxchar characters of the
keyword value string, starting with the firstchar character, and the keyword comment string
(unless the input value of comm = NULL). The valuelen argument returns the total length
of the keyword value string regardless of how much of the string is actually returned (which
depends on the value of the firstchar and maxchar arguments). Note that the value character
string argument must be allocated large enough to also hold the null terminator at the end
of the returned string. These routines support string keywords that use the CONTINUE
convention to continue long string values over multiple FITS header records. Normally, string-
valued keywords have a maximum length of 68 characters, however, CONTINUE’d string
keywords may be arbitrarily long.

int fits_get_key_strlen / ffgksl
(fitsfile *fptr, const char *keyname, int *length, int *status);

int fits_read_string_key / ffgsky
(fitsfile *fptr, const char *keyname, int firstchar, int maxchar,
char *value, int *valuelen, char *comm, int *status);

4 Return the nth header record in the CHU. The first keyword in the header is at keynum =
1; if keynum = 0 then these routines simply reset the internal CFITSIO pointer to the
beginning of the header so that subsequent keyword operations will start at the top of the
header (e.g., prior to searching for keywords using wild cards in the keyword name). The first
routine returns the entire 80-character header record (with trailing blanks truncated), while
the second routine parses the record and returns the name, value, and comment fields as
separate (blank truncated) character strings. If a NULL comment pointer is given on input,
then the comment string will not be returned.

int fits_read_record / ffgrec
(fitsfile *fptr, int keynum, > char *card, int *status)

int fits_read_keyn / ffgkyn
(fitsfile *fptr, int keynum, > char *keyname, char *value,
char *comment, int *status)

5 Return the next keyword whose name matches one of the strings in ’inclist’” but does not
match any of the strings in ’exclist’. The strings in inclist and exclist may contain wild card
characters (*, 7, and #) as described at the beginning of this section. This routine searches
from the current header position to the end of the header, only, and does not continue the
search from the top of the header back to the original position. The current header position
may be reset with the ffgrec routine. Note that nexc may be set = 0 if there are no keywords
to be excluded. This routine returns status = KEY_NO_EXIST if a matching keyword is not
found.

int fits_find_nextkey / ffgnxk

40

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

(fitsfile *fptr, char **inclist, int ninc, char **exclist,
int nexc, > char *card, int *status)

6 Return the physical units string from an existing keyword. This routine uses a local convention,

shown in the following example, in which the keyword units are enclosed in square brackets in
the beginning of the keyword comment field. A null string is returned if no units are defined
for the keyword.

VELOCITY= 12.3 / [km/s] orbital speed

int fits_read_key_unit / ffgunt

(fitsfile *fptr, char *keyname, > char *unit, int *status)

7 Concatenate the header keywords in the CHDU into a single long string of characters. This

provides a convenient way of passing all or part of the header information in a FITS HDU to
other subroutines. Each 80-character fixed-length keyword record is appended to the output
character string, in order, with no intervening separator or terminating characters. The last
header record is terminated with a NULL character. These routine allocates memory for the
returned character array, so the calling program must free the memory when finished. The
cleanest way to do this is to call the fits_free_memory routine.

There are 2 related routines: fits_hdr2str simply concatenates all the existing keywords in
the header; fits_convert_hdr2str is similar, except that if the CHDU is a tile compressed
image (stored in a binary table) then it will first convert that header back to that of the
corresponding normal FITS image before concatenating the keywords.

Selected keywords may be excluded from the returned character string. If the second param-
eter (nocomments) is TRUE (nonzero) then any COMMENT, HISTORY, or blank keywords
in the header will not be copied to the output string.

The ’exclist’ parameter may be used to supply a list of keywords that are to be excluded from
the output character string. Wild card characters (*, 7, and #) may be used in the excluded
keyword names. If no additional keywords are to be excluded, then set nexc = 0 and specify
NULL for the the **exclist parameter.

int fits_hdr2str / ffhdr2str

(fitsfile *fptr, int nocomments, char **exclist, int nexc,
> char **header, int #*nkeys, int *status)

int fits_convert_hdr2str / ffcnvthdr2str

(fitsfile *fptr, int nocomments, char **exclist, int nexc,
> char **header, int #*nkeys, int *status)

int fits_free_memory / fffree

(char *header, > int *status);

5.4. HEADER KEYWORD READ/WRITE ROUTINES 41

5.4.2 Keyword Writing Routines

1 Write a keyword of the appropriate data type into the CHU. The first routine simply appends
a new keyword whereas the second routine will update the value and comment fields of the
keyword if it already exists, otherwise it appends a new keyword. Note that the address to
the value, and not the value itself, must be entered. The datatype parameter specifies the
data type of the keyword value with one of the following values: TSTRING, TLOGICAL (==
int), TBYTE, TSHORT, TUSHORT, TINT, TUINT, TLONG, TLONGLONG, TULONG,
TFLOAT, TDOUBLE. Within the context of this routine, TSTRING corresponds to a ’char*’
data type, i.e., a pointer to a character array. A null pointer may be entered for the comment
parameter in which case the keyword comment field will be unmodified or left blank.

int fits_write_key / ffpky
(fitsfile *fptr, int datatype, char *keyname, DTYPE *value,
char *comment, > int *status)

int fits_update_key / ffuky
(fitsfile *fptr, int datatype, char *keyname, DTYPE *value,
char *comment, > int *status)

2 Write a keyword with a null or undefined value (i.e., the value field in the keyword is left
blank). The first routine simply appends a new keyword whereas the second routine will
update the value and comment fields of the keyword if it already exists, otherwise it appends
a new keyword. A null pointer may be entered for the comment parameter in which case the
keyword comment field will be unmodified or left blank.

int fits_write_key_null / ffpkyu
(fitsfile *fptr, char *keyname, char *comment, > int *status)

int fits_update_key_null / ffukyu
(fitsfile *fptr, char *keyname, char *comment, > int *status)

3 Write (append) a COMMENT or HISTORY keyword to the CHU. The comment or history
string will be continued over multiple keywords if it is longer than 70 characters.

int fits_write_comment / ffpcom
(fitsfile *fptr, char *comment, > int *status)

int fits_write_history / ffphis
(fitsfile *fptr, char *history, > int *status)

4 Write the DATE keyword to the CHU. The keyword value will contain the current system date
as a character string in ’yyyy-mm-ddThh:mm:ss’ format. If a DATE keyword already exists
in the header, then this routine will simply update the keyword value with the current date.

42 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

int fits_write_date / ffpdat
(fitsfile *fptr, > int *status)

5 Write a user specified keyword record into the CHU. This is a low—level routine which can be
used to write any arbitrary record into the header. The record must conform to the all the
FITS format requirements.

int fits_write_record / ffprec
(fitsfile *fptr, char *card, > int *status)

6 Update an 80-character record in the CHU. If a keyword with the input name already exists,
then it is overwritten by the value of card. This could modify the keyword name as well as
the value and comment fields. If the keyword doesn’t already exist then a new keyword card
is appended to the header.

int fits_update_card / ffucrd
(fitsfile *fptr, char *keyname, char *card, > int *status)

7 Modify (overwrite) the comment field of an existing keyword.

int fits_modify_comment / ffmcom
(fitsfile *fptr, char *keyname, char *comment, > int *status)

8 Write the physical units string into an existing keyword. This routine uses a local convention,
shown in the following example, in which the keyword units are enclosed in square brackets
in the beginning of the keyword comment field.

VELOCITY= 12.3 / [km/s] orbital speed

int fits_write_key_unit / ffpunt
(fitsfile *fptr, char *keyname, char *unit, > int *status)

9 Rename an existing keyword, preserving the current value and comment fields.

int fits_modify_name / ffmnam
(fitsfile *fptr, char *oldname, char *newname, > int *status)

10 Delete a keyword record. The space occupied by the keyword is reclaimed by moving all the
following header records up one row in the header. The first routine deletes a keyword at a
specified position in the header (the first keyword is at position 1), whereas the second routine
deletes a specifically named keyword. Wild card characters may be used when specifying the
name of the keyword to be deleted. The third routine deletes the (next) keyword that contains
the literal character string specified by the ’string’ argument.

5.5. PRIMARY ARRAY OR IMAGE EXTENSION 1/0 ROUTINES 43

int fits_delete_record / ffdrec
(fitsfile *fptr, int keynum, > int *status)

int fits_delete_key / ffdkey
(fitsfile *fptr, char *keyname, > int *status)

int fits_delete_str / ffdstr
(fitsfile *fptr, char *string, > int *status)

5.5 Primary Array or IMAGE Extension I/O Routines

These routines read or write data values in the primary data array (i.e., the first HDU in a FITS file)
or an IMAGE extension. There are also routines to get information about the data type and size
of the image. Users should also read the following chapter on the CFITSIO iterator function which
provides a more ‘object oriented” method of reading and writing images. The iterator function is
a little more complicated to use, but the advantages are that it usually takes less code to perform
the same operation, and the resulting program often runs faster because the FITS files are read
and written using the most efficient block size.

C programmers should note that the ordering of arrays in FITS files, and hence in all the CFITSIO
calls, is more similar to the dimensionality of arrays in Fortran rather than C. For instance if a
FITS image has NAXIS1 = 100 and NAXIS2 = 50, then a 2-D array just large enough to hold the
image should be declared as array[50][100] and not as array[100][50].

The ‘datatype’ parameter specifies the data type of the ‘nulval’ and ‘array’ pointers and can have
one of the following values: TBYTE, TSBYTE, TSHORT, TUSHORT, TINT, TUINT, TLONG,
TLONGLONG, TULONG, TULONGLONG, TFLOAT, TDOUBLE. Automatic data type conver-
sion is performed if the data type of the FITS array (as defined by the BITPIX keyword) differs
from that specified by 'datatype’. The data values are also automatically scaled by the BSCALE
and BZERO keyword values as they are being read or written in the FITS array.

1 Get the data type or equivalent data type of the image. The first routine returns the physical
data type of the FITS image, as given by the BITPIX keyword, with allowed values of
BYTE_IMG (8), SHORT_IMG (16), LONG_IMG (32), LONGLONG_IMG (64), FLOAT_IMG
(-32), and DOUBLE_IMG (-64). The second routine is similar, except that if the image pixel
values are scaled, with non-default values for the BZERO and BSCALE keywords, then the
routine will return the ’equivalent’ data type that is needed to store the scaled values. For
example, if BITPIX = 16 and BSCALE = 0.1 then the equivalent data type is FLOAT_IMG.
Similarly if BITPIX = 16, BSCALE = 1, and BZERO = 32768, then the the pixel values span
the range of an unsigned short integer and the returned data type will be USHORT _IMG.

int fits_get_img_type / ffgidt
(fitsfile *fptr, > int *bitpix, int *status)

int fits_get_img_equivtype / ffgiet
(fitsfile *fptr, > int *bitpix, int *status)

44 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

2 Get the number of dimensions, and/or the size of each dimension in the image . The number
of axes in the image is given by naxis, and the size of each dimension is given by the naxes
array (a maximum of maxdim dimensions will be returned).

int fits_get_img_dim / ffgidm
(fitsfile *fptr, > int *naxis, int *status)

int fits_get_img_size / ffgisz
(fitsfile *fptr, int maxdim, > long *naxes, int *status)

int fits_get_img_sizell / ffgiszll
(fitsfile *fptr, int maxdim, > LONGLONG *naxes, int *status)

int fits_get_img_param / ffgipr
(fitsfile *fptr, int maxdim, > int *bitpix, int *naxis, long #*naxes,
int *status)

int fits_get_img_paramll / ffgiprll
(fitsfile *fptr, int maxdim, > int *bitpix, int *naxis, LONGLONG *naxes,
int *status)

3 Create a new primary array or IMAGE extension with a specified data type and size. If the FITS
file is currently empty then a primary array is created, otherwise a new IMAGE extension is
appended to the file.

int fits_create_img / ffcrim
(fitsfile *fptr, int bitpix, int naxis, long *naxes, > int *status)

int fits_create_imgll / ffcrimll
(fitsfile *fptr, int bitpix, int naxis, LONGLONG *naxes, > int *status)

4 Copy an n-dimensional image in a particular row and column of a binary table (in a vector
column) to or from a primary array or image extension.

The ’cell2image’ routine will append a new image extension (or primary array) to the output
file. Any WCS keywords associated with the input column image will be translated into the
appropriate form for an image extension. Any other keywords in the table header that are
not specifically related to defining the binary table structure or to other columns in the table
will also be copied to the header of the output image.

The ’image2cell’ routine will copy the input image into the specified row and column of the
current binary table in the output file. The binary table HDU must exist before calling this
routine, but it may be empty, with no rows or columns of data. The specified column (and
row) will be created if it does not already exist. The ’copykeyflag’ parameter controls which
keywords are copied from the input image to the header of the output table: 0 = no keywords
will be copied, 1 = all keywords will be copied (except those keywords that would be invalid
in the table header), and 2 = copy only the WCS keywords.

5.5. PRIMARY ARRAY OR IMAGE EXTENSION 1/0 ROUTINES 45

int fits_copy_cell2image
(fitsfile *infptr, fitsfile *outfptr, char *colname, long rownum,
> int *status)

int fits_copy_image2cell
(fitsfile *infptr, fitsfile *outfptr, char *colname, long rownum,
int copykeyflag > int *status)

5 Write a rectangular subimage (or the whole image) to the FITS data array. The fpixel and
Ipixel arrays give the coordinates of the first (lower left corner) and last (upper right corner)
pixels in FITS image to be written to.

int fits_write_subset / ffpss
(fitsfile *fptr, int datatype, long *fpixel, long *lpixel,
DTYPE *array, > int *status)

6 Write pixels into the FITS data array. ’fpixel’ is an array of length NAXIS which gives the
coordinate of the starting pixel to be written to, such that fpixel[0] is in the range 1 to
NAXISI1, fpixel[1] is in the range 1 to NAXIS2, etc. The first pair of routines simply writes
the array of pixels to the FITS file (doing data type conversion if necessary) whereas the
second routines will substitute the appropriate FITS null value for any elements which are
equal to the input value of nulval (note that this parameter gives the address of the null
value, not the null value itself). For integer FITS arrays, the FITS null value is defined by
the BLANK keyword (an error is returned if the BLANK keyword doesn’t exist). For floating
point FITS arrays the special IEEE NaN (Not-a-Number) value will be written into the FITS
file. If a null pointer is entered for nulval, then the null value is ignored and this routine
behaves the same as fits_write_pix.

int fits_write_pix / ffppx
(fitsfile *fptr, int datatype, long *fpixel, LONGLONG nelements,
DTYPE *array, int *status);

int fits_write_pix1l / ffppxll
(fitsfile *fptr, int datatype, LONGLONG *fpixel, LONGLONG nelements,
DTYPE *array, int *status);

int fits_write_pixnull / ffppxn
(fitsfile *fptr, int datatype, long *fpixel, LONGLONG nelements,
DTYPE *array, DTYPE *nulval, > int *status) ;

int fits_write_pixnullll / ffppxnll
(fitsfile *fptr, int datatype, LONGLONG *fpixel, LONGLONG nelements,
DTYPE *array, DTYPE *nulval, > int *status) ;

7 Set FITS data array elements equal to the appropriate null pixel value. For integer FITS arrays,
the FITS null value is defined by the BLANK keyword (an error is returned if the BLANK

46 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

keyword doesn’t exist). For floating point FITS arrays the special IEEE NaN (Not-a-Number)
value will be written into the FITS file. Note that ’firstelem’ is a scalar giving the offset to
the first pixel to be written in the equivalent 1-dimensional array of image pixels.

int fits_write_null_img / ffpprn
(fitsfile *fptr, LONGLONG firstelem, LONGLONG nelements, > int *status)

8 Read a rectangular subimage (or the whole image) from the FITS data array. The fpixel and
Ipixel arrays give the coordinates of the first (lower left corner) and last (upper right corner)
pixels to be read from the FITS image. Undefined FITS array elements will be returned with
a value = *nullval, (note that this parameter gives the address of the null value, not the null
value itself) unless nulval = 0 or *nulval = 0, in which case no checks for undefined pixels
will be performed.

int fits_read_subset / ffgsv
(fitsfile *fptr, int datatype, long *fpixel, long *1pixel, long *inc,
DTYPE *nulval, > DTYPE *array, int *anynul, int *status)

9 Read pixels from the FITS data array. ’fpixel’ is the starting pixel location and is an array of
length NAXIS such that fpixel[0] is in the range 1 to NAXISI, fpixel[l] is in the range 1 to
NAXIS2, etc. The nelements parameter specifies the number of pixels to read. If fpixel is set
to the first pixel, and nelements is set equal to the NAXIS1 value, then this routine would
read the first row of the image. Alternatively, if nelements is set equal to NAXIS1 * NAXIS2
then it would read an entire 2D image, or the first plane of a 3-D datacube.

The first 2 routines will return any undefined pixels in the FITS array equal to the value
of *nullval (note that this parameter gives the address of the null value, not the null value
itself) unless nulval = 0 or *nulval = 0, in which case no checks for undefined pixels will be
performed. The second 2 routines are similar except that any undefined pixels will have the
corresponding nullarray element set equal to TRUE (= 1).

int fits_read_pix / ffgpxv
(fitsfile *fptr, int datatype, long *fpixel, LONGLONG nelements,
DTYPE *nulval, > DTYPE *array, int *anynul, int *status)

int fits_read_pix1l / ffgpxvll
(fitsfile *fptr, int datatype, LONGLONG *fpixel, LONGLONG nelements,
DTYPE *nulval, > DTYPE *array, int *anynul, int *status)

int fits_read_pixnull / ffgpxf
(fitsfile *fptr, int datatype, long *fpixel, LONGLONG nelements,
> DTYPE *array, char *nullarray, int *anynul, int *status)

int fits_read_pixnullll / ffgpxfll
(fitsfile *fptr, int datatype, LONGLONG *fpixel, LONGLONG nelements,
> DTYPE *array, char *nullarray, int *anynul, int *status)

5.6. IMAGE COMPRESSION 47

10 Copy a rectangular section of an image and write it to a new FITS primary image or image
extension. The new image HDU is appended to the end of the output file; all the keywords
in the input image will be copied to the output image. The common WCS keywords will
be updated if necessary to correspond to the coordinates of the section. The format of the
section expression is same as specifying an image section using the extended file name syntax
(see "Image Section” in Chapter 10). (Examples: 71:100,1:200”, 71:100:2, 1:*:27 7% -*"),

int fits_copy_image_section / ffcpimg
(fitsfile *infptr, fitsfile *outfptr, char *section, int *status)

5.6 Image Compression

CFITSIO transparently supports the 2 methods of image compression described below.

1) The entire FITS file may be externally compressed with the gzip or Unix compress utility
programs, producing a *.gz or *.7Z file, respectively. When reading compressed files of this type,
CFITSIO first uncompresses the entire file into memory before performing the requested read
operations. Output files can be directly written in the gzip compressed format if the user-specified
filename ends with ‘.gz’. In this case, CFITSIO initially writes the uncompressed file in memory
and then compresses it and writes it to disk when the FITS file is closed, thus saving user disk
space. Read and write access to these compressed FITS files is generally quite fast since all the
I/0 is performed in memory; the main limitation with this technique is that there must be enough
available memory (or swap space) to hold the entire uncompressed FITS file.

2) CFITSIO also supports the FITS tiled image compression convention in which the image is
subdivided into a grid of rectangular tiles, and each tile of pixels is individually compressed. The
details of this FITS compression convention are described at the FITS Support Office web site
at http://fits.gsfc.nasa.gov /fits_registry.html, and in the fpackguide pdf file that is included with
the CFITSIO source file distributions Basically, the compressed image tiles are stored in rows of
a variable length array column in a FITS binary table, however CFITSIO recognizes that this
binary table extension contains an image and treats it as if it were an IMAGE extension. This
tile-compressed format is especially well suited for compressing very large images because a) the
FITS header keywords remain uncompressed for rapid read access, and because b) it is possible to
extract and uncompress sections of the image without having to uncompress the entire image. This
format is also much more effective in compressing floating point images than simply compressing
the image using gzip or compress because it approximates the floating point values with scaled
integers which can then be compressed more efficiently.

Currently CFITSIO supports 3 general purpose compression algorithms plus one other special-
purpose compression technique that is designed for data masks with positive integer pixel values.
The 3 general purpose algorithms are GZIP, Rice, and HCOMPRESS, and the special purpose
algorithm is the IRAF pixel list compression technique (PLIO). There are 2 variants of the GZIP
algorithm: GZIP_1 compresses the array of image pixel value normally with the GZIP algorithm,
while GZIP 2 first shuffles the bytes in all the pixel values so that the most-significant byte of every
pixel appears first, followed by the less significant bytes in sequence. GZIP_2 may be more effective
in cases where the most significant byte in most of the image pixel values contains the same bit
pattern. In principle, any number of other compression algorithms could also be supported by the

48 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

FITS tiled image compression convention.

The FITS image can be subdivided into any desired rectangular grid of compression tiles. With
the GZIP, Rice, and PLIO algorithms, the default is to take each row of the image as a tile. The
HCOMPRESS algorithm is inherently 2-dimensional in nature, so the default in this case is to take
16 rows of the image per tile. In most cases it makes little difference what tiling pattern is used, so
the default tiles are usually adequate. In the case of very small images, it could be more efficient
to compress the whole image as a single tile. Note that the image dimensions are not required to
be an integer multiple of the tile dimensions; if not, then the tiles at the edges of the image will be
smaller than the other tiles.

The 4 supported image compression algorithms are all ’loss-less” when applied to integer FITS
images; the pixel values are preserved exactly with no loss of information during the compression and
uncompression process. In addition, the HCOMPRESS algorithm supports a ’lossy’ compression
mode that will produce larger amount of image compression. This is achieved by specifying a
non-zero value for the HCOMPRESS “scale” parameter. Since the amount of compression that is
achieved depends directly on the RMS noise in the image, it is usually more convention to specify
the HCOMPRESS scale factor relative to the RMS noise. Setting s = 2.5 means use a scale factor
that is 2.5 times the calculated RMS noise in the image tile. In some cases it may be desirable to
specify the exact scaling to be used, instead of specifying it relative to the calculated noise value.
This may be done by specifying the negative of desired scale value (typically in the range -2 to
-100).

Very high compression factors (of 100 or more) can be achieved by using large HCOMPRESS
scale values, however, this can produce undesirable “blocky” artifacts in the compressed image. A
variation of the HCOMPRESS algorithm (called HSCOMPRESS) can be used in this case to apply
a small amount of smoothing of the image when it is uncompressed to help cover up these artifacts.
This smoothing is purely cosmetic and does not cause any significant change to the image pixel
values.

Floating point FITS images (which have BITPIX = -32 or -64) usually contain too much “noise”
in the least significant bits of the mantissa of the pixel values to be effectively compressed with
any lossless algorithm. Consequently, floating point images are first quantized into scaled integer
pixel values (and thus throwing away much of the noise) before being compressed with the specified
algorithm (either GZIP, Rice, or HCOMPRESS). This technique produces much higher compression
factors than simply using the GZIP utility to externally compress the whole FITS file, but it also
means that the original floating value pixel values are not exactly preserved. When done properly,
this integer scaling technique will only discard the insignificant noise while still preserving all the
real information in the image. The amount of precision that is retained in the pixel values is
controlled by the ”quantization level” parameter, q. Larger values of q will result in compressed
images whose pixels more closely match the floating point pixel values, but at the same time the
amount of compression that is achieved will be reduced. Users should experiment with different
values for this parameter to determine the optimal value that preserves all the useful information in
the image, without needlessly preserving all the “noise” which will hurt the compression efficiency.

The default value for the quantization scale factor is 4.0, which means that scaled integer pixel
values will be quantized such that the difference between adjacent integer values will be 1/4th
of the noise level in the image background. CFITSIO uses an optimized algorithm to accurately
estimate the noise in the image. As an example, if the RMS noise in the background pixels of

5.6. IMAGE COMPRESSION 49

an image = 32.0, then the spacing between adjacent scaled integer pixel values will equal 8.0 by
default. Note that the RMS noise is independently calculated for each tile of the image, so the
resulting integer scaling factor may fluctuate slightly for each tile. In some cases it may be desirable
to specify the exact quantization level to be used, instead of specifying it relative to the calculated
noise value. This may be done by specifying the negative of desired quantization level for the value
of q. In the previous example, one could specify q = -8.0 so that the quantized integer levels differ
by exactly 8.0. Larger negative values for q means that the levels are more coarsely spaced, and
will produce higher compression factors.

When floating point images are being quantized, one must also specify what quantization method
is to be used. The default algorithm is called “SUBTRACTIVE_DITHER_1”. A second variation
called “SUBTRACTIVE_DITHER_2” is also available, which does the same thing except that any
pixels with a value of 0.0 are not dithered and instead the zero values are exactly preserved in the
compressed image. This is intended for the special case where “bad pixels” in the image have been
artifically set to zero to indicate that they have no valid value. It is not currently supported with
HCOMPRESS, and if requested while using HCOMPRESS, it will be replaced with “SUBTRAC-
TIVE_DITHER_1”. One may also turn off dithering completely with the “NO_DITHER” option,
but this is not recommended because it can cause larger systematic errors in measurements of the
position or brightness of objects in the compressed image.

There are 3 methods for specifying all the parameters needed to write a FITS image in the tile
compressed format. The parameters may either be specified at run time as part of the file name of
the output compressed FITS file, or the writing program may call a set of helper CFITSIO subrou-
tines that are provided for specifying the parameter values, or “compression directive” keywords
may be added to the header of each image HDU to specify the compression parameters. These 3
methods are described below.

1) At run time, when specifying the name of the output FITS file to be created, the user can indicate
that images should be written in tile-compressed format by enclosing the compression parameters
in square brackets following the root disk file name in the following format:

[compress NAME T1,T2; ql[z] QLEVEL, s HSCALE]

where
NAME = algorithm name: GZIP, Rice, HCOMPRESS, HSCOMPRSS or PLIO
may be abbreviated to the first letter (or HS for HSCOMPRESS)
T1,T2 = tile dimension (e.g. 100,100 for square tiles 100 pixels wide)
QLEVEL = quantization level for floating point FITS images
HSCALE = HCOMPRESS scale factor; default = O which is lossless.

Here are a few examples of this extended syntax:

myfile.fit[compress] - use the default compression algorithm (Rice)
and the default tile size (row by row)

myfile.fit[compress G] - use the specified compression algorithm;

50 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

myfile.fit[compress R] only the first letter of the algorithm
myfile.fit [compress P] should be given.
myfile.fit[compress H]

myfile.fit[compress R 100,100] - use Rice and 100 x 100 pixel tiles

myfile.fit[compress R; q 10.0] - quantization level = (RMS-noise) / 10.
myfile.fit[compress R; gz 10.0] - quantization level = (RMS-noise) / 10.
also use the SUBTRACTIVE_DITHER_2 quantization method
myfile.fit[compress HS; s 2.0] - HSCOMPRESS (with smoothing)
and scale = 2.0 * RMS-noise

2) Before calling the CFITSIO routine to write the image header keywords (e.g., fits_create_image)
the programmer can call the routines described below to specify the compression algorithm and
the tiling pattern that is to be used. There are routines for specifying the various compression
parameters and similar routines to return the current values of the parameters:

int fits_set_compression_type(fitsfile *fptr, int comptype, int *status)
int fits_set_tile_dim(fitsfile *fptr, int ndim, long *tilesize, int *status)
int fits_set_quantize_level(fitsfile *fptr, float qlevel, int *status)
int fits_set_quantize_method(fitsfile *fptr, int method, int *status)
int fits_set_quantize_dither(fitsfile *fptr, int dither, int *status)
int fits_set_dither_seed(fitsfile *fptr, int seed, int *status)
int fits_set_dither_offset(fitsfile *fptr, int offset, int *status)
int fits_set_lossy_int(fitsfile *fptr, int lossy_int, int *status)

this forces integer image to be converted to floats, then quantized
int fits_set_huge_hdu(fitsfile *fptr, int huge, int *status);

this should be called when the compressed image size is more than 4 GB.
int fits_set_hcomp_scale(fitsfile *fptr, float scale, int *status)
int fits_set_hcomp_smooth(fitsfile *fptr, int smooth, int *status)

Set smooth = 1 to apply smoothing when uncompressing the image

int fits_get_compression_type(fitsfile *fptr, int *comptype, int *status)
int fits_get_tile_dim(fitsfile *fptr, int ndim, long *tilesize, int *status)
int fits_get_quantize_level(fitsfile *fptr, float *level, int *status)

int fits_get_hcomp_scale(fitsfile *fptr, float *scale, int *status)

Several symbolic constants are defined for use as the value of the ‘comptype’ parameter: GZIP_1,
GZIP_2, RICE_1, HCOMPRESS_1 or PLIO_1. Entering NULL for comptype will turn off the
tile-compression and cause normal FITS images to be written.

There are also defined symbolic constants for the quantization method: “SUBTRACTIVE_DITHER_17,
“SUBTRACTIVE_DITHER_2”, and “NO_DITHER”.

3) CFITSIO will uses the values of the following keywords, if they are present in the header of the
image HDU, to determine how to compress that HDU. These keywords override any compression
parameters that were specified with the previous 2 methods.

5.6. IMAGE COMPRESSION o1

FZALGOR - °’RICE_1’ , ’GZIP_1’, ’GZIP_2’, °HCOMPRESS_1’, ’PLIO_1’, ’NONE’
FZTILE - °ROW’, °WHOLE’, or ’(m,m)’

FZQVALUE - float value (default = 4.0)

FZQMETHD - ’SUBTRACTIVE_DITHER_1’, ’SUBTRACTIVE_DITHER_2’, ’NO_DITHER’
FZDTHRSD - ’CLOCK’, °’CHECKSUM’, 1 - 10000

FZINT2F - T, or F: Convert integers to floats, then quantize?
FZHSCALE - float value (default = 0). Hcompress scale value.

No special action is required by software when read tile-compressed images because all the CFITSIO
routines that read normal uncompressed FITS images also transparently read images in the tile-
compressed format; CFITSIO essentially treats the binary table that contains the compressed tiles
as if it were an IMAGE extension.

The following 2 routines are available for compressing or or decompressing an image:

int fits_img_compress(fitsfile *infptr, fitsfile *outfptr, int *status);
int fits_img_decompress (fitsfile *infptr, fitsfile *outfptr, int *status);

Before calling the compression routine, the compression parameters must first be defined in one of
the 3 way described in the previous paragraphs. There is also a routine to determine if the current
HDU contains a tile compressed image (it returns 1 or 0):

int fits_is_compressed_image(fitsfile *fptr, int *status);

A small example program called 'imcopy’ is included with CFITSIO that can be used to compress
(or uncompress) any FITS image. This program can be used to experiment with the various
compression options on existing FITS images as shown in these examples:

1) imcopy infile.fit ’outfile.fit[compress]’

This will use the default compression algorithm (Rice) and the
default tile size (row by row)

2) imcopy infile.fit ’outfile.fit[compress GZIP]’
This will use the GZIP compression algorithm and the default
tile size (row by row). The allowed compression algorithms are
Rice, GZIP, and PLIO. Only the first letter of the algorithm
name needs to be specified.

3) imcopy infile.fit ’outfile.fit[compress G 100,100]°

This will use the GZIP compression algorithm and 100 X 100 pixel
tiles.

4) imcopy infile.fit ’outfile.fit[compress R 100,100; gz 10.0]’

52

5)

6)

7)

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

This will use the Rice compression algorithm, 100 X 100 pixel
tiles, and quantization level = RMSnoise / 10.0 (assuming the
input image has a floating point data type). By specifying
qz instead of q, this means use the subtractive dither2
quantization method.

imcopy infile.fit outfile.fit
If the input file is in tile-compressed format, then it will be
uncompressed to the output file. Otherwise, it simply copies
the input image to the output image.

imcopy ’infile.fit[1001:1500,2001:2500]° outfile.fit
This extracts a 500 X 500 pixel section of the much larger
input image (which may be in tile-compressed format). The
output is a normal uncompressed FITS image.

imcopy ’infile.fit[1001:1500,2001:2500]° outfile.fit.gz

Same as above, except the output file is externally compressed
using the gzip algorithm.

5.7 ASCII and Binary Table Routines

These routines perform read and write operations on columns of data in FITS ASCII or Binary
tables. Note that in the following discussions, the first row and column in a table is at position 1
not 0.

Users should also read the following chapter on the CFITSIO iterator function which provides a
more ‘object oriented’ method of reading and writing table columns. The iterator function is a
little more complicated to use, but the advantages are that it usually takes less code to perform
the same operation, and the resulting program often runs faster because the FITS files are read
and written using the most efficient block size.

5.7.1 Create New Table

1 Create a new ASCII or bintable table extension. If the FITS file is currently empty then a

dummy primary array will be created before appending the table extension to it. The tbltype
parameter defines the type of table and can have values of ASCII_TBL or BINARY _TBL.
The naxis2 parameter gives the initial number of rows to be created in the table, and should
normally be set = 0. CFITSIO will automatically increase the size of the table as additional
rows are written. A non-zero number of rows may be specified to reserve space for that many

5.7.

ASCII AND BINARY TABLE ROUTINES 93

rows, even if a fewer number of rows will be written. The tunit and extname parameters
are optional and a null pointer may be given if they are not defined. The FITS Standard
recommends that only letters, digits, and the underscore character be used in column names
(the ttype parameter) with no embedded spaces. Trailing blank characters are not significant.

int fits_create_tbl / ffcrtb

(fitsfile *fptr, int tbltype, LONGLONG naxis2, int tfields, char *ttypell,
char *tform[], char *tunit[], char *extname, int *status)

2 Copy the structure of an open table to a new table, optionally copying zero or more rows from

the input table. This is useful in cases where a task will filter rows from the input before
transferring to the output, so a “pristine” output table with zero rows is desired to start. The
input file must be open and point to a binary table extension. The output file must be open
for writing; a new extension is created with the same table structure as the input. Optionally,
a range of nrows may be copied starting from firstrow, similar to fits_copy_rows(). The value
nrows may be 0. Note that the first row in a table is at row = 1.

int fits_copy_hdutab / ffcpht

(fitsfile *infptr, fitsfile *outfptr, LONGLONG firstrow,
LONGLONG nrows, > int *status)

5.7.2 Column Information Routines

1 Get the number of rows or columns in the current FITS table. The number of rows is given by

the NAXIS2 keyword and the number of columns is given by the TFIELDS keyword in the
header of the table.

int fits_get_num_rows / ffgnrw

(fitsfile *fptr, > long *nrows, int *status);

int fits_get_num_rowsll / ffgnrwll

(fitsfile *fptr, > LONGLONG #*nrows, int *status);

int fits_get_num_cols / ffgncl

(fitsfile *fptr, > int *ncols, int *status);

2 Get the table column number (and name) of the column whose name matches an input template

name. If casesen = CASESEN then the column name match will be case-sensitive, whereas
if casesen = CASEINSEN then the case will be ignored. As a general rule, the column names
should be treated as case INsensitive.

The input column name template may be either the exact name of the column to be searched
for, or it may contain wild card characters (*, ?, or #), or it may contain the integer number
of the desired column (with the first column = 1). The “*’ wild card character matches any
sequence of characters (including zero characters) and the ‘?” character matches any single

54

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

character. The # wildcard will match any consecutive string of decimal digits (0-9). If more
than one column name in the table matches the template string, then the first match is
returned and the status value will be set to COL_NOT_UNIQUE as a warning that a unique
match was not found. To find the other cases that match the template, call the routine again
leaving the input status value equal to COL_NOT_UNIQUE and the next matching name will
then be returned. Repeat this process until a status = COL_NOT_FOUND is returned.

The FITS Standard recommends that only letters, digits, and the underscore character be
used in column names (with no embedded spaces). Trailing blank characters are not signifi-
cant.

int fits_get_colnum / ffgcno

(fitsfile *fptr, int casesen, char *templt, > int *colnum,
int *status)

int fits_get_colname / ffgcnn

(fitsfile *fptr, int casesen, char *templt, > char *colname,
int *colnum, int *status)

3 Return the data type, vector repeat value, and the width in bytes of a column in an ASCII or

binary table. Allowed values for the data type in ASCII tables are: TSTRING, TSHORT,
TLONG, TFLOAT, and TDOUBLE. Binary tables also support these types: TLOGICAL,
TBIT, TBYTE, TLONGLONG, TCOMPLEX and TDBLCOMPLEX. The negative of the
data type code value is returned if it is a variable length array column. Note that in the case
of a’J’ 32-bit integer binary table column, this routine will return data type = TINT32BIT
(which in fact is equivalent to TLONG). With most current C compilers, a value in a 'J’
column has the same size as an ’int’ variable, and may not be equivalent to a ’long’ variable,
which is 64-bits long on an increasing number of compilers.

The 'repeat’ parameter returns the vector repeat count on the binary table TFORMn keyword
value. (ASCII table columns always have repeat = 1). The 'width’ parameter returns the
width in bytes of a single column element (e.g., a "10D’ binary table column will have width
= 8, an ASCII table 'F12.2’ column will have width = 12, and a binary table’60A’ character
string column will have width = 60); Note that CFITSIO supports the local convention
for specifying arrays of fixed length strings within a binary table character column using
the syntax TFORM = 'rAw’ where 'r’ is the total number of characters (= the width of
the column) and 'w’ is the width of a unit string within the column. Thus if the column
has TFORM = '60A12’ then this means that each row of the table contains 5 12-character
substrings within the 60-character field, and thus in this case this routine will return typecode
= TSTRING, repeat = 60, and width = 12. (The TDIMn keyword may also be used to specify
the unit string length; The pair of keywords TFORMn = ’60A” and TDIMn = ’(12,5)’ would
have the same effect as TFORMn = ’60A12"). The number of substrings in any binary table
character string field can be calculated by (repeat/width). A null pointer may be given for
any of the output parameters that are not needed.

The second routine, fit_get_eqcoltype is similar except that in the case of scaled integer
columns it returns the ’equivalent’ data type that is needed to store the scaled values, and
not necessarily the physical data type of the unscaled values as stored in the FITS table. For

5.7. ASCII AND BINARY TABLE ROUTINES 95

example if a "1’ column in a binary table has TSCALn = 1 and TZEROn = 32768, then
this column effectively contains unsigned short integer values, and thus the returned value of
typecode will be TUSHORT, not TSHORT. Similarly, if a column has TTYPEn = ’1I’ and
TSCALn = 0.12, then the returned typecode will be TFLOAT.

int fits_get_coltype / ffgtcl
(fitsfile *fptr, int colnum, > int *typecode, long *repeat,
long *width, int *status)

int fits_get_coltypell / ffgtclll
(fitsfile *fptr, int colnum, > int *typecode, LONGLONG *repeat,
LONGLONG *width, int *status)

int fits_get_eqcoltype / ffeqty
(fitsfile *fptr, int colnum, > int *typecode, long *repeat,
long *width, int *status)

int fits_get_eqcoltypell / ffeqtyll
(fitsfile *fptr, int colnum, > int *typecode, LONGLONG *repeat,
LONGLONG *width, int *status)

4 Return the display width of a column. This is the length of the string that will be returned by
the fits_read_col routine when reading the column as a formatted string. The display width
is determined by the TDISPn keyword, if present, otherwise by the data type of the column.

int fits_get_col_display_width / ffgcdw
(fitsfile *fptr, int colnum, > int *dispwidth, int *status)

5 Return the number of and size of the dimensions of a table column in a binary table. Normally
this information is given by the TDIMn keyword, but if this keyword is not present then this
routine returns naxis = 1 and naxes[0] equal to the repeat count in the TFORM keyword.

int fits_read_tdim / ffgtdm
(fitsfile *fptr, int colnum, int maxdim, > int *naxis,
long *naxes, int *status)

int fits_read_tdimll / ffgtdmll
(fitsfile *fptr, int colnum, int maxdim, > int *naxis,
LONGLONG *naxes, int *status)

6 Decode the input TDIMn keyword string (e.g. ’(100,200)’) and return the number of and size
of the dimensions of a binary table column. If the input tdimstr character string is null, then
this routine returns naxis = 1 and naxes|0] equal to the repeat count in the TFORM keyword.
This routine is called by fits_read_tdim.

56 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

int fits_decode_tdim / ffdtdm
(fitsfile *fptr, char *tdimstr, int colnum, int maxdim, > int *naxis,
long *naxes, int *status)

int fits_decode_tdimll / ffdtdmll
(fitsfile *fptr, char *tdimstr, int colnum, int maxdim, > int *naxis,
LONGLONG *naxes, int *status)

7 Write a TDIMn keyword whose value has the form ’(1,m,n...)" where 1, m, n... are the dimensions
of a multidimensional array column in a binary table.

int fits_write_tdim / ffptdm
(fitsfile *fptr, int colnum, int naxis, long *naxes, > int *status)

int fits_write_tdimll / ffptdmll
(fitsfile *fptr, int colnum, int naxis, LONGLONG *naxes, > int *status)

5.7.3 Routines to Edit Rows or Columns

1 Insert or delete rows in an ASCII or binary table. When inserting rows all the rows following
row FROW are shifted down by NROWS rows; if FROW = 0 then the blank rows are inserted
at the beginning of the table. Note that it is *not* necessary to insert rows in a table before
writing data to those rows (indeed, it would be inefficient to do so). Instead one may simply
write data to any row of the table, whether that row of data already exists or not.

The first delete routine deletes NROWS consecutive rows starting with row FIRSTROW.
The second delete routine takes an input string that lists the rows or row ranges (e.g., '5-
10,12,20-30"), whereas the third delete routine takes an input integer array that specifies each
individual row to be deleted. In both latter cases, the input list of rows to delete must be
sorted in ascending order. These routines update the NAXIS2 keyword to reflect the new
number of rows in the table.

int fits_insert_rows / ffirow
(fitsfile *fptr, LONGLONG firstrow, LONGLONG nrows, > int *status)

int fits_delete_rows / ffdrow
(fitsfile *fptr, LONGLONG firstrow, LONGLONG nrows, > int *status)

int fits_delete_rowrange / ffdrrg
(fitsfile *fptr, char *rangelist, > int *status)

int fits_delete_rowlist / ffdrws
(fitsfile *fptr, long *rowlist, long nrows, > int *status)

int fits_delete_rowlistll / ffdrwsll
(fitsfile *fptr, LONGLONG *rowlist, LONGLONG nrows, > int *status)

5.7. ASCII AND BINARY TABLE ROUTINES o7

2 Insert or delete column(s) in an ASCII or binary table. When inserting, COLNUM specifies
the column number that the (first) new column should occupy in the table. NCOLS specifies
how many columns are to be inserted. Any existing columns from this position and higher
are shifted over to allow room for the new column(s). The index number on all the following
keywords will be incremented or decremented if necessary to reflect the new position of the
column(s) in the table: TBCOLn, TFORMn, TTYPEn, TUNITn, TNULLn, TSCALn, TZE-
ROn, TDISPn, TDIMn, TLMINn, TLMAXn, TDMINn, TDMAXn, TCTYPn, TCRPXn,
TCRVLn, TCDLTn, TCROTn, and TCUNIn.

int fits_insert_col / fficol
(fitsfile *fptr, int colnum, char *ttype, char *tform,
> int *status)

int fits_insert_cols / fficls
(fitsfile *fptr, int colnum, int ncols, char **ttype,
char **xtform, > int *status)

int fits_delete_col / ffdcol(fitsfile *fptr, int colnum, > int *status)

3 Copy column(s) between HDUs. If create_col = TRUE, then new column(s) will be inserted in
the output table, starting at position ‘outcolumn’, otherwise the existing output column(s)
will be overwritten (in which case they must have a compatible data type).

The first form copies a single column incolnum to outcolnum. Copying within the same
HDU is permitted. The second form copies ncols columns from the input, starting at column
incolnum to the output, starting at outcolnum. For the second form, the input and output
must be different HDUs.

If outcolnum is greater than the number of column in the output table, then the new column(s)
will be appended to the end of the table. Note that the first column in a table is at colnum
= 1. The standard indexed keywords that related to the columns (e.g., TDISPn, TUNITn,
TCRPXn, TCDLTn, etc.) will also be copied.

int fits_copy_col / ffcpcl
(fitsfile *infptr, fitsfile *outfptr, int incolnum, int outcolnum,
int create_col, > int *status);

int fits_copy_cols / ffccls
(fitsfile *infptr, fitsfile *outfptr, int incolnum, int outcolnum,
int ncols, int create_col, > int *status);

4 Copy 'nrows’ consecutive rows from one table to another, beginning with row “firstrow’. These
rows will be appended to any existing rows in the output table. Note that the first row in a
table is at row = 1.

The fits_copy_selrows form copies only selected rows to the output. Which rows are
transferred is determined by an array of flags, row_status[], which could be returned by
fits_find_rows() or constructed by the user. FITS row N is copied if row_status [N-first_row]
is non-zero.

58 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

int fits_copy_rows / ffcprw
(fitsfile *infptr, fitsfile *outfptr, LONGLONG firstrow,
LONGLONG nrows, > int *status);

int fits_copy_selrows / ffcpsr
(fitsfile *infptr, fitsfile *outfptr, LONGLONG firstrow,
LONGLONG nrows, char *row_status, > int *status);

5 Modify the vector length of a binary table column (e.g., change a column from TFORMn =
"1E’ to "20E’). The vector length may be increased or decreased from the current value.

int fits_modify_vector_len / ffmvec
(fitsfile *fptr, int colnum, LONGLONG newveclen, > int *status)

5.7.4 Read and Write Column Data Routines

The following routines write or read data values in the current ASCII or binary table extension.
If a write operation extends beyond the current size of the table, then the number of rows in the
table will automatically be increased and the NAXIS2 keyword value will be updated. Attempts
to read beyond the end of the table will result in an error.

Automatic data type conversion is performed for numerical data types (only) if the data type of
the column (defined by the TFORMn keyword) differs from the data type of the array in the
calling routine. ASCII and binary tables support the following data type values: TSTRING,
TBYTE, TSBYTE, TSHORT, TUSHORT, TINT, TUINT, TLONG, TLONGLONG, TULONG,
TULONGLONG, TFLOAT, or TDOUBLE. Binary tables also support TLOGICAL (internally
mapped to the ‘char’ data type), TCOMPLEX, and TDBLCOMPLEX.

Note that it is *not™ necessary to insert rows in a table before writing data to those rows (indeed, it
would be inefficient to do so). Instead, one may simply write data to any row of the table, whether
that row of data already exists or not.

Individual bits in a binary table "X’ or 'B’ column may be read/written to/from a *char array by
specifying the TBIT datatype. The *char array will be interpreted as an array of logical TRUE
(1) or FALSE (0) values that correspond to the value of each bit in the FITS "X’ or 'B’ column.
Alternatively, the values in a binary table "X’ column may be read/written 8 bits at a time to/from
an array of 8-bit integers by specifying the TBYTE datatype.

Note that within the context of these routines, the TSTRING data type corresponds to a C ’char**’
data type, i.e., a pointer to an array of pointers to an array of characters. This is different from
the keyword reading and writing routines where TSTRING corresponds to a C ’char®’ data type,
i.e., a single pointer to an array of characters. When reading strings from a table, the char arrays
obviously must have been allocated long enough to hold the whole FITS table string. See section
4.5 (“Dealing with Character Strings”) for more information.

For complex and double complex data types, nelements is the number of numerical pairs; the
number of floats or doubles stored by array+ must be 2*nelements.

For the logical data (TLOGICAL), the C storage type is a char single-byte character. A FITS
value of ‘T’rue reads as 1 and ‘F’ reads as 0; other non-FITS characters are preserved untranslated.

5.7. ASCII AND BINARY TABLE ROUTINES 99

Numerical data values are automatically scaled by the TSCALn and TZEROn keyword values (if
they exist).

In the case of binary tables with vector elements, the firstelem parameter defines the starting
element (beginning with 1, not 0) within the cell (a cell is defined as the intersection of a row and a
column and may contain a single value or a vector of values). The firstelem parameter is ignored
when dealing with ASCII tables. Similarly, in the case of binary tables the 'nelements’ parameter
specifies the total number of vector values to be read or written (continuing on subsequent rows if
required) and not the number of table cells.

1 Write elements into an ASCII or binary table column.

The first routine simply writes the array of values to the FITS file (doing data type conversion
if necessary) whereas the second routine will substitute the appropriate FITS null value for all
elements which are equal to the input value of nulval (note that this parameter gives the address
of nulval, not the null value itself). For integer columns the FITS null value is defined by the
TNULLn keyword (an error is returned if the keyword doesn’t exist). For floating point columns
the special IEEE NaN (Not-a-Number) value will be written into the FITS file. If a null pointer
is entered for nulval, then the null value is ignored and this routine behaves the same as the first
routine. The third routine simply writes undefined pixel values to the column. The fourth routine
fills every column in the table with null values, in the specified rows (ignoring any columns that do
not have a defined null value).

The fits_write_cols() variant writes multiple columns in a single pass, which may be signifi-
cantly faster for large data files. The “chunk” size is determined automatically based upon CFIT-
SIO’s buffer sizes. Only whole rows can be written, of any type except TBIT or TSTRING. For this
variant, datatype, colnum, array and nulval are arrays of the equivalent single-column parameter
(i.e. datatypel[i] is the data type of column 1).

int fits_write_col / ffpcl
(fitsfile *fptr, int datatype, int colnum, LONGLONG firstrow,
LONGLONG firstelem, LONGLONG nelements, DTYPE *array, > int *status)

int fits_write_colnull / ffpcn
(fitsfile *fptr, int datatype, int colnum, LONGLONG firstrow,
LONGLONG firstelem, LONGLONG nelements, DTYPE *array, DTYPE *nulval,
> int *status)

int fits_write_col_null / ffpclu
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, > int *status)

int fits_write_nullrows / ffprwu
(fitsfile *fptr, LONGLONG firstrow, LONGLONG nelements, > int *status)

int fits_write_cols / ffpcln
(fitsfile *fptr, int ncols, int *datatype, int *colnum, LONGLONG firstrow,

60 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

LONGLONG nrows, DTYPE **array, DTYPE **nulval, int *status)

2 Read elements from an ASCII or binary table column. The data type parameter specifies the
data type of the ‘nulval’ and ‘array’ pointers. The caller is required to allocate the storage
of array before calling. Undefined array elements will be returned with a value = *nullval,
(note that this parameter gives the address of the null value, not the null value itself) unless
nulval = 0 or *nulval = 0, in which case no checking for undefined pixels will be performed.
The second routine is similar except that any undefined pixels will have the corresponding
nullarray element set equal to TRUE (= 1).

Reading data as TSTRING values is different than for other data types as described above.

Any column, regardless of it’s intrinsic data type, may be read as a string. It should be noted
however that reading a numeric column as a string is 10 - 100 times slower than reading the
same column as a number due to the large overhead in constructing the formatted strings. The
display format of the returned strings will be determined by the TDISPn keyword, if it exists,
otherwise by the data type of the column. The length of the returned strings (not including
the null terminating character) can be determined with the fits_get_col_display_width routine.
The following TDISPn display formats are currently supported:

Iw.m Integer

Ow.m Octal integer

Zw.m Hexadecimal integer

Fw.d Fixed floating point

Ew.d Exponential floating point

Dw.d Exponential floating point

Gw.d General; uses Fw.d if significance not lost, else Ew.d

where w is the width in characters of the displayed values, m is the minimum number of digits
displayed, and d is the number of digits to the right of the decimal. The .m field is optional.

The fits_read_cols() variant read multiple columns in a single pass, which may be signif-
icantly faster for large data files. The “chunk” size is determined automatically based upon
CFITSIO’s buffer sizes. Only whole rows can be read, of any type except TBIT or TSTRING.
For this variant, datatype, colnum, array and nulval are arrays of the equivalent single-column
parameter (i.e. datatypeli] is the data type of column 1i).

int fits_read_col / ffgcv
(fitsfile *fptr, int datatype, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, DTYPE *nulval, DTYPE *array, int *anynul, int *status)

int fits_read_colnull / ffgcf
(fitsfile *fptr, int datatype, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, DTYPE *array, char *nullarray, int *anynul, int *status)

int fits_read_cols / ffgcvn
(fitsfile *fptr, int ncols, int *datatype, int *colnum, LONGLONG firstrow,
LONGLONG nrows, DTYPE *xnulval, DTYPE x*array, int **anynul, int *status)

5.7. ASCII AND BINARY TABLE ROUTINES 61

5.7.5 Row Selection and Calculator Routines

These routines all parse and evaluate an input string containing a user defined arithmetic expression.
The first 3 routines select rows in a FITS table, based on whether the expression evaluates to true
(not equal to zero) or false (zero). The other routines evaluate the expression and calculate a value
for each row of the table. The allowed expression syntax is described in the row filter section in the
‘Extended File Name Syntax’ chapter of this document. The expression may also be written to a
text file, and the name of the file, prepended with a ’Q’ character may be supplied for the ’expr’
parameter (e.g. ’Qfilename.txt’). The expression in the file can be arbitrarily complex and extend
over multiple lines of the file. Lines that begin with 2 slash characters (’//’) will be ignored and
may be used to add comments to the file.

1 Evaluate a boolean expression over the indicated rows, returning an array of flags indicating
which rows evaluated to TRUE/FALSE. Upon return, *n_good_rows contains the number of
rows that evaluate to TRUE.

int fits_find_rows / fffrow
(fitsfile *fptr, char *expr, long firstrow, long nrows,
> long *n_good_rows, char *row_status, int *status)

2 Find the first row which satisfies the input boolean expression

int fits_find_first_row / ffffrw
(fitsfile *fptr, char *expr, > long *rownum, int *status)

3 Evaluate an expression on all rows of a table. If the input and output files are not the same,
copy the TRUE rows to the output file; if the output table is not empty, then this routine
will append the new selected rows after the existing rows. If the files are the same, delete the
FALSE rows (preserve the TRUE rows).

int fits_select_rows / ffsrow
(fitsfile *infptr, fitsfile *outfptr, char *expr, > int *status)

4 Calculate an expression for the indicated rows of a table, returning the results, cast as datatype
(TSHORT, TDOUBLE, etc), in array. If nulval==NULL, UNDEFs will be zeroed out. For
vector results, the number of elements returned may be less than nelements if nelements is
not an even multiple of the result dimension. Call fits_test_expr to obtain the dimensions of
the results.

int fits_calc_rows / ffcrow
(fitsfile *fptr, int datatype, char *expr, long firstrow,
long nelements, void *nulval, > void *array, int *anynul, int *status)

5 Evaluate an expression and write the result either to a column (if the expression is a function
of other columns in the table) or to a keyword (if the expression evaluates to a constant and

62 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

is not a function of other columns in the table). In the former case, the parName parameter
is the name of the column (which may or may not already exist) into which to write the
results, and parlnfo contains an optional TFORM keyword value if a new column is being
created. If a TFORM value is not specified then a default format will be used, depending on
the expression. If the expression evaluates to a constant, then the result will be written to
the keyword name given by the parName parameter, and the parInfo parameter may be used
to supply an optional comment for the keyword. If the keyword does not already exist, then
the name of the keyword must be preceded with a ’#’ character, otherwise the result will be
written to a column with that name.

int fits_calculator / ffcalc
(fitsfile *infptr, char *expr, fitsfile *outfptr, char *parName,
char *parInfo, > int *status)

6 This calculator routine is similar to the previous routine, except that the expression is only
evaluated over the specified row ranges. nranges specifies the number of row ranges, and
firstrow and lastrow give the starting and ending row number of each range.

int fits_calculator_rng / ffcalc_rng
(fitsfile *infptr, char *expr, fitsfile *outfptr, char *parName,
char *parInfo, int nranges, long *firstrow, long *lastrow
> int *status)

7 Evaluate the given expression and return dimension and type information on the result. The
returned dimensions correspond to a single row entry of the requested expression, and are
equivalent to the result of fits_read_tdim(). Note that strings are considered to be one element
regardless of string length. If maxdim == 0, then naxes is optional.

int fits_test_expr / fftexp
(fitsfile *fptr, char *expr, int maxdim > int *datatype, long *nelem, int *naxis,
long *naxes, int *status)

5.7.6 Column Binning or Histogramming Routines

The following routines may be useful when performing histogramming operations on column(s) of
a table to generate an image in a primary array or image extension.

1 Calculate the histogramming parameters (min, max, and bin size for each axis of the histogram,
based on a variety of possible input parameters. If the input names of the columns to be
binned are null, then the routine will first look for the CPREF = "NAME1, NAME2, ...”
keyword which lists the preferred columns. If not present, then the routine will assume the
column names X, Y, Z, and T for up to 4 axes (as specified by the NAXIS parameter).

MININ and MAXIN are input arrays that give the minimum and maximum value for the
histogram, along each axis. Alternatively, the name of keywords that give the min, max, and

5.7. ASCII AND BINARY TABLE ROUTINES 63

binsize may be give with the MINNAME, MAXNAME, and BINNAME array parameters. If
the value = DOUBLENULLVALUE and no keyword names are given, then the routine will
use the TLMINn and TLMAXn keywords, if present, or the actual min and/or max values
in the column.

The “d” version has double precision floating point outputs as noted in the calling signature.
The version without “d” has single precision floating point outputs.

BINSIZEIN is an array giving the binsize along each axis. If the value = DOUBLENULL-
VALUE, and a keyword name is not specified with BINNAME, then this routine will first

look for the TDBINn keyword, or else will use a binsize = 1, or a binsize that produces 10
histogram bins, which ever is smaller.

int fits_calc_binning[d]
Input parameters:

(fitsfile *fptr, /* I0 - pointer to table to be binned x/
int naxis, /* I - number of axes/columns in the binned image */
char colname[4] [FLEN_VALUE], /* I - optional column names x/
double *minin, /* I - optional lower bound value for each axis */
double *maxin, /* I - optional upper bound value, for each axis */
double *binsizein, /* I - optional bin size along each axis x/
char minname [4] [FLEN_VALUE], /* I - optional keywords for min */
char maxname[4] [FLEN_VALUE], /* I - optional keywords for max x/

char binname[4] [FLEN_VALUE], /* I - optional keywords for binsize */
Output parameters:

int *colnum, /* 0 - column numbers, to be binned */

long *naxes, /* 0 - number of bins in each histogram axis */
float[double] *amin, /* 0 - lower bound of the histogram axes */
float[double] *amax, /* 0 - upper bound of the histogram axes */

float[double] *binsize, /* 0 - width of histogram bins/pixels on each axis */
int *status)

2 Copy the relevant keywords from the header of the table that is being binned, to the the header
of the output histogram image. This will not copy the table structure keywords (e.g., NAXIS,
TFORMn, TTYPEn, etc.) nor will it copy the keywords that apply to other columns of the
table that are not used to create the histogram. This routine will translate the names of the
World Coordinate System (WCS) keywords for the binned columns into the form that is need
for a FITS image (e.g., the TCTYPn table keyword will be translated to the CTYPEn image
keyword).

int fits_copy_pixlist2image

(fitsfile *infptr, /* I - pointer to input HDU */

fitsfile *outfptr, /* I - pointer to output HDU */

int firstkey, /* I - first HDU keyword to start with */

int naxis, /* I - number of axes in the image */

int *colnum, /* I - numbers of the columns to be binned */

int *status) /* I0 - error status */

64 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

3 Write a set of default WCS keywords to the histogram header, IF the WCS keywords do not
already exist. This will create a linear WCS where the coordinate types are equal to the
original column names.

int fits_write_keys_histo

(fitsfile *fptr, /* I - pointer to table to be binned */
fitsfile *histptr, /* I - pointer to output histogram image HDU x/
int naxis, /* I - number of axes in the histogram image x/
int *colnum, /* I - column numbers of the binned columns */

int *status)

4 Update the WCS keywords in a histogram image header that give the location of the reference
pixel (CRPIXn), and the pixel size (CDELTn), in the binned image.

The “d” version has double precision floating point inputs as noted in the calling signature.
The version without “d” has single precision floating point inputs.

int fits_rebin_wcs[d]

(fitsfile *fptr, /* I - pointer to table to be binned */
int naxis, /* I - number of axes in the histogram image */
float[double] *amin, /* I - first pixel include in each axis x/
float[double] *binsize, /* I - binning factor for each axis x/

int *status)

5 Bin the values in the input table columns, and write the histogram array to the output FITS
image (histptr).

The “d” version has double precision floating point inputs as noted in the calling signature.
The version without “d” has single precision floating point inputs.

int fits_make_hist[d]

(fitsfile =*fptr, /* I - pointer to table with X and Y cols; x/

fitsfile *histptr, /* I - pointer to output FITS image x/

int bitpix, /* I - datatype for image: 16, 32, -32, etc */

int naxis, /* I - number of axes in the histogram image x/

long *naxes, /* I - size of axes in the histogram image */

int *colnum, /* T - column numbers (array length = naxis) x/

float [double] *amin, /* I - minimum histogram value, for each axis */

float[double] *amax, /* T - maximum histogram value, for each axis */

float[double] *binsize, /* I - bin size along each axis */

float [double] weight, /* I - binning weighting factor (FLOATNULLVALUE */
/* for no weighting) x/

int wtcolnum, /* I - keyword or col for weight (or NULL) =/

int recip, /* I - use reciprocal of the weight? O or 1 x/

char *selectrow, /* I - optional array (length = no. of */

/* rows in the table). If the element is true */
/* then the corresponding row of the table will */

5.8. UTILITY ROUTINES 65

/* be included in the histogram, otherwise the */

/* row will be skipped. Ingnored if *selectrow */

/* is equal to NULL. x/
int *status)

5.8 Utility Routines

5.8.1 File Checksum Routines

The following routines either compute or validate the checksums for the CHDU. The DATASUM
keyword is used to store the numerical value of the 32-bit, 1’s complement checksum for the data
unit alone. If there is no data unit then the value is set to zero. The numerical value is stored as an
ASCII string of digits, enclosed in quotes, because the value may be too large to represent as a 32-bit
signed integer. The CHECKSUM keyword is used to store the ASCIT encoded COMPLEMENT of
the checksum for the entire HDU. Storing the complement, rather than the actual checksum, forces
the checksum for the whole HDU to equal zero. If the file has been modified since the checksums
were computed, then the HDU checksum will usually not equal zero. These checksum keyword
conventions are based on a paper by Rob Seaman published in the proceedings of the ADASS IV
conference in Baltimore in November 1994 and a later revision in June 1995. See Appendix B for
the definition of the parameters used in these routines.

1 Compute and write the DATASUM and CHECKSUM keyword values for the CHDU into the
current header. If the keywords already exist, their values will be updated only if necessary
(i.e., if the file has been modified since the original keyword values were computed).

int fits_write_chksum / ffpcks
(fitsfile *fptr, > int *status)

2 Update the CHECKSUM keyword value in the CHDU, assuming that the DATASUM keyword
exists and already has the correct value. This routine calculates the new checksum for the
current header unit, adds it to the data unit checksum, encodes the value into an ASCII
string, and writes the string to the CHECKSUM keyword.

int fits_update_chksum / ffupck
(fitsfile *fptr, > int *status)

3 Verify the CHDU by computing the checksums and comparing them with the keywords. The
data unit is verified correctly if the computed checksum equals the value of the DATASUM
keyword. The checksum for the entire HDU (header plus data unit) is correct if it equals
zero. The output DATAOK and HDUOK parameters in this routine are integers which will
have a value = 1 if the data or HDU is verified correctly, a value = 0 if the DATASUM or
CHECKSUM keyword is not present, or value = -1 if the computed checksum is not correct.

66 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

int fits_verify_chksum / ffvcks
(fitsfile *fptr, > int *dataok, int *hduok, int *status)

4 Compute and return the checksum values for the CHDU without creating or modifying the
CHECKSUM and DATASUM keywords. This routine is used internally by ffvcks, but may
be useful in other situations as well.

int fits_get_chksum/ /ffgcks
(fitsfile *fptr, > unsigned long *datasum, unsigned long *hdusum,
int *status)

5 Encode a checksum value into a 16-character string. If complm is non-zero (true) then the 32-bit
sum value will be complemented before encoding.

int fits_encode_chksum / ffesum
(unsigned long sum, int complm, > char *ascii);

6 Decode a 16-character checksum string into a unsigned long value. If is non-zero (true). then the
32-bit sum value will be complemented after decoding. The checksum value is also returned
as the value of the function.

unsigned long fits_decode_chksum / ffdsum
(char #*ascii, int complm, > unsigned long *sum);

5.8.2 Date and Time Utility Routines

The following routines help to construct or parse the FITS date/time strings. Starting in the year
2000, the FITS DATE keyword values (and the values of other ‘DATE-’ keywords) must have the
form "YYYY-MM-DD’ (date only) or "YYYY-MM-DDThh:mm:ss.ddd...” (date and time) where
the number of decimal places in the seconds value is optional. These times are in UTC. The older
'"dd/mm/yy’ date format may not be used for dates after 01 January 2000. See Appendix B for the
definition of the parameters used in these routines.

1 Get the current system date. C already provides standard library routines for getting the current
date and time, but this routine is provided for compatibility with the Fortran FITSIO library.
The returned year has 4 digits (1999, 2000, etc.)

int fits_get_system_date/ffgsdt
(> int *day, int *month, int *year, int *status)

2 Get the current system date and time string ("YYYY-MM-DDThh:mm:ss’). The time will be
in UTC/GMT if available, as indicated by a returned timeref value = 0. If the returned value
of timeref = 1 then this indicates that it was not possible to convert the local time to UTC,
and thus the local time was returned.

5.8. UTILITY ROUTINES 67

int fits_get_system_time/ffgstm
(> char *datestr, int *timeref, int *status)

3 Construct a date string from the input date values. If the year is between 1900 and 1998, inclu-
sive, then the returned date string will have the old FITS format (’dd/mm/yy’), otherwise
the date string will have the new FITS format ("YYYY-MM-DD’). Use fits_time2str instead
to always return a date string using the new FITS format.

int fits_date2str/ffdt2s
(int year, int month, int day, > char *datestr, int *status)

4 Construct a new-format date + time string ("YYYY-MM-DDThh:mm:ss.ddd...”). If the year,
month, and day values all = 0 then only the time is encoded with format "hh:mm:ss.ddd...".
The decimals parameter specifies how many decimal places of fractional seconds to include
in the string. If ‘decimals’ is negative, then only the date will be return ("YYYY-MM-DD’).

int fits_time2str/fftm2s
(int year, int month, int day, int hour, int minute, double second,
int decimals, > char *datestr, int *status)

5 Return the date as read from the input string, where the string may be in either the old
(’dd/mm/yy’) or new ("YYYY-MM-DDThh:mm:ss’ or 'YYYY-MM-DD’) FITS format. Null
pointers may be supplied for any unwanted output date parameters.

int fits_str2date/ffs2dt
(char *datestr, > int *year, int *month, int *day, int *status)

6 Return the date and time as read from the input string, where the string may be in either the
old or new FITS format. The returned hours, minutes, and seconds values will be set to zero
if the input string does not include the time (’dd/mm/yy’ or "YYYY-MM-DD’) . Similarly,
the returned year, month, and date values will be set to zero if the date is not included in
the input string ("hh:mm:ss.ddd...”). Null pointers may be supplied for any unwanted output
date and time parameters.

int fits_str2time/ffs2tm
(char *datestr, > int *year, int *month, int *day, int *hour,
int *minute, double *second, int *status)

5.8.3 General Utility Routines

The following utility routines may be useful for certain applications.

1 Return the revision number of the CFITSIO library. The revision number will be incremented
with each new release of CFITSIO. The 3 fields of the version string M.xx.yy are converted
to a float as: M + .01*xx + .0001*yy.

68

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

float fits_get_version / ffvers (> float *version)

2 Write an 80-character message to the CFITSIO error stack. Application programs should not

normally write to the stack, but there may be some situations where this is desirable.

void fits_write_errmsg / ffpmsg (char *err_msg)

3 Convert a character string to uppercase (operates in place).

void fits_uppercase / ffupch (char *string)

4 Compare the input template string against the reference string to see if they match. The

template string may contain wildcard characters: *’ will match any sequence of characters

(including zero characters) and ’?’ will match any single character in the reference string.
The '#’ character will match any consecutive string of decimal digits (0 - 9). If casesen =
CASESEN = TRUE then the match will be case sensitive, otherwise the case of the letters
will be ignored if casesen = CASEINSEN = FALSE. The returned MATCH parameter will
be TRUE if the 2 strings match, and EXACT will be TRUE if the match is exact (i.e., if no
wildcard characters were used in the match). Both strings must be 68 characters or less in
length.

void fits_compare_str / ffcmps

(char *templt, char *string, int casesen, > int #*match, int *exact)

5 Split a string containing a list of names (typically file names or column names) into individual

name tokens by a sequence of calls to fits_split_names. The names in the list must be delimited
by a comma and/or spaces. This routine ignores spaces and commas that occur within
parentheses, brackets, or curly brackets. It also strips any leading and trailing blanks from
the returned name.

This routine is similar to the ANSI C ’strtok’ function:

The first call to fits_split_-names has a non-null input string. It finds the first name in the
string and terminates it by overwriting the next character of the string with a null terminator
and returns a pointer to the name. Each subsequent call, indicated by a NULL value of the
input string, returns the next name, searching from just past the end of the previous name.
It returns NULL when no further names are found.

char *xfits_split_names(char *namelist)

The following example shows how a string would be split into 3 names:

myfile[1] [bin (x,y)=4], file2.fits file3.fits

AAAAA~A~AAA~A~AA~A~AA~A~A~Aa~n~n AAaAAA~AAa~a~n~an P R e e e e e

1st name 2nd name 3rd name

5.8. UTILITY ROUTINES 69

6 Test that the keyword name contains only legal characters (A-Z,0-9, hyphen, and underscore)
or that the keyword record contains only legal printable ASCII characters

int fits_test_keyword / fftkey (char *keyname, > int *status)

int fits_test_record / fftrec (char *card, > int *status)

7 Test whether the current header contains any NULL (ASCII 0) characters. These characters are
illegal in the header, but they will go undetected by most of the CFITSIO keyword header
routines, because the null is interpreted as the normal end-of-string terminator. This routine
returns the position of the first null character in the header, or zero if there are no nulls. For
example a returned value of 110 would indicate that the first NULL is located in the 30th
character of the second keyword in the header (recall that each header record is 80 characters
long). Note that this is one of the few CFITSIO routines in which the returned value is not
necessarily equal to the status value).

int fits_null_check / ffnchk (char *card, > int *status)

8 Parse a header keyword record and return the name of the keyword, and the length of the name.
The keyword name normally occupies the first 8 characters of the record, except under the
HIERARCH convention where the name can be up to 70 characters in length.

int fits_get_keyname / ffgknm
(char *card, > char *keyname, int *keylength, int *status)

9 Parse a header keyword record, returning the value (as a literal character string) and comment
strings. If the keyword has no value (columns 9-10 not equal to = "), then a null value string
is returned and the comment string is set equal to column 9 - 80 of the input string.

int fits_parse_value / ffpsvc
(char *card, > char *value, char *comment, int *status)

10 Construct a properly formated 80-character header keyword record from the input keyword
name, keyword value, and keyword comment strings. Hierarchical keyword names (e.g., "ESO
TELE CAM”) are supported. The value string may contain an integer, floating point, logical,
or quoted character string (e.g., 712”7, 715.77, ?T”, or ”’NGC 1313").

int fits_make_key / ffmkky
(const char *keyname, const char *value, const char *comment,
> char *card, int *status)

11 Construct an array indexed keyword name (ROOT + nnn). This routine appends the sequence
number to the root string to create a keyword name (e.g., 'NAXIS’ + 2 = '"NAXIS2’)

70 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

int fits_make_keyn / ffkeyn
(char *keyroot, int value, > char *keyname, int *status)

12 Construct a sequence keyword name (n + ROOT). This routine concatenates the sequence
number to the front of the root string to create a keyword name (e.g., 1 + ’CTYP’ =’1CTYP’)

int fits_make_nkey / ffnkey
(int value, char xkeyroot, > char *keyname, int *status)

13 Determine the data type of a keyword value string. This routine parses the keyword value
string to determine its data type. Returns ’C’, °L’, 'I’, ’F’ or ’X’, for character string, logical,
integer, floating point, or complex, respectively.

int fits_get_keytype / ffdtyp
(char *value, > char *dtype, int *status)

14 Determine the integer data type of an integer keyword value string. The returned datatype
value is the minimum integer datatype (starting from top of the following list and working
down) required to store the integer value:

Data Type Range
TSBYTE: -128 to 127
TBYTE: 128 to 255
TSHORT: -32768 to 32767
TUSHORT: 32768 to 65535
TINT -2147483648 to 2147483647
TUINT 2147483648 to 4294967295

TLONGLONG -9223372036854775808 to 9223372036854775807
The *neg parameter returns 1 if the input value is negative and returns 0 if it is non-negative.

int fits_get_inttype / ffinttyp
(char *value, > int *datatype, int #*neg, int *status)

15 Return the class of an input header record. The record is classified into one of the following
categories (the class values are defined in fitsio.h). Note that this is one of the few CFITSIO
routines that does not return a status value.

Class Value Keywords
TYP_STRUC_KEY 10 SIMPLE, BITPIX, NAXIS, NAXISn, EXTEND, BLOCKED,
GROUPS, PCOUNT, GCOUNT, END
XTENSION, TFIELDS, TTYPEn, TBCOLn, TFORMn, THEAP,
and the first 4 COMMENT keywords in the primary array

5.8. UTILITY ROUTINES 71

that define the FITS format.

TYP_CMPRS_KEY 20 The keywords used in the compressed image or table
format, including ZIMAGE, ZCMPTYPE, ZNAMEn, ZVALn,
ZTILEn, ZBITPIX, ZNAXISn, ZSCALE, ZZERO, ZBLANK

TYP_SCAL_KEY 30 BSCALE, BZERO, TSCALn, TZEROn

TYP_NULL_KEY 40 BLANK, TNULLn

TYP_DIM_KEY 50 TDIMn

TYP_RANG_KEY 60 TLMINn, TLMAXn, TDMINn, TDMAXn, DATAMIN, DATAMAX

TYP_UNIT_KEY 70 BUNIT, TUNITn

TYP_DISP_KEY 80 TDISPn

TYP_HDUID_KEY 90 EXTNAME, EXTVER, EXTLEVEL, HDUNAME, HDUVER, HDULEVEL

TYP_CKSUM_KEY 100 CHECKSUM, DATASUM

TYP_WCS_KEY 110 WCS keywords defined in the the WCS papers, including:
CTYPEn, CUNITn, CRVALn, CRPIXn, CROTAn, CDELTn
CDj_is, PVj_ms, LONPOLEs, LATPOLEs
TCTYPn, TCTYns, TCUNIn, TCUNns, TCRVLn, TCRVns, TCRPXn,
TCRPks, TCDn_k, TCn_ks, TPVn_m, TPn_ms, TCDLTn, TCROTn
jCTYPn, jCTYns, jCUNIn, jCUNns, jCRVLn, jCRVns, iCRPXn,
iCRPns, jiCDn, jiCDms, jPVn_m, jPn_ms, jCDLTn, jCROTn
(i,j,m,n are integers, s is any letter)

TYP_REFSYS_KEY 120 EQUINOXs, EPOCH, MJD-0BSs, RADECSYS, RADESYSs, DATE-0BS

TYP_COMM_KEY 130 COMMENT, HISTORY, (blank keyword)

TYP_CONT_KEY 140 CONTINUE

TYP_USER_KEY 150 all other keywords

int fits_get_keyclass / ffgkcl (char *card)

16 Parse the "TFORM’ binary table column format string. This routine parses the input TFORM
character string and returns the integer data type code, the repeat count of the field, and,
in the case of character string fields, the length of the unit string. See Appendix B for the
allowed values for the returned typecode parameter. A null pointer may be given for any
output parameters that are not needed.

int fits_binary_tform / ffbnfm
(char *tform, > int *typecode, long *repeat, long *width,
int *status)

int fits_binary_tformll / ffbnfmll
(char *tform, > int *typecode, LONGLONG *repeat, long *width,
int *status)

17 Parse the "TFORM’ keyword value that defines the column format in an ASCII table. This
routine parses the input TFORM character string and returns the data type code, the width
of the column, and (if it is a floating point column) the number of decimal places to the right
of the decimal point. The returned data type codes are the same as for the binary table,
with the following additional rules: integer columns that are between 1 and 4 characters wide

72

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

are defined to be short integers (code = TSHORT). Wider integer columns are defined to be
regular integers (code = TLONG). Similarly, Fixed decimal point columns (with TFORM
= 'Fw.d’) are defined to be single precision reals (code = TFLOAT) if w is between 1 and
7 characters wide, inclusive. Wider 'F’ columns will return a double precision data code
(= TDOUBLE). 'Ew.d’ format columns will have datacode = TFLOAT, and 'Dw.d’ format
columns will have datacode = TDOUBLE. A null pointer may be given for any output
parameters that are not needed.

int fits_ascii_tform / ffasfm

(char *tform, > int *typecode, long *width, int *decimals,
int *status)

18 Calculate the starting column positions and total ASCII table width based on the input array

of ASCII table TFORM values. The SPACE input parameter defines how many blank spaces
to leave between each column (it is recommended to have one space between columns for
better human readability).

int fits_get_tbcol / ffgabc

(int tfields, char **tform, int space, > long *rowlen,
long *tbcol, int *status)

19 Parse a template header record and return a formatted 80-character string suitable for append-

ing to (or deleting from) a FITS header file. This routine is useful for parsing lines from
an ASCII template file and reformatting them into legal FITS header records. The format-
ted string may then be passed to the fits_write_record, ffmcrd, or fits_delete_key routines to
append or modify a FITS header record.

int fits_parse_template / ffgthd

(char *templt, > char *card, int *keytype, int *status)

The input templt character string generally should contain 3 tokens: (1) the KEYNAME, (2) the
VALUE, and (3) the COMMENT string. The TEMPLATE string must adhere to the following
format:

The KEYNAME token must begin in columns 1-8 and be a maximum of 8 characters long. A

legal FITS keyword name may only contain the characters A-Z, 0-9, and -’ (minus sign) and
underscore. This routine will automatically convert any lowercase characters to uppercase in
the output string. If the first 8 characters of the template line are blank then the remainder
of the line is considered to be a FITS comment (with a blank keyword name).

- The VALUE token must be separated from the KEYNAME token by one or more spaces and /or

an =’ character. The data type of the VALUE token (numeric, logical, or character string) is
automatically determined and the output CARD string is formatted accordingly. The value
token may be forced to be interpreted as a string (e.g. if it is a string of numeric digits) by
enclosing it in single quotes. If the value token is a character string that contains 1 or more
embedded blank space characters or slash (’/’) characters then the entire character string
must be enclosed in single quotes.

5.8. UTILITY ROUTINES 73

- The COMMENT token is optional, but if present must be separated from the VALUE token by
a blank space or a ’/’ character.

- One exception to the above rules is that if the first non-blank character in the first 8 characters
of the template string is a minus sign (’-’) followed by a single token, or a single token followed
by an equal sign, then it is interpreted as the name of a keyword which is to be deleted from
the FITS header.

- The second exception is that if the template string starts with a minus sign and is followed by
2 tokens (without an equals sign between them) then the second token is interpreted as the
new name for the keyword specified by first token. In this case the old keyword name (first
token) is returned in characters 1-8 of the returned CARD string, and the new keyword name
(the second token) is returned in characters 41-48 of the returned CARD string. These old
and new names may then be passed to the ffmnam routine which will change the keyword
name.

The keytype output parameter indicates how the returned CARD string should be interpreted:

keytype interpretation
-2 Rename the keyword with name = the first 8 characters of CARD
to the new name given in characters 41 - 48 of CARD.

-1 delete the keyword with this name from the FITS header.

0 append the CARD string to the FITS header if the
keyword does not already exist, otherwise update
the keyword value and/or comment field if is already exists.

1 This is a HISTORY or COMMENT keyword; append it to the header
2 END record; do not explicitly write it to the FITS file.
EXAMPLES: The following lines illustrate valid input template strings:

INTVAL 7 / This is an integer keyword
RVAL 34.6 / This is a floating point keyword
EVAL=-12.45E-03 / This is a floating point keyword in exponential notation
lval F / This is a boolean keyword
This is a comment keyword with a blank keyword name
SVAL1 = ’Hello world’ / this is a string keyword
SVAL2 °123.5’ +this is also a string keyword
sval3 123+ / this is also a string keyword with the value ’123+ ’
the following template line deletes the DATE keyword
- DATE
the following template line modifies the NAME keyword to OBJECT
NAME 0BJECT

74 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

20 Translate a keyword name into a new name, based on a set of patterns. This routine is useful
for translating keywords in cases such as adding or deleting columns in a table, or copying
a column from one table to another, or extracting an array from a cell in a binary table
column into an image extension. In these cases, it is necessary to translate the names of the
keywords associated with the original table column(s) into the appropriate keyword name in
the final file. For example, if column 2 is deleted from a table, then the value of 'n’ in all
the TFORMn and TTYPEn keywords for columns 3 and higher must be decremented by 1.
Even more complex translations are sometimes needed to convert the WCS keywords when
extracting an image out of a table column cell into a separate image extension.

The user passes an array of patterns to be matched. Input pattern number i is pattern[i][0],
and output pattern number i is pattern[i][1]. Keywords are matched against the input pat-
terns. If a match is found then the keyword is re-written according to the output pattern.

Order is important. The first match is accepted. The fastest match will be made when
templates with the same first character are grouped together.

Several characters have special meanings:

i,j - single digits, preserved in output template
- column number of one or more digits, preserved in output template
- generic number of one or more digits, preserved in output template
- coordinate designator, preserved in output template
- number of one or more digits
- any character
- only allowed in first character position, to match all
keywords; only useful as last pattern in the list

¥ N H p B B

i, j, n, and m are returned by the routine.

For example, the input pattern "iCTYPn” will match ”1CTYP5” (if n_value is 5); the output
pattern "CTYPEiL” will be re-written as "CTYPE1”. Notice that ”i” is preserved.

The following output patterns are special:

7.7 - do not copy a keyword that matches the corresponding input pattern

77 _ if match occurs, outrec will have "-KEYNAME”
”+” - copy the input unchanged

The inrec string could be just the 8-char keyword name, or the entire 80-char header record.
Characters 9 - 80 in the input string simply get appended to the translated keyword name.

Upon return, outrec will have the converted string, starting from the patternli][1] pattern and
applying the numerical substitutions as described above. If the output pattern is ”—” then
the resulting outrec will be ”-KEYNAME”, which may indicate to the calling routine that
KEYNAME is to be deleted.

If n_range = 0, then only keywords with 'n’ equal to n_value will be considered as a pattern
match. If n_range = +1, then all values of 'n’ greater than or equal to n_value will be a
match, and if -1, then values of 'n’ less than or equal to n_value will match.

5.8. UTILITY ROUTINES 75

int fits_translate_keyword(

char *inrec, /* I - input string */
char *outrec, /* 0 - output converted string, or */

/* a null string if input does not */

/* match any of the patterns */
char *patterns[][2],/* I - pointer to input / output string */

/* templates */
int npat, /* I - number of templates passed */
int n_value, /* I - base ’n’ template value of interest */
int n_offset, /* I - offset to be applied to the ’n’ */

/% value in the output string */
int n_range, /* I - controls range of ’n’ template */

/* values of interest (-1,0, or +1) */
int *pat_num, /* 0 - matched pattern number (0 based) or -1 */
int *i, /* 0 - value of i, if any, else 0 x/
int *j, /* 0 - value of j, if any, else 0 */
int *m, /* 0 - value of m, if any, else 0 x/
int *n, /* 0 - value of n, if any, else 0 */
int *status) /* I0 - error status */

Here is an example of some of the patterns used to convert the keywords associated with an image
in a cell of a table column into the keywords appropriate for an IMAGE extension:

char *patterns([][2] = {{"TSCALn",

"BSCALE" 3},

{"TZEROn", "BZERO" 1},

{"TUNITn", "BUNIT" 1},

{"INULLn", "BLANK" 3},

{"TDMINn", "DATAMIN" },

{"TDMAXn", "DATAMAX" },

{"iCTYPn", "CTYPEi" }, /* Coordinate labels */
{"iCTYna", "CTYPEia" },

{"iCUNIn", "CUNITi" }, /* Coordinate units */
{"iCUNna", "CUNITia" },

{"iCRVLn", "CRVALi" }, /* WCS keywords */
{"iCRVna", "CRVALia" },

{"iCDLTn", "CDELTi" 1},

{"iCDEna", "CDELTia" },

{"iCRPXn", "CRPIXi" 3},

{"iCRPna", "CRPIXia" },

{"ijPCna", "PCi_ja" 1},

{"ijCDna", "CDi_ja" 3,

{"ivn_ma", "PVi_ma" },

{"iSn_ma", "PSi_ma" 3},

{"iCRDna", "CRDERia" 1},

{"iCSYna", "CSYERia" 1},

{"iCROTn", "CROTAi" 1},

/* Standard FITS keywords */

76 CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

{"WCAXna", "WCSAXESa"},
{"WCSNna", "WCSNAMEa"}};

21 Translate the keywords in the input HDU into the keywords that are appropriate for the output
HDU. This is a driver routine that calls the previously described routine for all keywords in
the HDU.

It is allowed for infptr and outfptr to point to the same HDU.

If any output matched patterns are of the form "-KEYNAME” then this routine will attempt
to delete the keyword KEYNAME. It is not an error if KEYNAME is not present in the
output HDU.

int fits_translate_keywords(
fitsfile *infptr, /* I - pointer to input HDU */

fitsfile *outfptr, /* I - pointer to output HDU x/
int firstkey, /* I - first HDU record number to start with */
char *patterns[][2],/* I - pointer to input / output keyword templates */
int npat, /* I - number of templates passed */
int n_value, /* I - base ’n’ template value of interest */
int n_offset, /* I - offset to be applied to the ’n’ */
/% value in the output string */

int n_range, /* I - controls range of ’n’ template */

/* values of interest (-1,0, or +1) */
int *status) /* I0 - error status */

22 Parse the input string containing a list of rows or row ranges, and return integer arrays con-
taining the first and last row in each range. For example, if rowlist = ”3-5, 6, 8-9” then it will
return numranges = 3, rangemin = 3, 6, 8 and rangemax = 5, 6, 9. At most, 'maxranges’
number of ranges will be returned. 'maxrows’ is the maximum number of rows in the table;
any rows or ranges larger than this will be ignored. The rows must be specified in increasing
order, and the ranges must not overlap. A minus sign may be use to specify all the rows to
the upper or lower bound, so ”50-” means all the rows from 50 to the end of the table, and
7.7 means all the rows in the table, from 1 - maxrows.

int fits_parse_range / ffrwrg(char *rowlist, LONGLONG maxrows, int maxranges, >
int *numranges, long *rangemin, long *rangemax, int *status)

int fits_parse_rangell / ffrwrgll(char *rowlist, LONGLONG maxrows, int maxranges, >
int *numranges, LONGLONG *rangemin, LONGLONG *rangemax, int *status)

23 Check that the Header fill bytes (if any) are all blank. These are the bytes that may follow
END keyword and before the beginning of data unit, or the end of the HDU if there is no
data unit.

int ffchfl(fitsfile *fptr, > int *status)

5.8. UTILITY ROUTINES 7

24 Check that the Data fill bytes (if any) are all zero (for IMAGE or BINARY Table HDU) or all
blanks (for ASCII table HDU). These file bytes may be located after the last valid data byte
in the HDU and before the physical end of the HDU.

int ffcdfl(fitsfile *fptr, > int *status)

25 Estimate the root-mean-squared (RMS) noise in an image. These routines are mainly for use
with the Hcompress image compression algorithm. They return an estimate of the RMS noise
in the background pixels of the image. This robust algorithm (written by Richard White,
STScl) first attempts to estimate the RMS value as 1.68 times the median of the absolute
differences between successive pixels in the image. If the median = 0, then the algorithm falls
back to computing the RMS of the difference between successive pixels, after several N-sigma
rejection cycles to remove extreme values. The input parameters are: the array of image pixel
values (either float or short values), the number of values in the array, the value that is used
to represent null pixels (enter a very large number if there are no null pixels).

int fits_rms_float (float fdatal], int npix, float in_null_value,
> double *rms, int *status)

int fits_rms_short (short fdatal[], int npix, short in_null_value,
> double *rms, int *status)

26 Was CFITSIO compiled with the -D_REENTRANT directive so that it may be safely used in
multi-threaded environments? The following function returns 1 if yes, 0 if no. Note, however,
that even if the -D_REENTRANT directive was specified, this does not guarantee that the
CFITSIO routines are thread-safe, because some compilers may not support this feature.

int fits_is_reentrant(void)

78

CHAPTER 5. BASIC CFITSIO INTERFACE ROUTINES

Chapter 6

The CFITSIO Iterator Function

The fits_iterate_data function in CFITSIO provides a unique method of executing an arbitrary
user-supplied ‘work’ function that operates on rows of data in FITS tables or on pixels in FITS
images. Rather than explicitly reading and writing the FITS images or columns of data, one instead
calls the CFITSIO iterator routine, passing to it the name of the user’s work function that is to
be executed along with a list of all the table columns or image arrays that are to be passed to the
work function. The CFITSIO iterator function then does all the work of allocating memory for
the arrays, reading the input data from the FITS file, passing them to the work function, and then
writing any output data back to the FITS file after the work function exits. Because it is often
more efficient to process only a subset of the total table rows at one time, the iterator function
can determine the optimum amount of data to pass in each iteration and repeatedly call the work
function until the entire table been processed.

For many applications this single CFITSIO iterator function can effectively replace all the other
CFITSIO routines for reading or writing data in FITS images or tables. Using the iterator has
several important advantages over the traditional method of reading and writing FITS data files:

e It cleanly separates the data I/O from the routine that operates on the data. This leads to
a more modular and ‘object oriented’ programming style.

e It simplifies the application program by eliminating the need to allocate memory for the data
arrays and eliminates most of the calls to the CFITSIO routines that explicitly read and write
the data.

e It ensures that the data are processed as efficiently as possible. This is especially important
when processing tabular data since the iterator function will calculate the most efficient
number of rows in the table to be passed at one time to the user’s work function on each
iteration.

e Makes it possible for larger projects to develop a library of work functions that all have a
uniform calling sequence and are all independent of the details of the FITS file format.

There are basically 2 steps in using the CFITSIO iterator function. The first step is to design the
work function itself which must have a prescribed set of input parameters. One of these parameters

79

80 CHAPTER 6. THE CFITSIO ITERATOR FUNCTION

is a structure containing pointers to the arrays of data; the work function can perform any desired
operations on these arrays and does not need to worry about how the input data were read from
the file or how the output data get written back to the file.

The second step is to design the driver routine that opens all the necessary FITS files and initializes
the input parameters to the iterator function. The driver program calls the CFITSIO iterator
function which then reads the data and passes it to the user’s work function.

The following 2 sections describe these steps in more detail. There are also several example programs
included with the CFITSIO distribution which illustrate how to use the iterator function.

6.1 The Iterator Work Function

The user-supplied iterator work function must have the following set of input parameters (the
function can be given any desired name):

int user_fn(long totaln, long offset, long firstn, long nvalues,
int narrays, iteratorCol *data, void *userPointer)

e totaln — the total number of table rows or image pixels that will be passed to the work function
during 1 or more iterations.

e offset — the offset applied to the first table row or image pixel to be passed to the work
function. In other words, this is the number of rows or pixels that are skipped over before
starting the iterations. If offset = 0, then all the table rows or image pixels will be passed to
the work function.

e firstn — the number of the first table row or image pixel (starting with 1) that is being passed
in this particular call to the work function.

e nvalues — the number of table rows or image pixels that are being passed in this particular
call to the work function. nvalues will always be less than or equal to totaln and will have
the same value on each iteration, except possibly on the last call which may have a smaller
value.

e narrays — the number of arrays of data that are being passed to the work function. There is
one array for each image or table column.

e *data — array of structures, one for each column or image. Each structure contains a pointer
to the array of data as well as other descriptive parameters about that array.

e *userPointer — a user supplied pointer that can be used to pass ancillary information from the
driver function to the work function. This pointer is passed to the CFITSIO iterator function
which then passes it on to the work function without any modification. It may point to a
single number, to an array of values, to a structure containing an arbitrary set of parameters
of different types, or it may be a null pointer if it is not needed. The work function must cast
this pointer to the appropriate data type before using it it.

6.1. THE ITERATOR WORK FUNCTION 81

The totaln, offset, narrays, data, and userPointer parameters are guaranteed to have the same value
on each iteration. Only firstn, nvalues, and the arrays of data pointed to by the data structures
may change on each iterative call to the work function.

Note that the iterator treats an image as a long 1-D array of pixels regardless of it’s intrinsic
dimensionality. The total number of pixels is just the product of the size of each dimension, and
the order of the pixels is the same as the order that they are stored in the FITS file. If the work
function needs to know the number and size of the image dimensions then these parameters can be
passed via the userPointer structure.

The iteratorCol structure is currently defined as follows:

typedef struct /* structure for the iterator function column information */

{

/* structure elements required as input to fits_iterate_data: */

fitsfile *fptr; /* pointer to the HDU containing the column or image */
int colnum; /* column number in the table; ignored for images */
char colname[70]; /* name (TTYPEn) of the column; null for images */
int datatype; /* output data type (converted if necessary) */

int iotype; /* type: InputCol, InputOutputCol, or OutputCol */

/* output structure elements that may be useful for the work function: */

void *xarray; /* pointer to the array (and the null value) */
long repeat; /* binary table vector repeat value; set x/

/* equal to 1 for images x/
long tlmin; /* legal minimum data value, if any x/
long tlmax; /* legal maximum data value, if any x/
char unit[70]; /* physical unit string (BUNIT or TUNITn) x/
char tdisp[70]; /* suggested display format; null if none */

} iteratorCol;

Instead of directly reading or writing the elements in this structure, it is recommended that pro-
grammers use the access functions that are provided for this purpose.

The first five elements in this structure must be initially defined by the driver routine before calling
the iterator routine. The CFITSIO iterator routine uses this information to determine what column
or array to pass to the work function, and whether the array is to be input to the work function,
output from the work function, or both. The CFITSIO iterator function fills in the values of the
remaining structure elements before passing it to the work function.

The array structure element is a pointer to the actual data array and it must be cast to the correct
data type before it is used. The ‘repeat’ structure element give the number of data values in each
row of the table, so that the total number of data values in the array is given by repeat * nvalues.
In the case of image arrays and ASCII tables, repeat will always be equal to 1. When the data
type is a character string, the array pointer is actually a pointer to an array of string pointers
(i.e., char **array). The other output structure elements are provided for convenience in case that

82 CHAPTER 6. THE CFITSIO ITERATOR FUNCTION

information is needed within the work function. Any other information may be passed from the
driver routine to the work function via the userPointer parameter.

Upon completion, the work routine must return an integer status value, with 0 indicating success
and any other value indicating an error which will cause the iterator function to immediately exit
at that point. Return status values in the range 1 — 1000 should be avoided since these are reserved
for use by CFITSIO. A return status value of -1 may be used to force the CFITSIO iterator function
to stop at that point and return control to the driver routine after writing any output arrays to the
FITS file. CFITSIO does not considered this to be an error condition, so any further processing by
the application program will continue normally.

6.2 The Iterator Driver Function

The iterator driver function must open the necessary FITS files and position them to the correct
HDU. It must also initialize the following parameters in the iteratorCol structure (defined above) for
each column or image before calling the CFITSIO iterator function. Several ‘constructor’ routines
are provided in CFITSIO for this purpose.

e *fptr — The fitsfile pointer to the table or image.

e colnum — the number of the column in the table. This value is ignored in the case of images.
If colnum equals 0, then the column name will be used to identify the column to be passed
to the work function.

e colname — the name (TTYPEn keyword) of the column. This is only required if colnum = 0
and is ignored for images.

e datatype — The desired data type of the array to be passed to the work function. For numer-
ical data the data type does not need to be the same as the actual data type in the FITS file,
in which case CFITSIO will do the conversion. Allowed values are: TSTRING, TLOGICAL,
TBYTE, TSBYTE, TSHORT, TUSHORT, TINT, TLONG, TULONG, TFLOAT, TDOU-
BLE. If the input value of data type equals 0, then the existing data type of the column or
image will be used without any conversion.

e iotype — defines whether the data array is to be input to the work function (i.e, read from
the FITS file), or output from the work function (i.e., written to the FITS file) or both.
Allowed values are InputCol, OutputCol, or InputOutputCol. Variable-length array columns
are supported as InputCol or InputOutputCol types, but may not be used for an OutputCol

type.

After the driver routine has initialized all these parameters, it can then call the CFITSIO iterator
function:

int fits_iterate_data(int narrays, iteratorCol *data, long offset,
long nPerLoop, int (*workFn)(), void *userPointer, int *status);

e narrays — the number of columns or images that are to be passed to the work function.

6.3. GUIDELINES FOR USING THE ITERATOR FUNCTION 83

e *data — pointer to array of structures containing information about each column or image.

e offset — if positive, this number of rows at the beginning of the table (or pixels in the image)
will be skipped and will not be passed to the work function.

e nPerLoop - specifies the number of table rows (or number of image pixels) that are to be
passed to the work function on each iteration. If nPerLoop = 0 then CFITSIO will calculate
the optimum number for greatest efficiency. If nPerLoop is negative, then all the rows or pixels
will be passed at one time, and the work function will only be called once. If any variable
length arrays are being processed, then the nPerLoop value is ignored, and the iterator will
always process one row of the table at a time.

e *workFn - the name (actually the address) of the work function that is to be called by
fits_iterate_data.

e *userPointer - this is a user supplied pointer that can be used to pass ancillary information
from the driver routine to the work function. It may point to a single number, an array, or
to a structure containing an arbitrary set of parameters.

e *status - The CFITSIO error status. Should = 0 on input; a non-zero output value indicates
an error.

When fits_iterate_data is called it first allocates memory to hold all the requested columns of data
or image pixel arrays. It then reads the input data from the FITS tables or images into the arrays
then passes the structure with pointers to these data arrays to the work function. After the work
function returns, the iterator function writes any output columns of data or images back to the
FITS files. It then repeats this process for any remaining sets of rows or image pixels until it has
processed the entire table or image or until the work function returns a non-zero status value. The
iterator then frees the memory that it initially allocated and returns control to the driver routine
that called it.

6.3 Guidelines for Using the Iterator Function

The totaln, offset, firstn, and nvalues parameters that are passed to the work function are useful
for determining how much of the data has been processed and how much remains left to do. On
the very first call to the work function firstn will be equal to offset + 1; the work function may
need to perform various initialization tasks before starting to process the data. Similarly, firstn +
nvalues - 1 will be equal to totaln on the last iteration, at which point the work function may need
to perform some clean up operations before exiting for the last time. The work function can also
force an early termination of the iterations by returning a status value = -1.

The narrays and iteratorCol.datatype arguments allow the work function to double check that the
number of input arrays and their data types have the expected values. The iteratorCol.fptr and
iteratorCol.colnum structure elements can be used if the work function needs to read or write the
values of other keywords in the FITS file associated with the array. This should generally only
be done during the initialization step or during the clean up step after the last set of data has
been processed. Extra FITS file I/O during the main processing loop of the work function can

84 CHAPTER 6. THE CFITSIO ITERATOR FUNCTION

seriously degrade the speed of the program. Note that the behavior of the fits_iterate_data()
is undefined if narrays is zero.

If variable-length array columns are being processed, then the iterator will operate on one row of
the table at a time. In this case the the repeat element in the interatorCol structure will be set
equal to the number of elements in the current row that is being processed.

One important feature of the iterator is that the first element in each array that is passed to the
work function gives the value that is used to represent null or undefined values in the array. The
real data then begins with the second element of the array (i.e., array[l], not array[0]). If the
first array element is equal to zero, then this indicates that all the array elements have defined
values and there are no undefined values. If array[0] is not equal to zero, then this indicates that
some of the data values are undefined and this value (array[0]) is used to represent them. In the
case of output arrays (i.e., those arrays that will be written back to the FITS file by the iterator
function after the work function exits) the work function must set the first array element to the
desired null value if necessary, otherwise the first element should be set to zero to indicate that
there are no null values in the output array. CFITSIO defines 2 values, FLOATNULLVALUE and
DOUBLENULLVALUE, that can be used as default null values for float and double data types,
respectively. In the case of character string data types, a null string is always used to represent
undefined strings.

In some applications it may be necessary to recursively call the iterator function. An example of
this is given by one of the example programs that is distributed with CFITSIO: it first calls a work
function that writes out a 2D histogram image. That work function in turn calls another work
function that reads the ‘X’ and ‘Y’ columns in a table to calculate the value of each 2D histogram
image pixel. Graphically, the program structure can be described as:

driver --> iterator --> workl_fn --> iterator --> work2_fn

Finally, it should be noted that the table columns or image arrays that are passed to the work
function do not all have to come from the same FITS file and instead may come from any com-
bination of sources as long as they have the same length. The length of the first table column or
image array is used by the iterator if they do not all have the same length.

6.4 Complete List of Iterator Routines

All of the iterator routines are listed below. Most of these routines do not have a corresponding
short function name.

1 Iterator ‘constructor’ functions that set the value of elements in the iteratorCol structure that
define the columns or arrays. These set the fitsfile pointer, column name, column number,
datatype, and iotype, respectively. The last 2 routines allow all the parameters to be set with
one function call (one supplies the column name, the other the column number).

int fits_iter_set_file(iteratorCol *col, fitsfile *fptr);

6.4. COMPLETE LIST OF ITERATOR ROUTINES 85

int fits_iter_set_colname(iteratorCol *col, char *colname);
int fits_iter_set_colnum(iteratorCol *col, int colnum);
int fits_iter_set_datatype(iteratorCol *col, int datatype);
int fits_iter_set_iotype(iteratorCol *col, int iotype);

int fits_iter_set_by_name(iteratorCol *col, fitsfile *fptr,
char *colname, int datatype, int iotype);

int fits_iter_set_by_num(iteratorCol *col, fitsfile *fptr,
int colnum, int datatype, int iotype);

2 Iterator ‘accessor’ functions that return the value of the element in the iteratorCol structure
that describes a particular data column or array

fitsfile * fits_iter_get_file(iteratorCol *col);
char * fits_iter_get_colname(iteratorCol *col);
int fits_iter_get_colnum(iteratorCol *col);

int fits_iter_get_datatype(iteratorCol *col);
int fits_iter_get_iotype(iteratorCol *col);
void * fits_iter_get_array(iteratorCol *col);
long fits_iter_get_tlmin(iteratorCol *col);

long fits_iter_get_tlmax(iteratorCol *col);

long fits_iter_get_repeat(iteratorCol *col) ;
char * fits_iter_get_tunit(iteratorCol *col);

char * fits_iter_get_tdisp(iteratorCol *col);
3 The CFITSIO iterator function

int fits_iterate_data(int narrays, iteratorCol *data, long offset,
long nPerLoop,
int (*workFn) (long totaln, long offset, long firstn,
long nvalues, int narrays, iteratorCol *data,
void *userPointer),

86

void *userPointer,
int *status);

CHAPTER 6.

THE CFITSIO ITERATOR FUNCTION

Chapter 7

World Coordinate System Routines

The FITS community has adopted a set of keyword conventions that define the transformations
needed to convert between pixel locations in an image and the corresponding celestial coordinates
on the sky, or more generally, that define world coordinates that are to be associated with any pixel
location in an n-dimensional FITS array. CFITSIO is distributed with a a few self-contained World
Coordinate System (WCS) routines, however, these routines DO NOT support all the latest WCS
conventions, so it is STRONGLY RECOMMENDED that software developers use a more robust
external WCS library. Several recommended libraries are:

WCSLIB - supported by Mark Calabretta
WCSTools - supported by Doug Mink
AST library - developed by the U.K. Starlink project

More information about the WCS keyword conventions and links to all of these WCS libraries can
be found on the FITS Support Office web site at http://fits.gsfc.nasa.gov under the WCS link.

The functions provided in these external WCS libraries will need access to the WCS keywords
contained in the FITS file headers. One convenient way to pass this information to the external
library is to use the fits_hdr2str routine in CFITSIO (defined below) to copy the header keywords
into one long string, and then pass this string to an interface routine in the external library that
will extract the necessary WCS information (e.g., the 'wespih’ routine in the WCSLIB library and
the ’astFitsChan’ and ’astPutCards’ functions in the AST library).

1 Concatenate the header keywords in the CHDU into a single long string of characters. Each
80-character fixed-length keyword record is appended to the output character string, in order,
with no intervening separator or terminating characters. The last header record is terminated
with a NULL character. This routine allocates memory for the returned character array, so
the calling program must free the memory when finished.

There are 2 related routines: fits_hdr2str simply concatenates all the existing keywords in the
header; fits_convert_hdr2str is similar, except that if the CHDU is a tile compressed image
(stored in a binary table) then it will first convert that header back to that of a normal FITS
image before concatenating the keywords.

87

88 CHAPTER 7. WORLD COORDINATE SYSTEM ROUTINES

Selected keywords may be excluded from the returned character string. If the second param-
eter (nocomments) is TRUE (nonzero) then any COMMENT, HISTORY, or blank keywords
in the header will not be copied to the output string.

The ’exclist’ parameter may be used to supply a list of keywords that are to be excluded from
the output character string. Wild card characters (*, 7, and #) may be used in the excluded
keyword names. If no additional keywords are to be excluded, then set nexc = 0 and specify
NULL for the the **exclist parameter.

int fits_hdr2str
(fitsfile *fptr, int nocomments, char **exclist, int nexc,
> char **header, int #*nkeys, int *status)

int fits_convert_hdr2str / ffcnvthdr2str
(fitsfile *fptr, int nocomments, char **exclist, int nexc,
> char **header, int #*nkeys, int *status)

2 The following CFITSIO routine is specifically designed for use in conjunction with the WCSLIB
library. It is not expected that applications programmers will call this routine directly, but it
is documented here for completeness. This routine extracts arrays from a binary table that
contain WCS information using the -TAB table lookup convention. See the documentation
provided with the WCSLIB library for more information.

int fits_read_wcstab
(fitsfile *fptr, int nwtb, wtbarr *wtb, int *status);

7.1 Self-contained WCS Routines

The following routines DO NOT support the more recent WCS conventions that have been approved
as part of the FITS standard. Consequently, the following routines ARE NOW DEPRECATED.
It is STRONGLY RECOMMENDED that software developers not use these routines, and instead
use an external WCS library, as described in the previous section.

These routines are included mainly for backward compatibility with existing software. They support
the following standard map projections: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, and -AIT (these
are the legal values for the coordtype parameter). These routines are based on similar functions in
Classic AIPS. All the angular quantities are given in units of degrees.

1 Get the values of the basic set of standard FITS celestial coordinate system keywords from
the header of a FITS image (i.e., the primary array or an IMAGE extension). These values
may then be passed to the fits_pix_to_world and fits_world_to_pix routines that perform the
coordinate transformations. If any or all of the WCS keywords are not present, then default
values will be returned. If the first coordinate axis is the declination-like coordinate, then this
routine will swap them so that the longitudinal-like coordinate is returned as the first axis.

The first routine (ffgics) returns the primary WCS, whereas the second routine returns the
particular version of the WCS specified by the ’version’ parameter, which much be a character
ranging from 'A’ to 'Z’ (or a blank character, which is equivalent to calling ffgics).

7.1. SELF-CONTAINED WCS ROUTINES 89

If the file uses the newer ’CDji’ WCS transformation matrix keywords instead of old style
"CDELTn’ and ’"CROTA2’ keywords, then this routine will calculate and return the values
of the equivalent old-style keywords. Note that the conversion from the new-style keywords
to the old-style values is sometimes only an approximation, so if the approximation is larger
than an internally defined threshold level, then CFITSIO will still return the approximate
WCS keyword values, but will also return with status = APPROX_WCS_KEY, to warn the
calling program that approximations have been made. It is then up to the calling program
to decide whether the approximations are sufficiently accurate for the particular application,
or whether more precise WCS transformations must be performed using new-style WCS
keywords directly.

int fits_read_img_coord / ffgics
(fitsfile *fptr, > double *xrefval, double *yrefval,
double *xrefpix, double *yrefpix, double *xinc, double *yinc,
double *rot, char *coordtype, int *status)

int fits_read_img_coord_version / ffgicsa
(fitsfile *fptr, char version, > double *xrefval, double *yrefval,
double *xrefpix, double *yrefpix, double *xinc, double *yinc,
double *rot, char *coordtype, int *status)

2 Get the values of the standard FITS celestial coordinate system keywords from the header of a
FITS table where the X and Y (or RA and DEC) coordinates are stored in 2 separate columns
of the table (as in the Event List table format that is often used by high energy astrophysics
missions). These values may then be passed to the fits_pix_to_world and fits_-world_to_pix
routines that perform the coordinate transformations.

int fits_read_tbl_coord / ffgtcs
(fitsfile *fptr, int xcol, int ycol, > double *xrefval,
double *yrefval, double *xrefpix, double *yrefpix, double *xinc,
double *yinc, double *rot, char *coordtype, int *status)

3 Calculate the celestial coordinate corresponding to the input X and Y pixel location in the
image.

int fits_pix_to_world / ffwldp
(double xpix, double ypix, double xrefval, double yrefval,
double xrefpix, double yrefpix, double xinc, double yinc,
double rot, char *coordtype, > double *xpos, double *ypos,
int *status)

4 Calculate the X and Y pixel location corresponding to the input celestial coordinate in the
image.

int fits_world_to_pix / ffxypx

90

CHAPTER 7. WORLD COORDINATE SYSTEM ROUTINES

(double xpos, double ypos, double xrefval, double yrefval,
double xrefpix, double yrefpix, double xinc, double yinc,
double rot, char *coordtype, > double *xpix, double *ypix,
int *status)

Chapter 8

Hierarchical Grouping Routines

These functions allow for the creation and manipulation of FITS HDU Groups, as defined in ”A
Hierarchical Grouping Convention for FITS” by Jennings, Pence, Folk and Schlesinger:

https://fits.gsfc.nasa.gov /registry /grouping/grouping.pdf

A group is a collection of HDUs whose association is defined by a grouping table. HDUs which
are part of a group are referred to as member HDUs or simply as members. Grouping table
member HDUs may themselves be grouping tables, thus allowing for the construction of open-
ended hierarchies of HDUs.

Grouping tables contain one row for each member HDU. The grouping table columns provide iden-
tification information that allows applications to reference or ”point to” the member HDUs. Mem-
ber HDUs are expected, but not required, to contain a set of GRPIDn/GRPLCn keywords in their
headers for each grouping table that they are referenced by. In this sense, the GRPIDn/GRPLCn
keywords ”link” the member HDU back to its Grouping table. Note that a member HDU need not
reside in the same FITS file as its grouping table, and that a given HDU may be referenced by up
to 999 grouping tables simultaneously.

Grouping tables are implemented as FITS binary tables with up to six pre-defined column TTYPEn
values: 'MEMBER_XTENSION’,"MEMBER_NAME’, " MEMBER_VERSION’,"MEMBER._POSITION’,
'MEMBER_URI_TYPE’ and 'MEMBER_LOCATION?’. The first three columns allow member HDUs

to be identified by reference to their XTENSION, EXTNAME and EXTVER keyword values. The
fourth column allows member HDUs to be identified by HDU position within their FITS file. The

last two columns identify the FITS file in which the member HDU resides, if different from the
grouping table FITS file.

Additional user defined ”auxiliary” columns may also be included with any grouping table. When a
grouping table is copied or modified the presence of auxiliary columns is always taken into account
by the grouping support functions; however, the grouping support functions cannot directly make
use of this data.

If a grouping table column is defined but the corresponding member HDU information is un-
available then a null value of the appropriate data type is inserted in the column field. Integer
columns (MEMBER_POSITION, MEMBER_VERSION) are defined with a TNULLn value of zero
(0). Character field columns (MEMBER_XTENSION, MEMBER_NAME, MEMBER_URI_TYPE,

91

92 CHAPTER 8. HIERARCHICAL GROUPING ROUTINES

MEMBER_LOCATION) utilize an ASCII null character to denote a null field value.

The grouping support functions belong to two basic categories: those that work with grouping table
HDUs (ffgt**) and those that work with member HDUs (ffgm**). Two functions, fits_copy_group()
and fits_remove_group(), have the option to recursively copy/delete entire groups. Care should
be taken when employing these functions in recursive mode as poorly defined groups could cause
unpredictable results. The problem of a grouping table directly or indirectly referencing itself (thus
creating an infinite loop) is protected against; in fact, neither function will attempt to copy or
delete an HDU twice.

8.1 Grouping Table Routines

1 Create (append) a grouping table at the end of the current FITS file pointed to by fptr. The
grpname parameter provides the grouping table name (GRPNAME keyword value) and may
be set to NULL if no group name is to be specified. The grouptype parameter specifies
the desired structure of the grouping table and may take on the values: GT_ID_ALL_URI
(all columns created), GT_ID_REF (ID by reference columns), GT_ID_POS (ID by position
columns), GT_ID_ALL (ID by reference and position columns), GT_ID_REF_URI (ID by
reference and FITS file URI columns), and GT_ID_POS_URI (ID by position and FITS file
URI columns).

int fits_create_group / ffgtcr
(fitsfile *fptr, char *grpname, int grouptype, > int *status)

2 Create (insert) a grouping table just after the CHDU of the current FITS file pointed to by fptr.
All HDUs below the the insertion point will be shifted downwards to make room for the new
HDU. The grpname parameter provides the grouping table name (GRPNAME keyword value)
and may be set to NULL if no group name is to be specified. The grouptype parameter speci-
fies the desired structure of the grouping table and may take on the values: GT_ID_ALL_URI
(all columns created), GT_ID_REF (ID by reference columns), GT_ID_POS (ID by position
columns), GT_ID_ALL (ID by reference and position columns), GT_ID_REF_URI (ID by ref-
erence and FITS file URI columns), and GT_ID_POS_URI (ID by position and FITS file URI

columns) .

int fits_insert_group / ffgtis
(fitsfile *fptr, char *grpname, int grouptype, > int *status)

3 Change the structure of an existing grouping table pointed to by gfptr. The grouptype parameter
(see fits_create_group() for valid parameter values) specifies the new structure of the grouping
table. This function only adds or removes grouping table columns, it does not add or delete
group members (i.e., table rows). If the grouping table already has the desired structure then
no operations are performed and function simply returns with a (0) success status code. If
the requested structure change creates new grouping table columns, then the column values
for all existing members will be filled with the null values appropriate to the column type.

8.1. GROUPING TABLE ROUTINES 93

int fits_change_group / ffgtch
(fitsfile *gfptr, int grouptype, > int *status)

4 Remove the group defined by the grouping table pointed to by gfptr, and optionally all the
group member HDUs. The rmopt parameter specifies the action to be taken for all members
of the group defined by the grouping table. Valid values are: OPT_RM_GPT (delete only the
grouping table) and OPT_RM_ALL (recursively delete all HDUs that belong to the group).
Any groups containing the grouping table gfptr as a member are updated, and if rmopt ==
OPT_RM_GPT all members have their GRPIDn and GRPLCn keywords updated accordingly.
If rmopt == OPT_RM_ALL, then other groups that contain the deleted members of gfptr
are updated to reflect the deletion accordingly.

int fits_remove_group / ffgtrm
(fitsfile *gfptr, int rmopt, > int *status)

5 Copy (append) the group defined by the grouping table pointed to by infptr, and optionally all
group member HDUs, to the FITS file pointed to by outfptr. The cpopt parameter specifies
the action to be taken for all members of the group infptr. Valid values are: OPT_GCP_GPT
(copy only the grouping table) and OPT_GCP_ALL (recursively copy ALL the HDUs that
belong to the group defined by infptr). If the cpopt == OPT_GCP_GPT then the members of
infptr have their GRPIDn and GRPLCn keywords updated to reflect the existence of the new
grouping table outfptr, since they now belong to the new group. If cpopt == OPT_GCP_ALL
then the new grouping table outfptr only contains pointers to the copied member HDUs and
not the original member HDUs of infptr. Note that, when cpopt == OPT_GCP_ALL, all
members of the group defined by infptr will be copied to a single FITS file pointed to by
outfptr regardless of their file distribution in the original group.

int fits_copy_group / ffgtcp
(fitsfile *infptr, fitsfile *outfptr, int cpopt, > int *status)

6 Merge the two groups defined by the grouping table HDUs infptr and outfptr by combining
their members into a single grouping table. All member HDUs (rows) are copied from infptr
to outfptr. If mgopt == OPT_MRG_COPY then infptr continues to exist unaltered after the
merge. If the mgopt == OPT_MRG_MOYV then infptr is deleted after the merge. In both
cases, the GRPIDn and GRPLCn keywords of the member HDUs are updated accordingly.

int fits_merge_groups / ffgtmg
(fitsfile *infptr, fitsfile *outfptr, int mgopt, > int *status)

7 7Compact” the group defined by grouping table pointed to by gfptr. The compaction is achieved
by merging (via fits_merge_groups()) all direct member HDUs of gfptr that are themselves
grouping tables. The cmopt parameter defines whether the merged grouping table HDUs
remain after merging (cmopt == OPT_CMT_MBR) or if they are deleted after merging
(cmopt == OPT_CMT_MBR_DEL). If the grouping table contains no direct member HDUs
that are themselves grouping tables then this function does nothing. Note that this function
is not recursive, i.e., only the direct member HDUs of gfptr are considered for merging.

94

CHAPTER 8. HIERARCHICAL GROUPING ROUTINES

int fits_compact_group / ffgtcm

(fitsfile *gfptr, int cmopt, > int *status)

8 Verify the integrity of the grouping table pointed to by gfptr to make sure that all group members

are accessible and that all links to other grouping tables are valid. The firstfailed parameter
returns the member ID (row number) of the first member HDU to fail verification (if positive
value) or the first group link to fail (if negative value). If gfptr is successfully verified then
firstfailed contains a return value of 0.

int fits_verify_group / ffgtvf

(fitsfile *gfptr, > long *firstfailed, int *status)

9 Open a grouping table that contains the member HDU pointed to by mfptr. The grouping table

to open is defined by the grpid parameter, which contains the keyword index value of the
GRPIDn/GRPLCn keyword(s) that link the member HDU mfptr to the grouping table. If
the grouping table resides in a file other than the member HDUs file then an attempt is first
made to open the file readwrite, and failing that readonly. A pointer to the opened grouping
table HDU is returned in gfptr.

Note that it is possible, although unlikely and undesirable, for the GRPIDn/GRPLCn key-
words in a member HDU header to be non-continuous, e.g., GRPID1, GRPID2, GRPID5,
GRPIDG. In such cases, the grpid index value specified in the function call shall identify the
(grpid)th GRPID value. In the above example, if grpid == 3, then the group specified by
GRPID5 would be opened.

int fits_open_group / ffgtop

(fitsfile *mfptr, int grpid, > fitsfile *xgfptr, int *status)

10 Add a member HDU to an existing grouping table pointed to by gfptr. The member HDU

may either be pointed to mfptr (which must be positioned to the member HDU) or, if mfptr
== NULL, identified by the hdupos parameter (the HDU position number, Primary array
== 1) if both the grouping table and the member HDU reside in the same FITS file. The
new member HDU shall have the appropriate GRPIDn and GRPLCn keywords created in its
header. Note that if the member HDU is already a member of the group then it will not be
added a second time.

int fits_add_group_member / ffgtam

(fitsfile *gfptr, fitsfile *mfptr, int hdupos, > int *status)

8.2 Group Member Routines

1 Return the number of member HDUs in a grouping table gfptr. The number of member HDUs

is just the NAXIS2 value (number of rows) of the grouping table.

int fits_get_num_members / ffgtnm

(fitsfile *gfptr, > long *nmembers, int *status)

8.2. GROUP MEMBER ROUTINES 95

2 Return the number of groups to which the HDU pointed to by mfptr is linked, as defined by
the number of GRPIDn/GRPLCn keyword records that appear in its header. Note that each
time this function is called, the indices of the GRPIDn/GRPLCn keywords are checked to
make sure they are continuous (ie no gaps) and are re-enumerated to eliminate gaps if found.

int fits_get_num_groups / ffgmng
(fitsfile *mfptr, > long *nmembers, int *status)

3 Open a member of the grouping table pointed to by gfptr. The member to open is identified by
its row number within the grouping table as given by the parameter 'member’ (first member
== 1) . A fitsfile pointer to the opened member HDU is returned as mfptr. Note that if the
member HDU resides in a FITS file different from the grouping table HDU then the member
file is first opened readwrite and, failing this, opened readonly.

int fits_open_member / ffgmop
(fitsfile *gfptr, long member, > fitsfile **mfptr, int *status)

4 Copy (append) a member HDU of the grouping table pointed to by gfptr. The member HDU is
identified by its row number within the grouping table as given by the parameter 'member’
(first member == 1). The copy of the group member HDU will be appended to the FITS
file pointed to by mfptr, and upon return mfptr shall point to the copied member HDU. The
cpopt parameter may take on the following values: OPT_MCP_ADD which adds a new entry
in gfptr for the copied member HDU, OPT_MCP_NADD which does not add an entry in gfptr
for the copied member, and OPT_MCP_REPL which replaces the original member entry with
the copied member entry.

int fits_copy_member / ffgmcp
(fitsfile *gfptr, fitsfile *mfptr, long member, int cpopt, > int *status)

5 Transfer a group member HDU from the grouping table pointed to by infptr to the grouping
table pointed to by outfptr. The member HDU to transfer is identified by its row number
within infptr as specified by the parameter 'member’ (first member == 1). If tfopt ==
OPT_MCP_ADD then the member HDU is made a member of outfptr and remains a member
of infptr. If tfopt == OPT_MCP_MOV then the member HDU is deleted from infptr after
the transfer to outfptr.

int fits_transfer_member / ffgmtf
(fitsfile *infptr, fitsfile *outfptr, long member, int tfopt,
> int *status)

6 Remove a member HDU from the grouping table pointed to by gfptr. The member HDU to be
deleted is identified by its row number in the grouping table as specified by the parameter
‘'member’ (first member == 1). The rmopt parameter may take on the following values:
OPT_RM_ENTRY which removes the member HDU entry from the grouping table and up-
dates the member’s GRPIDn/GRPLCn keywords, and OPT_RM_MBR which removes the
member HDU entry from the grouping table and deletes the member HDU itself.

96 CHAPTER 8. HIERARCHICAL GROUPING ROUTINES

int fits_remove_member / ffgmrm
(fitsfile *gfptr, long member, int rmopt, > int *status)

Chapter 9

Specialized CFITSIO Interface
Routines

The basic interface routines described previously are recommended for most uses, but the routines
described in this chapter are also available if necessary. Some of these routines perform more spe-
cialized function that cannot easily be done with the basic interface routines while others duplicate
the functionality of the basic routines but have a slightly different calling sequence. See Appendix
B for the definition of each function parameter.

9.1 FITS File Access Routines

9.1.1 File Access

1 Open an existing FITS file residing in core computer memory. This routine is analogous to
fits_open_file. The ’filename’ is currently ignored by this routine and may be any arbitrary
string. In general, the application must have preallocated an initial block of memory to
hold the FITS file prior to calling this routine: ’memptr’ points to the starting address
and 'memsize’ gives the initial size of the block of memory. ’mem_realloc’ is a pointer to
an optional function that CFITSIO can call to allocate additional memory, if needed (only
if mode = READWRITE), and is modeled after the standard C ’realloc’ function; a null
pointer may be given if the initial allocation of memory is all that will be required (e.g.,
if the file is opened with mode = READONLY). The ’deltasize’ parameter may be used to
suggest a minimum amount of additional memory that should be allocated during each call
to the memory reallocation function. By default, CFITSIO will reallocate enough additional
space to hold the entire currently defined FITS file (as given by the NAXISn keywords)
or 1 FITS block (= 2880 bytes), which ever is larger. Values of deltasize less than 2880
will be ignored. Since the memory reallocation operation can be computationally expensive,
allocating a larger initial block of memory, and/or specifying a larger deltasize value may help
to reduce the number of reallocation calls and make the application program run faster. Note
that values of the memptr and memsize pointers will be updated by CFITSIO if the location
or size of the FITS file in memory should change as a result of allocating more memory.

97

98 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

int fits_open_memfile / ffomem
(fitsfile *xfptr, const char *filename, int mode, void **memptr,
size_t *memsize, size_t deltasize,
void *(*mem_realloc) (void *p, size_t newsize), int *status)

2 Create a new FITS file residing in core computer memory. This routine is analogous to
fits_create_file. In general, the application must have preallocated an initial block of memory
to hold the FITS file prior to calling this routine: 'memptr’ points to the starting address
and 'memsize’ gives the initial size of the block of memory. ’mem_realloc’ is a pointer to
an optional function that CFITSIO can call to allocate additional memory, if needed, and
is modeled after the standard C ’realloc’ function; a null pointer may be given if the initial
allocation of memory is all that will be required. The ’deltasize’ parameter may be used to
suggest a minimum amount of additional memory that should be allocated during each call
to the memory reallocation function. By default, CFITSIO will reallocate enough additional
space to hold 1 FITS block (= 2880 bytes) and values of deltasize less than 2880 will be
ignored. Since the memory reallocation operation can be computationally expensive, allocat-
ing a larger initial block of memory, and/or specifying a larger deltasize value may help to
reduce the number of reallocation calls and make the application program run faster. Note
that values of the memptr and memsize pointers will be updated by CFITSIO if the location
or size of the FITS file in memory should change as a result of allocating more memory.

int fits_create_memfile / ffimem
(fitsfile *xfptr, void **memptr,
size_t *memsize, size_t deltasize,
void *(*mem_realloc) (void *p, size_t newsize), int *status)

3 Reopen a FITS file that was previously opened with fits_open_file or fits_create_file. The new
fitsfile pointer may then be treated as a separate file, and one may simultaneously read or
write to 2 (or more) different extensions in the same file. The fits_open_file routine (above)
automatically detects cases where a previously opened file is being opened again, and then
internally call fits_reopen_file, so programs should rarely need to explicitly call this routine.

int fits_reopen_file / ffreopen
(fitsfile *openfptr, fitsfile **newfptr, > int *status)

4 Create a new FITS file, using a template file to define its initial size and structure. The template
may be another FITS HDU or an ASCII template file. If the input template file name pointer
is null, then this routine behaves the same as fits_create_file. The currently supported format
of the ASCII template file is described under the fits_parse_template routine (in the general
Utilities section)

int fits_create_template / fftplt
(fitsfile *xfptr, char *filename, char *tpltfile > int *status)

5 Parse the input filename or URL into its component parts, namely:

9.1. FITS FILE ACCESS ROUTINES 99

e the file type (file://, ftp://, http://, etc),

e the base input file name,

e the name of the output file that the input file is to be copied to prior to opening,
e the HDU or extension specification,

e the filtering specifier,

e the binning specifier,

e the column specifier,

e and the image pixel filtering specifier.

A null pointer (0) may be be specified for any of the output string arguments that are not
needed. Null strings will be returned for any components that are not present in the input
file name. The calling routine must allocate sufficient memory to hold the returned character
strings. Allocating the string lengths equal to FLEN_FILENAME is guaranteed to be safe.
These routines are mainly for internal use by other CFITSIO routines.

int fits_parse_input_url / ffiurl
(char *filename, > char *filetype, char *infile, char *outfile, char
xextspec, char xfilter, char *binspec, char *colspec, int *status)

int fits_parse_input_filename / ffifile
(char *filename, > char *filetype, char *infile, char *outfile, char
*extspec, char *filter, char *binspec, char *colspec, char *pixspec,
int *status)

6 Parse the input filename and return the HDU number that would be moved to if the file were
opened with fits_open_file. The returned HDU number begins with 1 for the primary array,
so for example, if the input filename = ‘myfile.fits[2]’ then hdunum = 3 will be returned.
CFITSIO does not open the file to check if the extension actually exists if an extension
number is specified. If an extension name is included in the file name specification (e.g.
‘myfile.fitstEVENTS]’ then this routine will have to open the FITS file and look for the
position of the named extension, then close file again. This is not possible if the file is being
read from the stdin stream, and an error will be returned in this case. If the filename does
not specify an explicit extension (e.g. ’myfile.fits’) then hdunum = -99 will be returned,
which is functionally equivalent to hdunum = 1. This routine is mainly used for backward
compatibility in the ftools software package and is not recommended for general use. It is
generally better and more efficient to first open the FITS file with fits_open_file, then use
fits_get_hdu_num to determine which HDU in the file has been opened, rather than calling
fits_parse_input_url followed by a call to fits_open_file.

int fits_parse_extnum / ffextn
(char *filename, > int *hdunum, int *status)

7 Parse the input file name and return the root file name. The root name includes the file
type if specified, (e.g. ’ftp://’ or ’'http://’) and the full path name, to the extent that it is

100

CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

specified in the input filename. It does not include the HDU name or number, or any filtering
specifications. The calling routine must allocate sufficient memory to hold the returned
rootname character string. Allocating the length equal to FLEN_FILENAME is guaranteed
to be safe.

int fits_parse_rootname / ffrtnm

(char *filename, > char *rootname, int *status);

8 Test if the input file or a compressed version of the file (with a .gz, .Z, .z, or .zip extension)

exists on disk. The returned value of the ’exists’ parameter will have 1 of the 4 following
values:

the file does not exist, but a compressed version does exist
the disk file does exist

neither the file nor a compressed version of the file exist
-1: the input file name is not a disk file (could be a ftp, http,
smem, or mem file, or a file piped in on the STDIN stream)

SO~ N

int fits_file_exists / ffexist

(char *filename, > int *exists, int *status);

9 Flush any internal buffers of data to the output FITS file. These routines rarely need to be

called, but can be useful in cases where other processes need to access the same FITS file
in real time, either on disk or in memory. These routines also help to ensure that if the
application program subsequently aborts then the FITS file will have been closed properly.
The first routine, fits_flush_file is more rigorous and completely closes, then reopens, the
current HDU, before flushing the internal buffers, thus ensuring that the output FITS file is
identical to what would be produced if the FITS was closed at that point (i.e., with a call
to fits_close_file). The second routine, fits_flush_buffer simply flushes the internal CFITSIO
buffers of data to the output FITS file, without updating and closing the current HDU. This
is much faster, but there may be circumstances where the flushed file does not completely
reflect the final state of the file as it will exist when the file is actually closed.

A typical use of these routines would be to flush the state of a FITS table to disk after each
row of the table is written. It is recommend that fits_flush_file be called after the first row
is written, then fits_flush_buffer may be called after each subsequent row is written. Note
that this latter routine will not automatically update the NAXIS2 keyword which records
the number of rows of data in the table, so this keyword must be explicitly updated by the
application program after each row is written.

int fits_flush_file / ffflus

(fitsfile *fptr, > int *status)

int fits_flush_buffer / ffflsh

(fitsfile *fptr, 0, > int *status)

(Note: The second argument must be 0).

9.1. FITS FILE ACCESS ROUTINES 101

10 Wrapper functions for global initialization and cleanup of the libcurl library used when ac-
cessing files with the HTTPS or FTPS protocols. If an HTTPS/FTPS file transfer is to
be performed, it is recommended that you call the init function once near the start of your
program before any file_open calls, and before creating any threads. The cleanup function
should be called after all HTTPS/FTPS file accessing is completed, and after all threads are
completed. The functions return 0 upon successful initialization and cleanup. These are NOT
THREAD-SAFE.

int fits_init_https / ffihtps
O

int fits_cleanup_https / ffchtps
O

9.1.2 Download Utility Functions

These routines do not need to be called for normal file accessing. They are primarily intended to
help with debugging and diagnosing issues which occur during file downloads. These routines are

NOT THREAD-SAFE.

1 Toggle the verbosity of the libcurl library diagnostic output when accessing files with the HT TPS
or FTPS protocol. ‘flag’ = 1 turns the output on, 0 turns it off (the default).

void fits_verbose_https / ffvhtps
(int flag)

2 If ‘flag’ is set to 1, this will display (to stderr) a progress bar during an https file download.
(This is not yet implemented for other file transfer protocols.) ‘flag’ = 0 by default.

void fits_show_download_progress / ffshdwn
(int flag)

3 The timeout setting (in seconds) determines the maximum time allowed for a net download to
complete. If a download has not finished within the allowed time, the file transfer will termi-
nate and the CFITSIO calling function will return with an error. Use fits_get_timeout will see
the current timeout setting and fits_set_timeout to change the setting. This adjustmant may
be particularly useful when having trouble downloading large files over slow connections.

int fits_get_timeout / ffgtmo
O

int fits_set_timeout / ffstmo
(int seconds, > int *status)

102 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

9.2 HDU Access Routines

1 Get the byte offsets in the FITS file to the start of the header and the start and end of the data
in the CHDU. The difference between headstart and dataend equals the size of the CHDU.
If the CHDU is the last HDU in the file, then dataend is also equal to the size of the entire
FITS file. Null pointers may be input for any of the address parameters if their values are
not needed.

int fits_get_hduaddr / ffghad (only supports files up to 2.1 GB in size)
(fitsfile *fptr, > long ¥headstart, long *datastart, long *dataend,
int *status)

int fits_get_hduaddrll / ffghadll (supports large files)
(fitsfile *fptr, > LONGLONG *headstart, LONGLONG *datastart,
LONGLONG *dataend, int *status)

2 Create (append) a new empty HDU at the end of the FITS file. This is now the CHDU but it
is completely empty and has no header keywords. It is recommended that fits_create_img or
fits_create_tbl be used instead of this routine.

int fits_create_hdu / ffcrhd
(fitsfile *fptr, > int *status)

3 Insert a new IMAGE extension immediately following the CHDU, or insert a new Primary Array
at the beginning of the file. Any following extensions in the file will be shifted down to make
room for the new extension. If the CHDU is the last HDU in the file then the new image
extension will simply be appended to the end of the file. One can force a new primary array
to be inserted at the beginning of the FITS file by setting status = PREPEND_PRIMARY
prior to calling the routine. In this case the old primary array will be converted to an IMAGE
extension. The new extension (or primary array) will become the CHDU. Refer to Chapter
9 for a list of pre-defined bitpix values.

int fits_insert_img / ffiimg
(fitsfile *fptr, int bitpix, int naxis, long *naxes, > int *status)

int fits_insert_imgll / ffiimgll
(fitsfile *fptr, int bitpix, int naxis, LONGLONG #*naxes, > int *status)

4 Insert a new ASCII or binary table extension immediately following the CHDU. Any following
extensions will be shifted down to make room for the new extension. If there are no other
following extensions then the new table extension will simply be appended to the end of the
file. If the FITS file is currently empty then this routine will create a dummy primary array
before appending the table to it. The new extension will become the CHDU. The tunit and
extname parameters are optional and a null pointer may be given if they are not defined.
When inserting an ASCII table with fits_insert_atbl, a null pointer may given for the *tbcol

9.2.

HDU ACCESS ROUTINES 103

parameter in which case each column of the table will be separated by a single space character.
Similarly, if the input value of rowlen is 0, then CFITSIO will calculate the default rowlength
based on the tbcol and ttype values. Under normal circumstances, the nrows paramenter
should have a value of 0; CFITSIO will automatically update the number of rows as data is
written to the table. When inserting a binary table with fits_insert_btbl, if there are following
extensions in the file and if the table contains variable length array columns then pcount must
specify the expected final size of the data heap, otherwise pcount must = 0.

int fits_insert_atbl / ffitab

(fitsfile *fptr, LONGLONG rowlen, LONGLONG nrows, int tfields, char *ttypel[]
long *tbcol, char *tform[], char *tunit[], char *extname, > int *status)

int fits_insert_btbl / ffibin

(fitsfile *fptr, LONGLONG nrows, int tfields, char **ttype,
char **tform, char **tunit, char *extname, long pcount, > int *status)

5 Modify the size, dimensions, and/or data type of the current primary array or image extension.

If the new image, as specified by the input arguments, is larger than the current existing
image in the FITS file then zero fill data will be inserted at the end of the current image and
any following extensions will be moved further back in the file. Similarly, if the new image
is smaller than the current image then any following extensions will be shifted up towards
the beginning of the FITS file and the image data will be truncated to the new size. This
routine rewrites the BITPIX, NAXIS, and NAXISn keywords with the appropriate values for
the new image.

int fits_resize_img / ffrsim

(fitsfile *fptr, int bitpix, int naxis, long *naxes, > int *status)

int fits_resize_imgll / ffrsimll

(fitsfile *fptr, int bitpix, int naxis, LONGLONG #*naxes, > int *status)

6 Copy the data (and not the header) from the CHDU associated with infptr to the CHDU

associated with outfptr. This will overwrite any data previously in the output CHDU. This
low level routine is used by fits_copy_hdu, but it may also be useful in certain application
programs that want to copy the data from one FITS file to another but also want to modify
the header keywords. The required FITS header keywords which define the structure of the
HDU must be written to the output CHDU before calling this routine.

int fits_copy_data / ffcpdt

(fitsfile *infptr, fitsfile *outfptr, > int *status)

7 Read or write a specified number of bytes starting at the specified byte offset from the start of

the extension data unit. These low level routine are intended mainly for accessing the data in
non-standard, conforming extensions, and should not be used for standard IMAGE, TABLE,
or BINTABLE extensions.

-

104 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

int fits_read_ext / ffgextn

(fitsfile *fptr, LONGLONG offset, LONGLONG nbytes, void *buffer)
int fits_write_ext / ffpextn

(fitsfile *fptr, LONGLONG offset, LONGLONG nbytes, void *buffer)

8 This routine forces CFITSIO to rescan the current header keywords that define the structure
of the HDU (such as the NAXIS and BITPIX keywords) so that it reinitializes the internal
buffers that describe the HDU structure. This routine is useful for reinitializing the structure
of an HDU if any of the required keywords (e.g., NAXISn) have been modified. In practice
it should rarely be necessary to call this routine because CFITSIO internally calls it in most
situations.

int fits_set_hdustruc / ffrdef
(fitsfile *fptr, > int *status) (DEPRECATED)

9.3 Specialized Header Keyword Routines

9.3.1 Header Information Routines

1 Reserve space in the CHU for MOREKEYS more header keywords. This routine may be called
to allocate space for additional keywords at the time the header is created (prior to writing
any data). CFITSIO can dynamically add more space to the header when needed, however
it is more efficient to preallocate the required space if the size is known in advance.

int fits_set_hdrsize / ffhdef
(fitsfile *fptr, int morekeys, > int *status)

2 Return the number of keywords in the header (not counting the END keyword) and the current
position in the header. The position is the number of the keyword record that will be read
next (or one greater than the position of the last keyword that was read). A value of 1 is
returned if the pointer is positioned at the beginning of the header.

int fits_get_hdrpos / ffghps
(fitsfile *fptr, > int *keysexist, int *keynum, int *status)

9.3.2 Read and Write the Required Keywords

1 Write the required extension header keywords into the CHU. These routines are not required,
and instead the appropriate header may be constructed by writing each individual keyword
in the proper sequence.

The simpler fits_write_imghdr routine is equivalent to calling fits_write_grphdr with the default
values of simple = TRUE, pcount = 0, gcount = 1, and extend = TRUE. The PCOUNT,
GCOUNT and EXTEND keywords are not required in the primary header and are only

9.3. SPECIALIZED HEADER KEYWORD ROUTINES 105

written if pcount is not equal to zero, gcount is not equal to zero or one, and if extend is
TRUE, respectively. When writing to an IMAGE extension, the SIMPLE and EXTEND
parameters are ignored. It is recommended that fits_create_image or fits_create_tbl be used
instead of these routines to write the required header keywords. The general fits_write_exthdr
routine may be used to write the header of any conforming FITS extension.

int fits_write_imghdr / ffphps
(fitsfile *fptr, int bitpix, int naxis, long *naxes, > int *status)

int fits_write_imghdrll / ffphpsll
(fitsfile *fptr, int bitpix, int naxis, LONGLONG *naxes, > int *status)

int fits_write_grphdr / ffphpr
(fitsfile *fptr, int simple, int bitpix, int naxis, long *naxes,
LONGLONG pcount, LONGLONG gcount, int extend, > int *status)

int fits_write_grphdrll / ffphprll
(fitsfile *fptr, int simple, int bitpix, int naxis, LONGLONG #*naxes,
LONGLONG pcount, LONGLONG gcount, int extend, > int *status)

int fits_write_exthdr /ffphext
(fitsfile *fptr, char *xtension, int bitpix, int naxis, long #*naxes,
LONGLONG pcount, LONGLONG gcount, > int *status)

2 Write the ASCII table header keywords into the CHU. The optional TUNITn and EXTNAME
keywords are written only if the input pointers are not null. A null pointer may given for the
*tbcol parameter in which case a single space will be inserted between each column of the
table. Similarly, if rowlen is given = 0, then CFITSIO will calculate the default rowlength
based on the tbcol and ttype values.

int fits_write_atblhdr / ffphtb
(fitsfile *fptr, LONGLONG rowlen, LONGLONG nrows, int tfields, char **ttype,
long *tbcol, char **tform, char **tunit, char *extname, > int *status)

3 Write the binary table header keywords into the CHU. The optional TUNITn and EXTNAME
keywords are written only if the input pointers are not null. The pcount parameter, which
specifies the size of the variable length array heap, should initially = 0; CFITSIO will au-
tomatically update the PCOUNT keyword value if any variable length array data is written
to the heap. The TFORM keyword value for variable length vector columns should have the
form 'Pt(len)” or "1Pt(len)’ where ‘t’ is the data type code letter (A,IJ,E,D, etc.) and ‘len’ is
an integer specifying the maximum length of the vectors in that column (len must be greater
than or equal to the longest vector in the column). If ‘len’ is not specified when the table
is created (e.g., the input TFORMn value is just "1Pt’) then CFITSIO will scan the column
when the table is first closed and will append the maximum length to the TFORM keyword
value. Note that if the table is subsequently modified to increase the maximum length of the

106 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

vectors then the modifying program is responsible for also updating the TFORM keyword
value.

int fits_write_btblhdr / ffphbn
(fitsfile *fptr, LONGLONG nrows, int tfields, char **ttype,
char **tform, char **tunit, char *extname, LONGLONG pcount, > int *status)

4 Read the required keywords from the CHDU (image or table). When reading from an IMAGE
extension the SIMPLE and EXTEND parameters are ignored. A null pointer may be supplied
for any of the returned parameters that are not needed.

int fits_read_imghdr / ffghpr
(fitsfile *fptr, int maxdim, > int *simple, int *bitpix, int #*naxis,
long *naxes, long *pcount, long *gcount, int *extend, int *status)

int fits_read_imghdrll / ffghprll
(fitsfile *fptr, int maxdim, > int *simple, int *bitpix, int #*naxis,
LONGLONG *naxes, long *pcount, long *gcount, int *extend, int *status)

int fits_read_atblhdr / ffghtb
(fitsfile *fptr,int maxdim, > long *rowlen, long *nrows,
int *tfields, char **ttype, LONGLONG *tbcol, char **tform, char **tunit,
char *extname, int *status)

int fits_read_atblhdrll / ffghtbll
(fitsfile *fptr,int maxdim, > LONGLONG *rowlen, LONGLONG *nrows,
int *tfields, char **ttype, long *tbcol, char **tform, char **tunit,
char *extname, int *status)

int fits_read_btblhdr / ffghbn
(fitsfile *fptr, int maxdim, > long *nrows, int *tfields,
char *xttype, char **tform, char **tunit, char *extname,
long *pcount, int *status)

int fits_read_btblhdrll / ffghbnll
(fitsfile *fptr, int maxdim, > LONGLONG *nrows, int *tfields,
char **xttype, char **tform, char **tunit, char *extname,
long *pcount, int *status)

9.3.3 Write Keyword Routines

These routines simply append a new keyword to the header and do not check to see if a keyword
with the same name already exists. In general it is preferable to use the fits_update_key routine to
ensure that the same keyword is not written more than once to the header. See Appendix B for
the definition of the parameters used in these routines.

9.3. SPECIALIZED HEADER KEYWORD ROUTINES 107

1 Write (append) a new keyword of the appropriate data type into the CHU. A null pointer may
be entered for the comment parameter, which will cause the comment field of the keyword
to be left blank. The flt, dbl, cmp, and dblemp versions of this routine have the added
feature that if the ’decimals’ parameter is negative, then the G’ display format rather then
the ’E’ format will be used when constructing the keyword value, taking the absolute value
of ’decimals’ for the precision. This will suppress trailing zeros, and will use a fixed format
rather than an exponential format, depending on the magnitude of the value.

int fits_write_key_str / ffpkys
(fitsfile *fptr, char *keyname, char *value, char *comment,
> int *status)

int fits_write_key_[log, lng]l / ffpkyl[1lj]
(fitsfile *fptr, char *keyname, DTYPE numval, char *comment,
> int *status)

int fits_write_key_[flt, dbl, fixflg, fixdbl] / ffpkyledfg]
(fitsfile *fptr, char *keyname, DTYPE numval, int decimals,
char *comment, > int *status)

int fits_write_key_[cmp, dblcmp, fixcmp, fixdblcmp] / ffpklyc,ym,fc,fm]
(fitsfile *fptr, char *keyname, DTYPE *numval, int decimals,
char *comment, > int *status)

2 Write (append) a string valued keyword into the CHU which may be longer than 68 characters
in length. This uses the Long String Keyword convention that is described in the‘Local
FITS Conventions’ section in Chapter 4. Since this uses a non-standard FITS convention
to encode the long keyword string, programs which use this routine should also call the
fits_write_key_longwarn routine to add some COMMENT keywords to warn users of the FITS
file that this convention is being used. The fits_write_key_longwarn routine also writes a
keyword called LONGSTRN to record the version of the longstring convention that has been
used, in case a new convention is adopted at some point in the future. If the LONGSTRN
keyword is already present in the header, then fits_write_key_longwarn will simply return
without doing anything.

int fits_write_key_longstr / ffpkls
(fitsfile *fptr, char *keyname, char *longstr, char *comment,
> int *status)

int fits_write_key_longwarn / ffplsw
(fitsfile *fptr, > int *status)

3 Write (append) a numbered sequence of keywords into the CHU. The starting index number
(nstart) must be greater than 0. One may append the same comment to every keyword (and
eliminate the need to have an array of identical comment strings, one for each keyword) by
including the ampersand character as the last non-blank character in the (first) COMMENTS

108 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

string parameter. This same string will then be used for the comment field in all the keywords.
One may also enter a null pointer for the comment parameter to leave the comment field of
the keyword blank.

int fits_write_keys_str / ffpkns
(fitsfile *fptr, char *keyroot, int nstart, int nkeys,
char **value, char **comment, > int *status)

int fits_write_keys_[log, 1lng]l / ffpkn[1lj]
(fitsfile *fptr, char *keyroot, int nstart, int nkeys,
DTYPE *numval, char **comment, int *status)

int fits_write_keys_[flt, dbl, fixflg, fixdbl] / ffpkne[edfg]
(fitsfile *fptr, char *keyroot, int nstart, int nkey,
DTYPE #*numval, int decimals, char **comment, > int *status)

4 Copy an indexed keyword from one HDU to another, modifying the index number of the keyword
name in the process. For example, this routine could read the TLMIN3 keyword from the
input HDU (by giving keyroot = ‘TLMIN’ and innum = 3) and write it to the output HDU
with the keyword name TLMIN4 (by setting outnum = 4). If the input keyword does not
exist, then this routine simply returns without indicating an error.

int fits_copy_key / ffcpky
(fitsfile *infptr, fitsfile *outfptr, int innum, int outnum,
char *keyroot, > int *status)

5 Write (append) a ‘triple precision’ keyword into the CHU in F28.16 format. The floating point
keyword value is constructed by concatenating the input integer value with the input double
precision fraction value (which must have a value between 0.0 and 1.0). The ffgkyt routine
should be used to read this keyword value, because the other keyword reading routines will
not preserve the full precision of the value.

int fits_write_key_triple / ffpkyt
(fitsfile *fptr, char *keyname, long intval, double frac,
char *comment, > int *status)

6 Write keywords to the CHDU that are defined in an ASCII template file. The format of the
template file is described under the fits_parse_template routine.

int fits_write_key_template / ffpktp
(fitsfile *fptr, const char *filename, > int *status)

9.3.4 Insert Keyword Routines

These insert routines are somewhat less efficient than the ‘update’ or ‘write’ keyword routines
because the following keywords in the header must be shifted down to make room for the inserted
keyword. See Appendix B for the definition of the parameters used in these routines.

9.3. SPECIALIZED HEADER KEYWORD ROUTINES 109

1 Insert a new keyword record into the CHU at the specified position (i.e., immediately preceding
the (keynum)th keyword in the header.)

int fits_insert_record / ffirec
(fitsfile *fptr, int keynum, char *card, > int *status)

2 Insert a new keyword into the CHU. The new keyword is inserted immediately following the last
keyword that has been read from the header. The ‘longstr’ version has the same functionality
as the ‘str’ version except that it also supports the local long string keyword convention for
strings longer than 68 characters. A null pointer may be entered for the comment parameter
which will cause the comment field to be left blank. The flt, dbl, cmp, and dblecmp versions of
this routine have the added feature that if the ’decimals’ parameter is negative, then the 'G’
display format rather then the 'E’ format will be used when constructing the keyword value,
taking the absolute value of ’decimals’ for the precision. This will suppress trailing zeros, and
will use a fixed format rather than an exponential format, depending on the magnitude of

the value.

int fits_insert_card / ffikey

(fitsfile *fptr, char

int fits_insert_key_[str,
(fitsfile *fptr, char
> int *status)

int fits_insert_key_[log,
(fitsfile *fptr, char
> int *status)

int fits_insert_key_[flt,
(fitsfile *fptr, char
char *comment, > int

int fits_insert_key_[cmp,
(fitsfile *fptr, char
char *comment, > int

*card, > int *status)

longstr] / ffilkys, kls]
*keyname, char *value, char *comment,

1ng] / ffiky[1j]
*keyname, DTYPE numval, char *comment,

fixflt, dbl, fixdbl] / ffikyl[edfg]
*keyname, DTYPE numval, int decimals,
*status)

dblcmp, fixcmp, fixdblcmp] / ffik[yc,ym,fc,fm]
*keyname, DTYPE *numval, int decimals,
*status)

3 Insert a new keyword with an undefined, or null, value into the CHU. The value string of the
keyword is left blank in this case.

int fits_insert_key_null / ffikyu

(fitsfile *fptr, char

xkeyname, char *comment, > int *status)

9.3.5 Read Keyword Routines

Wild card characters may be used when specifying the name of the keyword to be read.

110 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

1 Read a keyword value (with the appropriate data type) and comment from the CHU. If a
NULL comment pointer is given on input, then the comment string will not be returned. If
the value of the keyword is not defined (i.e., the value field is blank) then an error status =
VALUE_UNDEFINED will be returned and the input value will not be changed (except that
figkys will reset the value to a null string).

int fits_read_key_str / ffgkys
(fitsfile *fptr, char *keyname, > char *value, char *comment,
int *status);

NOTE: after calling the following routine, programs must explicitly free
the memory allocated for ’longstr’ after it is no longer needed by
calling fits_free_memory.

int fits_read_key_longstr / ffgkls
(fitsfile *fptr, char *keyname, > char **longstr, char *comment,
int *status)

int fits_free_memory / fffree
(char *longstr, > int *status);

int fits_read_key_[log, lng, flt, dbl, cmp, dblcmp] / ffgky[ljedcm]
(fitsfile *fptr, char *keyname, > DTYPE *numval, char *comment,
int *status)

int fits_read_key_lnglng / ffgkyjj
(fitsfile *fptr, char *keyname, > LONGLONG *numval, char *comment,
int *status)

2 Read a sequence of indexed keyword values (e.g., NAXIS1, NAXIS2, ...). The input starting
index number (nstart) must be greater than 0. If the value of any of the keywords is not
defined (i.e., the value field is blank) then an error status = VALUE_UNDEFINED will be
returned and the input value for the undefined keyword(s) will not be changed. These routines
do not support wild card characters in the root name. If there are no indexed keywords in the
header with the input root name then these routines do not return a non-zero status value
and instead simply return nfound = 0.

int fits_read_keys_str / ffgkns
(fitsfile *fptr, char *keyname, int nstart, int nkeys,
> char **value, int *nfound, int *status)

int fits_read_keys_[log, lng, flt, dbl] / ffgkn[ljed]

(fitsfile *fptr, char *keyname, int nstart, int nkeys,
> DTYPE *numval, int *nfound, int *status)

3 Read the value of a floating point keyword, returning the integer and fractional parts of the

9.3. SPECIALIZED HEADER KEYWORD ROUTINES 111

value in separate routine arguments. This routine may be used to read any keyword but is
especially useful for reading the ’triple precision’ keywords written by ffpkyt.

int fits_read_key_triple / ffgkyt
(fitsfile *fptr, char *keyname, > long *intval, double *frac,
char *comment, int *status)

9.3.6 Modify Keyword Routines

These routines modify the value of an existing keyword. An error is returned if the keyword does
not exist. Wild card characters may be used when specifying the name of the keyword to be
modified. See Appendix B for the definition of the parameters used in these routines.

1 Modify (overwrite) the nth 80-character header record in the CHU.

int fits_modify_record / ffmrec
(fitsfile *fptr, int keynum, char *card, > int *status)

2 Modify (overwrite) the 80-character header record for the named keyword in the CHU. This
can be used to overwrite the name of the keyword as well as its value and comment fields.

int fits_modify_card / ffmcrd
(fitsfile *fptr, char *keyname, char *card, > int *status)

5 Modify the value and comment fields of an existing keyword in the CHU. The ‘longstr’ version
has the same functionality as the ‘str’ version except that it also supports the local long
string keyword convention for strings longer than 68 characters. Optionally, one may modify
only the value field and leave the comment field unchanged by setting the input COMMENT
parameter equal to the ampersand character (&) or by entering a null pointer for the comment
parameter. The flt, dbl, cmp, and dblcmp versions of this routine have the added feature that
if the ’decimals’ parameter is negative, then the G’ display format rather then the 'E’ format
will be used when constructing the keyword value, taking the absolute value of ’decimals’ for
the precision. This will suppress trailing zeros, and will use a fixed format rather than an
exponential format, depending on the magnitude of the value.

int fits_modify_key_[str, longstr] / ffm[kys, kls]
(fitsfile *fptr, char *keyname, char *value, char *comment,
> int *status);

int fits_modify_key_[log, 1lngl / ffmky[1j]
(fitsfile *fptr, char *keyname, DTYPE numval, char *comment,

> int *status)

int fits_modify_key_[flt, dbl, fixflt, fixdbl] / ffmky[edfg]

112 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

(fitsfile *fptr, char *keyname, DTYPE numval, int decimals,
char *comment, > int *status)

int fits_modify_key_[cmp, dblcmp, fixcmp, fixdblcmp] / ffmk[yc,ym,fc,fm]
(fitsfile *fptr, char *keyname, DTYPE *numval, int decimals,
char *comment, > int *status)

6 Modify the value of an existing keyword to be undefined, or null. The value string of the keyword
is set to blank. Optionally, one may leave the comment field unchanged by setting the input
COMMENT parameter equal to the ampersand character (&) or by entering a null pointer.

int fits_modify_key_null / ffmkyu
(fitsfile *fptr, char *keyname, char *comment, > int *status)

9.3.7 Update Keyword Routines

1 These update routines modify the value, and optionally the comment field, of the keyword if it
already exists, otherwise the new keyword is appended to the header. A separate routine is
provided for each keyword data type. The ‘longstr’ version has the same functionality as the
‘str’ version except that it also supports the local long string keyword convention for strings
longer than 68 characters. A null pointer may be entered for the comment parameter which
will leave the comment field unchanged or blank. The flt, dbl, cmp, and dblecmp versions of
this routine have the added feature that if the ’decimals’ parameter is negative, then the 'G’
display format rather then the 'E’ format will be used when constructing the keyword value,
taking the absolute value of ’decimals’ for the precision. This will suppress trailing zeros, and
will use a fixed format rather than an exponential format, depending on the magnitude of
the value.

int fits_update_key_[str, longstr] / ffulkys, kls]
(fitsfile *fptr, char *keyname, char *value, char *comment,
> int *status)

int fits_update_key_[log, lng] / ffuky[1lj]
(fitsfile *fptr, char *keyname, DTYPE numval, char *comment,
> int *status)

int fits_update_key_[flt, dbl, fixflt, fixdbl] / ffukyl[edfg]
(fitsfile *fptr, char *keyname, DTYPE numval, int decimals,
char *comment, > int *status)

int fits_update_key_[cmp, dblcmp, fixcmp, fixdblcmp] / ffuk[yc,ym,fc,fm]
(fitsfile *fptr, char *keyname, DTYPE *numval, int decimals,
char *comment, > int *status)

9.4. DEFINE DATA SCALING AND UNDEFINED PIXEL PARAMETERS 113

9.4 Define Data Scaling and Undefined Pixel Parameters

These routines set or modify the internal parameters used by CFITSIO to either scale the data
or to represent undefined pixels. Generally CFITSIO will scale the data according to the values
of the BSCALE and BZERO (or TSCALn and TZEROn) keywords, however these routines may
be used to override the keyword values. This may be useful when one wants to read or write the
raw unscaled values in the FITS file. Similarly, CFITSIO generally uses the value of the BLANK
or TNULLn keyword to signify an undefined pixel, but these routines may be used to override
this value. These routines do not create or modify the corresponding header keyword values. See
Appendix B for the definition of the parameters used in these routines.

1 Reset the scaling factors in the primary array or image extension; does not change the BSCALE
and BZERO keyword values and only affects the automatic scaling performed when the data
elements are written/read to/from the FITS file. When reading from a FITS file the returned
data value = (the value given in the FITS array) * BSCALE + BZERO. The inverse formula
is used when writing data values to the FITS file.

int fits_set_bscale / ffpscl
(fitsfile *fptr, double scale, double zero, > int *status)

2 Reset the scaling parameters for a table column; does not change the TSCALn or TZEROn
keyword values and only affects the automatic scaling performed when the data elements are
written/read to/from the FITS file. When reading from a FITS file the returned data value
= (the value given in the FITS array) * TSCAL 4+ TZERO. The inverse formula is used when
writing data values to the FITS file.

int fits_set_tscale / fftscl
(fitsfile *fptr, int colnum, double scale, double zero,
> int *status)

3 Define the integer value to be used to signify undefined pixels in the primary array or image
extension. This is only used if BITPIX = 8, 16, or 32. This does not create or change the
value of the BLANK keyword in the header.

int fits_set_imgnull / ffpnul
(fitsfile *fptr, LONGLONG nulval, > int *status)

4 Define the string to be used to signify undefined pixels in a column in an ASCII table. This
does not create or change the value of the TNULLn keyword.

int fits_set_atblnull / ffsnul
(fitsfile *fptr, int colnum, char *nulstr, > int *status)

5 Define the value to be used to signify undefined pixels in an integer column in a binary table
(where TFORMn = "B’ 'T’, or ’J’). This does not create or change the value of the TNULLn
keyword.

114 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

int fits_set_btblnull / fftnul
(fitsfile *fptr, int colnum, LONGLONG nulval, > int *status)

9.5 Specialized FITS Primary Array or IMAGE Extension I/0
Routines

These routines read or write data values in the primary data array (i.e., the first HDU in the FITS
file) or an IMAGE extension. Automatic data type conversion is performed for if the data type
of the FITS array (as defined by the BITPIX keyword) differs from the data type of the array in
the calling routine. The data values are automatically scaled by the BSCALE and BZERO header
values as they are being written or read from the FITS array. Unlike the basic routines described in
the previous chapter, most of these routines specifically support the FITS random groups format.
See Appendix B for the definition of the parameters used in these routines.

The more primitive reading and writing routines (i. e., fippr_, fippn_, fippn, figpv_, or figpf_) simply
treat the primary array as a long 1-dimensional array of pixels, ignoring the intrinsic dimensionality
of the array. When dealing with a 2D image, for example, the application program must calculate
the pixel offset in the 1-D array that corresponds to any particular X, Y coordinate in the image.
C programmers should note that the ordering of arrays in FITS files, and hence in all the CFITSIO
calls, is more similar to the dimensionality of arrays in Fortran rather than C. For instance if a
FITS image has NAXIS1 = 100 and NAXIS2 = 50, then a 2-D array just large enough to hold the
image should be declared as array[50][100] and not as array[100][50].

For convenience, higher-level routines are also provided to specifically deal with 2D images (ffp2d.-
and ffg2d_) and 3D data cubes (ffp3d_ and ffg3d_). The dimensionality of the FITS image is passed
by the naxisl, naxis2, and naxis3 parameters and the declared dimensions of the program array
are passed in the dim1l and dim2 parameters. Note that the dimensions of the program array may
be larger than the dimensions of the FITS array. For example if a FITS image with NAXIS1 =
NAXIS2 = 400 is read into a program array which is dimensioned as 512 x 512 pixels, then the
image will just fill the lower left corner of the array with pixels in the range 1 - 400 in the X an
Y directions. This has the effect of taking a contiguous set of pixel value in the FITS array and
writing them to a non-contiguous array in program memory (i.e., there are now some blank pixels
around the edge of the image in the program array).

The most general set of routines (ffpss_, ffgsv_, and ffgsf_) may be used to transfer a rectangular
subset of the pixels in a FITS N-dimensional image to or from an array which has been declared in
the calling program. The fpixel and Ipixel parameters are integer arrays which specify the starting
and ending pixel coordinate in each dimension (starting with 1, not 0) of the FITS image that is
to be read or written. It is important to note that these are the starting and ending pixels in the
FITS image, not in the declared array in the program. The array parameter in these routines is
treated simply as a large one-dimensional array of the appropriate data type containing the pixel
values; The pixel values in the FITS array are read/written from/to this program array in strict
sequence without any gaps; it is up to the calling routine to correctly interpret the dimensionality
of this array. The two FITS reading routines (ffgsv_ and ffgsf_) also have an ‘inc’ parameter which
defines the data sampling interval in each dimension of the FITS array. For example, if inc[0]=2
and inc[1]=3 when reading a 2-dimensional FITS image, then only every other pixel in the first
dimension and every 3rd pixel in the second dimension will be returned to the ’array’ parameter.

9.5. SPECIALIZED FITS PRIMARY ARRAY OR IMAGE EXTENSION I/O ROUTINES 115

Two types of routines are provided to read the data array which differ in the way undefined pixels
are handled. The first type of routines (e.g., figpv_) simply return an array of data elements in
which undefined pixels are set equal to a value specified by the user in the ‘nulval’ parameter. An
additional feature of these routines is that if the user sets nulval = 0, then no checks for undefined
pixels will be performed, thus reducing the amount of CPU processing. The second type of routines
(e.g., figpf_) returns the data element array and, in addition, a char array that indicates whether
the value of the corresponding data pixel is undefined (= 1) or defined (= 0). The latter type of
routines may be more convenient to use in some circumstances, however, it requires an additional
array of logical values which can be unwieldy when working with large data arrays.

1 Write elements into the FITS data array.

int fits_write_img / ffppr
(fitsfile *fptr, int datatype, LONGLONG firstelem, LONGLONG nelements,
DTYPE *array, int *status);

int fits_write_img_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffppr(b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, long group, LONGLONG firstelem, LONGLONG nelements,
DTYPE *array, > int *status);

int fits_write_imgnull / ffppn
(fitsfile *fptr, int datatype, LONGLONG firstelem, LONGLONG nelements,
DTYPE *array, DTYPE *nulval, > int *status) ;

int fits_write_imgnull_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl]
ffppnl(b,i,ui,k,uk,j,uj,jj,ujj,e,d]
(fitsfile *fptr, long group, LONGLONG firstelem,
LONGLONG nelements, DTYPE *array, DTYPE nulval, > int *status);

2 Set data array elements as undefined.

int fits_write_img null / ffppru
(fitsfile *fptr, long group, LONGLONG firstelem, LONGLONG nelements,
> int *status)

3 Write values into group parameters. This routine only applies to the ‘Random Grouped’ FITS
format which has been used for applications in radio interferometry, but is officially deprecated
for future use.

int fits_write_grppar_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffpgplb,i,ui,k,uk,j,uj,jj,ujj,e,d]
(fitsfile *fptr, long group, long firstelem, long nelements,
> DTYPE *array, int *status)

4 Write a 2-D or 3-D image into the data array.

116 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

int fits_write_2d_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffp2d[b,i,ui,k,uk,j,uj,jj,ujj,e,dl]
(fitsfile *fptr, long group, LONGLONG diml, LONGLONG naxisi,
LONGLONG naxis2, DTYPE *array, > int *status)

int fits_write_3d_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffp3d[b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, long group, LONGLONG diml, LONGLONG dim2, LONGLONG naxisl,
LONGLONG naxis2, LONGLONG naxis3, DTYPE #*array, > int *status)

5 Write an arbitrary data subsection into the data array.

int fits_write_subset_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffpss([b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, long group, long naxis, long *naxes,
long *fpixel, long *1lpixel, DTYPE *array, > int *status)

6 Read elements from the FITS data array.

int fits_read_img / ffgpv
(fitsfile *fptr, int datatype, long firstelem, long nelements,
DTYPE *nulval, > DTYPE *array, int *anynul, int *status)

int fits_read_img_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffgpvlb,i,ui,k,uk,j,uj,jj,ujj,e,d]
(fitsfile *fptr, long group, long firstelem, long nelements,
DTYPE nulval, > DTYPE *array, int *anynul, int *status)

int fits_read_imgnull / ffgpf
(fitsfile *fptr, int datatype, long firstelem, long nelements,
> DTYPE *array, char *nullarray, int *anynul, int *status)

int fits_read_imgnull_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl]
ffgpflb,i,ui,k,uk,j,uj,jj,ujj,e,dl]
(fitsfile *fptr, long group, long firstelem, long nelements,
> DTYPE *array, char *nullarray, int *anynul, int *status)

7 Read values from group parameters. This routine only applies to the ‘Random Grouped’ FITS
format which has been used for applications in radio interferometry, but is officially deprecated
for future use.

int fits_read_grppar_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffggplb,i,ui,k,uk,j,uj,jj,ujj,e,d]
(fitsfile *fptr, long group, long firstelem, long nelements,
> DTYPE *array, int *status)

9.6. SPECIALIZED FITS ASCII AND BINARY TABLE ROUTINES 117

8 Read 2-D or 3-D image from the data array. Undefined pixels in the array will be set equal
to the value of 'nulval’, unless nulval=0 in which case no testing for undefined pixels will be
performed.

int fits_read_2d_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffg2d[b,i,ui,k,uk,j,uj,jj,ujj,e,dl]
(fitsfile *fptr, long group, DTYPE nulval, LONGLONG diml, LONGLONG naxisl,
LONGLONG naxis2, > DTYPE *array, int *anynul, int *status)

int fits_read_3d_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffg3d[b,i,ui,k,uk,j,uj,jj,ujj,e,dl]
(fitsfile *fptr, long group, DTYPE nulval, LONGLONG dimi,
LONGLONG dim2, LONGLONG naxisl, LONGLONG naxis2, LONGLONG naxis3,
> DTYPE *array, int *anynul, int *status)

9 Read an arbitrary data subsection from the data array

int fits_read_subset_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffgsv(lb,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, int group, int naxis, long *naxes,
long *fpixel, long *1lpixel, long *inc, DTYPE nulval,
> DTYPE *array, int *anynul, int *status)

int fits_read_subsetnull_[byt, sht, usht, int, uint, 1lng, ulng, lnglng, ulnglng, flt, db
ffgsf(b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, int group, int naxis, long *naxes,
long *fpixel, long *1pixel, long *inc, > DTYPE x*array,
char *nullarray, int *anynul, int *status)

9.6 Specialized FITS ASCII and Binary Table Routines

9.6.1 General Column Routines

1 Get information about an existing ASCII or binary table column. A null pointer may be given
for any of the output parameters that are not needed. DATATYPE is a character string
which returns the data type of the column as defined by the TFORMn keyword (e.g., T,
"J'JE’, ’D’, ete.). In the case of an ASCII character column, typecode will have a value of the
form ’An’ where 'n’ is an integer expressing the width of the field in characters. For example,
if TFORM = "160A8’ then ffgbcl will return typechar="A8 and repeat=20. All the returned
parameters are scalar quantities.

int fits_get_acolparms / ffgacl
(fitsfile *fptr, int colnum, > char *ttype, long *tbcol,
char *tunit, char *tform, double *scale, double *zero,

118 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

char *nulstr, char *tdisp, int *status)

int fits_get_bcolparms / ffgbcl
(fitsfile *fptr, int colnum, > char *ttype, char *tunit,
char *typechar, long *repeat, double *scale, double *zero,
long *nulval, char *tdisp, int *status)

int fits_get_bcolparmsll / ffgbclll
(fitsfile *fptr, int colnum, > char *ttype, char *tunit,
char *typechar, LONGLONG *repeat, double *scale, double *zero,
LONGLONG *nulval, char *tdisp, int *status)

2 Return optimal number of rows to read or write at one time for maximum I/O efficiency. Refer
to the “Optimizing Code” section in Chapter 5 for more discussion on how to use this routine.

int fits_get_rowsize / ffgrsz
(fitsfile *fptr, long *nrows, *status)

3 Define the zero indexed byte offset of the ’heap’ measured from the start of the binary table data.
By default the heap is assumed to start immediately following the regular table data, i.e., at
location NAXIS1 x NAXIS2. This routine is only relevant for binary tables which contain
variable length array columns (with TFORMn = 'Pt’). This routine also automatically writes
the value of theap to a keyword in the extension header. This routine must be called after
the required keywords have been written (with ffphbn) but before any data is written to the
table.

int fits_write_theap / ffpthp
(fitsfile *fptr, long theap, > int *status)

4 Test the contents of the binary table variable array heap, returning the size of the heap, the
number of unused bytes that are not currently pointed to by any of the descriptors, and the
number of bytes which are pointed to by multiple descriptors. It also returns valid = FALSE
if any of the descriptors point to invalid addresses out of range of the heap.

int fits_test_heap / fftheap
(fitsfile *fptr, > LONGLONG *heapsize, LONGLONG *unused, LONGLONG *overlap,
int *validheap, int *status)

5 Re-pack the vectors in the binary table variable array heap to recover any unused space. Nor-
mally, when a vector in a variable length array column is rewritten the previously written
array remains in the heap as wasted unused space. This routine will repack the arrays that
are still in use, thus eliminating any bytes in the heap that are no longer in use. Note that
if several vectors point to the same bytes in the heap, then this routine will make duplicate
copies of the bytes for each vector, which will actually expand the size of the heap.

9.6. SPECIALIZED FITS ASCII AND BINARY TABLE ROUTINES 119

int fits_compress_heap / ffcmph
(fitsfile *fptr, > int *status)

9.6.2 Low-Level Table Access Routines

The following 2 routines provide low-level access to the data in ASCII or binary tables and are
mainly useful as an efficient way to copy all or part of a table from one location to another. These
routines simply read or write the specified number of consecutive bytes in an ASCII or binary table,
without regard for column boundaries or the row length in the table. These routines do not perform
any machine dependent data conversion or byte swapping. See Appendix B for the definition of
the parameters used in these routines.

1 Read or write a consecutive array of bytes from an ASCII or binary table

int fits_read_tblbytes / ffgtbb
(fitsfile *fptr, LONGLONG firstrow, LONGLONG firstchar, LONGLONG nchars,
> unsigned char *values, int *status)

int fits_write_tblbytes / ffptbb
(fitsfile *fptr, LONGLONG firstrow, LONGLONG firstchar, LONGLONG nchars,
unsigned char *values, > int *status)

9.6.3 Write Column Data Routines

This subsection describes specialized routines for writing data to FITS tables. Please see section
9.6.4 (“Read Column Data Routines”) for more information about how values are stored in C.

1 Write elements into an ASCII or binary table column (in the CDU). The data type of the array
is implied by the suffix of the routine name.

int fits_write_col_str / ffpcls
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, char **array, > int *status)

int fits_write_col_[log,byt,sht,usht,int,uint,lng,ulng,lnglng,ulnglng,flt,dbl,cmp,dblcmp]
ffpcl[l,b,i,ui,k,uk,j,uj,jj,ujj,e,d,c,m]
(fitsfile *fptr, int colnum, LONGLONG firstrow,
LONGLONG firstelem, LONGLONG nelements, DTYPE *array, > int *status)

2 Write elements into an ASCII or binary table column substituting the appropriate FITS null
value for any elements that are equal to the nulval parameter.

int fits_write_colnull_[log, byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt,
ffpen([l,b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, DTYPE *array, DTYPE nulval, > int *status)

120 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

3 Write string elements into a binary table column (in the CDU) substituting the FITS null value
for any elements that are equal to the nulstr string.

int fits_write_colnull_str / ffpcns
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, char **array, char *nulstr, > int *status)

4 Write bit values into a binary byte (B’) or bit ("X’) table column (in the CDU). Larray is an
array of characters corresponding to the sequence of bits to be written. If an element of larray
is true (not equal to zero) then the corresponding bit in the FITS table is set to 1, otherwise
the bit is set to 0. The X’ column in a FITS table is always padded out to a multiple of
8 bits where the bit array starts with the most significant bit of the byte and works down
towards the 1’s bit. For example, a ’4X’ array, with the first bit = 1 and the remaining 3
bits = 0 is equivalent to the 8-bit unsigned byte decimal value of 128 (1000 0000B’). In the
case of "X’ columns, CFITSIO can write to all 8 bits of each byte whether they are formally
valid or not. Thus if the column is defined as ’4X’, and one calls fipclx with firstbit=1 and
nbits=8, then all 8 bits will be written into the first byte (as opposed to writing the first 4
bits into the first row and then the next 4 bits into the next row), even though the last 4 bits
of each byte are formally not defined and should all be set = 0. It should also be noted that
it is more efficient to write X’ columns an entire byte at a time, instead of bit by bit. Any
of the CFITSIO routines that write to columns (e.g. fits_write_col_byt) may be used for this
purpose. These routines will interpret "X’ columns as though they were 'B’ columns (e.g.,
"1X’ through '8X’ is equivalent to '1B’, and "9X’ through "16X’ is equivalent to '2B’).

int fits_write_col_bit / ffpclx
(fitsfile *fptr, int colnum, LONGLONG firstrow, long firstbit,
long nbits, char *larray, > int *status)

5 Write the descriptor for a variable length column in a binary table. This routine can be used
in conjunction with ffgdes to enable 2 or more arrays to point to the same storage location
to save storage space if the arrays are identical.

int fits_write_descript / ffpdes
(fitsfile *fptr, int colnum, LONGLONG rownum, LONGLONG repeat,
LONGLONG offset, > int *status)

9.6.4 Read Column Data Routines

Two types of routines are provided to get the column data which differ in the way undefined pixels
are handled. The first set of routines (ffgev) simply return an array of data elements in which
undefined pixels are set equal to a value specified by the user in the 'nullval’ parameter. If nullval
= 0, then no checks for undefined pixels will be performed, thus increasing the speed of the program.
The second set of routines (ffgef) returns the data element array and in addition a logical array
of flags which defines whether the corresponding data pixel is undefined. See Appendix B for the
definition of the parameters used in these routines.

9.6. SPECIALIZED FITS ASCII AND BINARY TABLE ROUTINES 121

Any column, regardless of it’s intrinsic data type, may be read as a string. It should be noted
however that reading a numeric column as a string is 10 - 100 times slower than reading the same
column as a number due to the large overhead in constructing the formatted strings. The display
format of the returned strings will be determined by the TDISPn keyword, if it exists, otherwise by
the data type of the column. The length of the returned strings (not including the null terminating
character) can be determined with the fits_get_col_display_width routine. The following TDISPn
display formats are currently supported:

Iw.m Integer

Ow.m Octal integer

Zw.m Hexadecimal integer

Fw.d Fixed floating point

Ew.d Exponential floating point

Dw.d Exponential floating point

Gw.d General; uses Fw.d if significance not lost, else Ew.d

where w is the width in characters of the displayed values, m is the minimum number of digits
displayed, and d is the number of digits to the right of the decimal. The .m field is optional.

1 Read elements from an ASCII or binary table column (in the CDU). These routines return the
values of the table column array elements. The caller is required to allocate the storage array
before calling. Undefined array elements will be returned with a value = nulval, unless nulval
= 0 (or =’ for ffgcvs) in which case no checking for undefined values will be performed.
The anynul parameter is set to true if any of the returned elements are undefined.

For the _log (logical) variant, the C storage type is a char single-byte character. A FITS value
of ‘T’rue reads as 1 and ‘F’ reads as 0; other non-FITS characters are preserved untranslated.

For the _str (string) variant the number of elements is the number of strings, and the caller
must allocate storage for both the array of pointers array and the character array data
itself (use fits_get_col_display_widthor fits_get_coltype to determine the number of
characters). See section 4.5 (“Dealing with Character Strings”) for more information. Also,
when the _byt variant is used to read a column stored in the file as string data (TFORMn
= 'nA’), the subroutine will read the character bytes (instead of attempting to perform a
numerical conversion as other integer variants would do), with no attempt at null termination.

For the _cmp and _dblcmp (complex and double complex) variants, nelements is the number
of numerical pairs; the number of floats or doubles that must be pre-allocated is 2*nelements.

int fits_read_col_str / ffgcvs
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, char *nulstr, > char **array, int *anynul,
int *status)

int fits_read_col_[log,byt,sht,usht,int,uint,lng,ulng, lnglng, ulnglng, flt, dbl, cmp, db:
ffgev([l,b,i,ui,k,uk,j,uj,jj,ujj,e,d,c,m]
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,

122 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

LONGLONG nelements, DTYPE nulval, > DTYPE *array, int *anynul,
int *status)

2 Read elements and null flags from an ASCII or binary table column (in the CHDU). These
routines return the values of the table column array elements. Any undefined array elements
will have the corresponding nullarray element set equal to TRUE. The anynul parameter is
set to true if any of the returned elements are undefined.

int fits_read_colnull_str / ffgcfs
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstelem,
LONGLONG nelements, > char **array, char *nullarray, int *anynul,
int *status)

int fits_read_colnull_[log,byt,sht,usht,int,uint,lng,ulng,lnglng,ulnglng,flt,dbl,cmp,dblc
ffgef[1,b,i,ui,k,uk,j,uj,jj,ujj,e,d,c,m]
(fitsfile *fptr, int colnum, LONGLONG firstrow,
LONGLONG firstelem, LONGLONG nelements, > DTYPE *array,
char *nullarray, int *anynul, int *status)

3 Read an arbitrary data subsection from an N-dimensional array in a binary table vector column.
Undefined pixels in the array will be set equal to the value of 'nulval’, unless nulval=0 in which
case no testing for undefined pixels will be performed. The first and last rows in the table
to be read are specified by fpixel(naxis+1) and lpixel(naxis+1), and hence are treated as the
next higher dimension of the FITS N-dimensional array. The INC parameter specifies the
sampling interval in each dimension between the data elements that will be returned.

int fits_read_subset_[byt, sht, usht, int, uint, lng, ulng, lnglng, ulnglng, flt, dbl] /
ffgsv(lb,i,ui,k,uk,j,uj,jj,ull,e,d]
(fitsfile *fptr, int colnum, int naxis, long *naxes, long *fpixel,
long *1pixel, long *inc, DTYPE nulval, > DTYPE *array, int *anynul,
int *status)

4 Read an arbitrary data subsection from an N-dimensional array in a binary table vector column.
Any Undefined pixels in the array will have the corresponding 'nullarray’ element set equal
to TRUE. The first and last rows in the table to be read are specified by fpixel(naxis+1)
and lpixel(naxis+1), and hence are treated as the next higher dimension of the FITS N-
dimensional array. The INC parameter specifies the sampling interval in each dimension
between the data elements that will be returned.

int fits_read_subsetnull_[byt, sht, usht, int, uint, 1lng, ulng, lnglng, ulnglng, flt, dbl
ffgsf(b,i,ui,k,uk,j,uj,jj,ujj,e,dl
(fitsfile *fptr, int colnum, int naxis, long *naxes,
long *fpixel, long *1pixel, long *inc, > DTYPE x*array,
char *nullarray, int *anynul, int *status)

9.6. SPECIALIZED FITS ASCII AND BINARY TABLE ROUTINES 123

5 Read bit values from a byte ('B’) or bit (‘X‘) table column (in the CDU). Larray is an array
of logical values corresponding to the sequence of bits to be read. If larray is true then the
corresponding bit was set to 1, otherwise the bit was set to 0. The X’ column in a FITS
table is always padded out to a multiple of 8 bits where the bit array starts with the most
significant bit of the byte and works down towards the 1’s bit. For example, a ’4X’ array,
with the first bit = 1 and the remaining 3 bits = 0 is equivalent to the 8-bit unsigned byte
value of 128. Note that in the case of "X’ columns, CFITSIO can read all 8 bits of each byte
whether they are formally valid or not. Thus if the column is defined as 4X’, and one calls
ffgex with firstbit=1 and nbits=8, then all 8 bits will be read from the first byte (as opposed
to reading the first 4 bits from the first row and then the first 4 bits from the next row),
even though the last 4 bits of each byte are formally not defined. It should also be noted
that it is more efficient to read 'X’ columns an entire byte at a time, instead of bit by bit.
Any of the CFITSIO routines that read columns (e.g. fits_read_col_byt) may be used for this
purpose. These routines will interpret "X’ columns as though they were 'B’ columns (e.g.,
"8X’ is equivalent to '1B’, and ’16X’ is equivalent to 2B’).

int fits_read_col_bit / ffgcx
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG firstbit,
LONGLONG nbits, > char *larray, int *status)

6 Read any consecutive set of bits from an X’ or "B’ column and interpret them as an unsigned
n-bit integer. nbits must be less than 16 or 32 in ffgexui and ffgexuk, respectively. If nrows
is greater than 1, then the same set of bits will be read from each row, starting with firstrow.
The bits are numbered with 1 = the most significant bit of the first element of the column.

int fits_read_col_bit_[usht, uint] / ffgcx[ui,uk]
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG, nrows,
long firstbit, long nbits, > DTYPE *array, int *status)

7 Return the descriptor for a variable length column in a binary table. The descriptor consists of
2 integer parameters: the number of elements in the array and the starting offset relative to
the start of the heap. The first pair of routine returns a single descriptor whereas the second
pair of routine returns the descriptors for a range of rows in the table. The only difference
between the 2 routines in each pair is that one returns the parameters as ’long’ integers,
whereas the other returns the values as 64-bit 'LONGLONG’ integers.

int fits_read_descript / ffgdes
(fitsfile *fptr, int colnum, LONGLONG rownum, > long *repeat,
long *offset, int *status)

int fits_read_descriptll / ffgdesll
(fitsfile *fptr, int colnum, LONGLONG rownum, > LONGLONG *repeat,
LONGLONG *offset, int *status)

int fits_read_descripts / ffgdess

124 CHAPTER 9. SPECIALIZED CFITSIO INTERFACE ROUTINES

(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG nrows
> long *repeat, long *offset, int *status)

int fits_read_descriptsll / ffgdessll
(fitsfile *fptr, int colnum, LONGLONG firstrow, LONGLONG nrows
> LONGLONG *repeat, LONGLONG *offset, int *status)

Chapter 10

Extended File Name Syntax

10.1 Overview

CFITSIO supports an extended syntax when specifying the name of the data file to be opened or
created that includes the following features:

e CFITSIO can read IRAF format images which have header file names that end with the
imh’ extension, as well as reading and writing FITS files, This feature is implemented in
CFITSIO by first converting the IRAF image into a temporary FITS format file in memory,
then opening the FITS file. Any of the usual CFITSIO routines then may be used to read
the image header or data. Similarly, raw binary data arrays can be read by converting them
on the fly into virtual FITS images.

e FITS files on the Internet can be read (and sometimes written) using the FTP, HTTP,
HTTPS, FTPS, or ROOT protocols.

e FITS files can be piped between tasks on the stdin and stdout streams.

e FITS files can be read and written in shared memory. This can potentially achieve better
data I/O performance compared to reading and writing the same FITS files on magnetic disk.

e Compressed FITS files in gzip or Unix COMPRESS format can be directly read.
e Output FITS files can be written directly in compressed gzip format, thus saving disk space.

e FITS table columns can be created, modified, or deleted ’on-the-fly’” as the table is opened by
CFITSIO. This creates a virtual FITS file containing the modifications that is then opened
by the application program.

e Table rows may be selected, or filtered out, on the fly when the table is opened by CFITSIO,
based on an user-specified expression. Only rows for which the expression evaluates to "TRUE’
are retained in the copy of the table that is opened by the application program.

e Histogram images may be created on the fly by binning the values in table columns, resulting
in a virtual N-dimensional FITS image. The application program then only sees the FITS
image (in the primary array) instead of the original FITS table.

125

126 CHAPTER 10. EXTENDED FILE NAME SYNTAX

The latter 3 table filtering features in particular add very powerful data processing capabilities
directly into CFITSIO, and hence into every task that uses CFITSIO to read or write FITS files.
For example, these features transform a very simple program that just copies an input FITS file to
a new output file (like the ‘fitscopy’ program that is distributed with CFITSIO) into a multipurpose
FITS file processing tool. By appending fairly simple qualifiers onto the name of the input FITS
file, the user can perform quite complex table editing operations (e.g., create new columns, or
filter out rows in a table) or create FITS images by binning or histogramming the values in table
columns. In addition, these functions have been coded using new state-of-the art algorithms that
are, in some cases, 10 - 100 times faster than previous widely used implementations.

Before describing the complete syntax for the extended FITS file names in the next section, here
are a few examples of FITS file names that give a quick overview of the allowed syntax:

e myfile.fits: the simplest case of a FITS file on disk in the current directory.

e myfile.imh: opens an IRAF format image file and converts it on the fly into a temporary
FITS format image in memory which can then be read with any other CFITSIO routine.

e rawfile.dat[i512,512]: opens a raw binary data array (a 512 x 512 short integer array in
this case) and converts it on the fly into a temporary FITS format image in memory which
can then be read with any other CFITSIO routine.

e myfile.fits.gz: if this is the name of a new output file, the ’.gz’ suffix will cause it to be
compressed in gzip format when it is written to disk.

e myfile.fits.gz[events, 2]: opens and uncompresses the gzipped file myfile.fits then moves
to the extension with the keywords EXTNAME = "EVENTS’ and EXTVER = 2.

e —: a dash (minus sign) signifies that the input file is to be read from the stdin file stream, or
that the output file is to be written to the stdout stream. See also the stream:// driver which
provides a more efficient, but more restricted method of reading or writing to the stdin or
stdout streams.

e ftp://legacy.gsfc.nasa.gov/test/vela.fits: FITS files in any ftp archive site on the
Internet may be directly opened with read-only access.

e http://legacy.gsfc.nasa.gov/software/test.fits: any valid URL to a FITS file on the
Web may be opened with read-only access.

e root://legacy.gsfc.nasa.gov/test/vela.fits: similar to ftp access except that it pro-
vides write as well as read access to the files across the network. This uses the root protocol
developed at CERN.

e shmem://h2[events]: opens the FITS file in a shared memory segment and moves to the
EVENTS extension.

e mem://: creates a scratch output file in core computer memory. The resulting ’file’ will
disappear when the program exits, so this is mainly useful for testing purposes when one does
not want a permanent copy of the output file.

10.1.

OVERVIEW 127

myfile.fits[3; Images(10)]: opens a copy of the image contained in the 10th row of the
Images’ column in the binary table in the 3th extension of the FITS file. The virtual file
that is opened by the application just contains this single image in the primary array.

myfile.fits[1:512:2, 1:512:2]: opens a section of the input image ranging from the 1st
to the 512th pixel in X and Y, and selects every second pixel in both dimensions, resulting
in a 256 x 256 pixel input image in this case.

myfile.fits[EVENTS] [col Rad = sqrt(X**2 + Y*x2)]: creates and opens a virtual file on
the fly that is identical to myfile.fits except that it will contain a new column in the EVENTS
extension called 'Rad’ whose value is computed using the indicated expression which is a
function of the values in the X and Y columns.

myfile.fits[EVENTS] [PHA > 5]: creates and opens a virtual FITS files that is identical to
‘myfile.fits’ except that the EVENTS table will only contain the rows that have values of
the PHA column greater than 5. In general, any arbitrary boolean expression using a C or
Fortran-like syntax, which may combine AND and OR operators, may be used to select rows
from a table.

myfile.fits[EVENTS] [bin (X,Y)=1,2048,4]: creates a temporary FITS primary array im-
age which is computed on the fly by binning (i.e, computing the 2-dimensional histogram)
of the values in the X and Y columns of the EVENTS extension. In this case the X and Y
coordinates range from 1 to 2048 and the image pixel size is 4 units in both dimensions, so
the resulting image is 512 x 512 pixels in size.

The final example combines many of these feature into one complex expression (it is broken
into several lines for clarity):

ftp://legacy.gsfc.nasa.gov/data/sample.fits.gz [EVENTS]
[col phacorr = pha * 1.1 - 0.3] [phacorr >= 5.0 && phacorr <= 14.0]
[bin (X,Y)=32]

In this case, CFITSIO (1) copies and uncompresses the FITS file from the ftp site on the
legacy machine, (2) moves to the 'EVENTS’ extension, (3) calculates a new column called
"phacorr’, (4) selects the rows in the table that have phacorr in the range 5 to 14, and finally
(5) bins the remaining rows on the X and Y column coordinates, using a pixel size = 32 to
create a 2D image. All this processing is completely transparent to the application program,
which simply sees the final 2-D image in the primary array of the opened file.

The full extended CFITSIO FITS file name can contain several different components depending on
the context. These components are described in the following sections:

When creating a new file:

filetype://BaseFilename (templateName) [compress]

When opening an existing primary array or image HDU:
filetype://BaseFilename (outName) [HDUlocation] [ImageSection] [pixFilter]

128 CHAPTER 10. EXTENDED FILE NAME SYNTAX

When opening an existing table HDU:
filetype://BaseFilename (outName) [HDUlocation] [colFilter] [rowFilter] [binSpec]

The filetype, BaseFilename, outName, HDUlocation, ImageSection, and pixFilter components, if
present, must be given in that order, but the colFilter, rowFilter, and binSpec specifiers may follow
in any order. Regardless of the order, however, the colFilter specifier, if present, will be processed
first by CFITSIO, followed by the rowFilter specifier, and finally by the binSpec specifier.

Multiple colFilter or rowFilter specifications may appear as separated bracketed expressions, in
any order. Multiple colFilter or rowFilter expressions are treated internally as a single effective
expression, with order of operations determined from left to right. CFITSIO does not support the
@filename.txt complex syntax option if multiple expressions are also used.

10.2 Filetype

The type of file determines the medium on which the file is located (e.g., disk or network) and,
hence, which internal device driver is used by CFITSIO to read and/or write the file. Currently
supported types are

file:// - file on local magnetic disk (default)
ftp:// - a readonly file accessed with the anonymous FTP protocol.
It also supports ftp://username:password@hostname/...
for accessing password-protected ftp sites.
http:// - a readonly file accessed with the HTTP protocol. It
supports username:password just like the ftp driver.
Proxy HTTP servers are supported using the http_proxy
environment variable (see following note).
https:// - a readonly file accessed with the HTTPS protocol. This
is available only if CFITSIO was built with the libcurl
library (see the following note).

ftps:// - a readonly file accessed with the FTPS protocol. This
is available only if CFITSIO was built with the libcurl
library.

stream:// - special driver to read an input FITS file from the stdin

stream, and/or write an output FITS file to the stdout
stream. This driver is fragile and has limited
functionality (see the following note).
gsiftp:// - access files on a computational grid using the gridftp
protocol in the Globus toolkit (see following note) .

root:// - uses the CERN root protocol for writing as well as
reading files over the network (see following note).
shmem:// - opens or creates a file which persists in the computer’s

shared memory (see following note).
mem:// - opens a temporary file in core memory. The file

10.2. FILETYPE 129

disappears when the program exits so this is mainly
useful for test purposes when a permanent output file
is not desired.

If the filetype is not specified, then type file:// is assumed. The double slashes ’//’ are optional
and may be omitted in most cases.

10.2.1 Notes about HTTP proxy servers

A proxy HTTP server may be used by defining the address (URL) and port number of the proxy
server with the http_proxy environment variable. For example

setenv http_proxy http://heasarc.gsfc.nasa.gov:3128

will cause CFITSIO to use port 3128 on the heasarc proxy server whenever reading a FITS file
with HTTP.

10.2.2 Notes about HTTPS and FTPS file access

CFITSIO depends upon the availability of the libcurl library in order to perform HTTPS/FTPS
file access. (This should be the development version of the library, as it contains the curl.h header
file required by the CFITSIO code.) The CFITSIO ’configure’ script will search for this library on
your system, and if it finds it it will automatically be incorporated into the build.

Note that if you have this library package on your system, you will also have the ’curl-config’
executable. You can run the ’curl-config’ executable with various options to learn more about the
features of your libcurl installation.

If the CFITSIO ’configure’ succeeded in finding a usable libcurl, you will see the flag -DCFITSIO_HAVE_CURL:
in the CFITSIO Makefile and in the compilation output. If ’configure’ is unable to find a usable
libcurl, CFITSIO will still build but it won’t have HTTPS/FTPS capability.

The libcurl package is normally included as part of Xcode on Macs. However on Linux platforms
you may need to manually install it. This can be easily done on Ubuntu Linux using the ’apt get’
command to retrieve the libcurl4-openssl-dev or the libcurl4-gnutls-dev packages.

When accessing a file with HT'TPS or FTPS, the default CFITSIO behavior is to attempt to verify
both the host name and the SSL certificate. If it cannot, it will still perform the file access but will
issue a warning to the terminal window.

The user can override this behavior to force CFITSIO to only allow file transfers when the host
name and SSL certificate have been successfully verified. This is done by setting the CFIT-
SIO_VERIFY_HTTPS environment variable to 'True’. ie. in a csh shell:

setenv CFITSIO_VERIFY_HTTPS True
the default setting for this is 'False’.

CFITSIO has 3 functions which apply specifically to HTTPS/FTPS access: fits_init_https, fits_cleanup_https,
and fits_verbose_https. It is recommended that you call the init and cleanup functions near the

130 CHAPTER 10. EXTENDED FILE NAME SYNTAX

beginning and end of your program respectively. For more information about these functions,
please see the 'FITS File Access Routines’ section in the preceding chapter (’Specialized CFITSIO
Interface Routines’).

10.2.3 Notes about the stream filetype driver

The stream driver can be used to efficiently read a FITS file from the stdin file stream or write
a FITS to the stdout file stream. However, because these input and output streams must be
accessed sequentially, the FITS file reading or writing application must also read and write the file
sequentially, at least within the tolerances described below.

CFITSIO supports 2 different methods for accessing FITS files on the stdin and stdout streams.
The original method, which is invoked by specifying a dash character, ”-”, as the name of the file
when opening or creating it, works by storing a complete copy of the entire FITS file in memory.
In this case, when reading from stdin, CFITSIO will copy the entire stream into memory before
doing any processing of the file. Similarly, when writing to stdout, CFITSIO will create a copy of
the entire FITS file in memory, before finally flushing it out to the stdout stream w