

MaterialX: Supplemental Notes

Doug Smythe - smythe@ilm.com
Jonathan Stone - jstone@lucasfilm.com

November 5, 2019

Introduction

This document details additional information about MaterialX and how it may be incorporated into
studio pipelines. The document describes a number of additional Supplemental Nodes providing
enhanced functionality over the basic Standard Nodes, as well as a recommended naming convention for
node definition elements and a directory structure to define packages of node definitions and
implementations from various sources.

Table of Contents

Supplemental Nodes 2

Supplemental Texture Nodes 2
Supplemental Source Nodes 4
Supplemental Math Nodes 4
Supplemental Adjustment Nodes 4
Supplemental Channel Nodes 5

Recommended Element Naming Conventions 7

Node Definition File Structure 7
Examples 9

mailto:smythe@ilm.com
mailto:jstone@lucasfilm.com

Supplemental Nodes

The MaterialX Specification defines a number of Standard Nodes, which all implementations of
MaterialX are expected to support, to the degree their host applications allow. These nodes are the basic
"building blocks" upon which more complex node functionality can be built.

This section describes a number of supplemental nodes for MaterialX. These nodes are considered part
of "MaterialX", but are typically implemented using nodegraphs of standard MaterialX nodes rather than
being implemented in various languages for specific targets. Certain applications may choose to
implement these supplemental nodes using native coding languages for efficiency. It is also expected
that various applications will choose to extend these supplemental nodes with additional parameters and
additional functionality.

Supplemental Texture Nodes

● tiledimage: samples data from a single image, with provisions for tiling and offsetting the
image across uv space. Parameters and inputs:
○ file (parameter, filename): the URI of an image file. The filename can include one or more

substitutions to change the file name (including frame number) that is accessed, as described
in Image Filename Substitutions.

○ default (parameter, float or colorN or vectorN): a default value to use if the file
reference can not be resolved (e.g. if a <geomtoken>, [interfacetoken] or {hostattr} is
included in the filename but no substitution value or default is defined, or if the resolved file
URI cannot be read), or if the specified layer does not exist in the file. The default value
must be the same type as the <image> element itself. If default is not defined, the default
color value will be 0.0 in all channels.

○ texcoord (input, vector2): the name of a vector2-type node specifying the 2D texture
coordinate at which the image data is read. Default is to use the current u,v coordinate.

○ uvtiling (input, vector2): the tiling rate for the given image along the U and V axes.
Mathematically equivalent to multiplying the incoming texture coordinates by the given
vector value. Default value is (1.0, 1.0).

○ uvoffset (input, vector2): the offset for the given image along the U and V axes.
Mathematically equivalent to subtracting the given vector value from the incoming texture
coordinates. Default value is (0.0, 0.0).

○ realworldimagesize (parameter, vector2): the real-world size represented by the file
image, with unittype "distance". A unit attribute may be provided to indicate the units that
realworldimagesize is expressed in.

○ realworldtilesize (parameter, vector2): the real-world size of a single square 0-1 UV
tile, with unittype "distance". A unit attribute may be provided to indicate the units that
realworldtilesize is expressed in.

○ filtertype (parameter, string): the type of texture filtering to use; standard values include
"closest" (nearest-neighbor single-sample), "linear", and "cubic". If not specified, an
application may use its own default texture filtering method.

<tiledimage name="in3" type="color3">

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 2

 <parameter name="file" type="filename" value="textures/mytile.tif"/>

 <parameter name="default" type="color3" value="0.0,0.0,0.0"/>

 <parameter name="uvtiling" type="vector2" value="3.0,3.0"/>

 <parameter name="uvoffset" type="vector2" value="0.5,0.5"/>

</tiledimage>

● triplanarprojection: samples data from three images (or layers within multi-layer images),
and projects a tiled representation of the images along each of the three respective coordinate
axes, computing a weighted blend of the three samples using the geometric normal.
[REQ="geomops"] Parameters and inputs:
○ filex (parameter, filename): the URI of an image file to be projected in the direction from

the +X axis back toward the origin.
○ filey (parameter, filename): the URI of an image file to be projected in the direction from

the +Y axis back toward the origin with the +X axis to the right.
○ filez (parameter, filename): the URI of an image file to be projected in the direction from

the +Z axis back toward the origin.
○ layerx (parameter, string): the name of the layer to extract from a multi-layer input file for

the x-axis projection. If no value for layerx is provided and the input file has multiple
layers, then the "default" layer will be used, or "rgba" if there is no "default" layer. Note: the
number of channels defined by the type of the <image> must match the number of
channels in the named layer.

○ layery (parameter, string): the name of the layer to extract from a multi-layer input file for
the y-axis projection.

○ layerz (parameter, string): the name of the layer to extract from a multi-layer input file for
the z-axis projection.

○ default (parameter, float or colorN or vectorN): a default value to use if any file X
reference can not be resolved (e.g. if a <geomtoken>, [interfacetoken] or {hostattr} is
included in the filename but no substitution value or default is defined, or if the resolved file
URI cannot be read) The default value must be the same type as the
<triplanarprojection> element itself. If default is not defined, the default color
value will be 0.0 in all channels.

○ position (input, vector3): a spatially-varying input specifying the 3D position at which the
projection is evaluated. Default is to use the current 3D object-space coordinate.

○ normal (input, vector3): a spatially-varying input specifying the 3D normal vector used for
blending. Default is to use the current object-space surface normal.

○ filtertype (parameter, string): the type of texture filtering to use; standard values include
"closest" (nearest-neighbor single-sample), "linear", and "cubic". If not specified, an
application may use its own default texture filtering method.

<triplanarprojection name="tri4" type="color3">

 <parameter name="filex" type="filename" value="<colorname>.X.tif"/>

 <parameter name="filey" type="filename" value="<colorname>.Y.tif"/>

 <parameter name="filez" type="filename" value="<colorname>.Z.tif"/>

 <parameter name="default" type="color3" value="0.0,0.0,0.0"/>

</triplanarprojection>

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 3

Supplemental Source Nodes

● ramp4: a 4-corner bilinear value ramp. Parameters and inputs:
○ valuetl (parameter, float or colorN or vectorN): the value at the top-left (U0V1) corner
○ valuetr (parameter, float or colorN or vectorN): the value at the top-right (U1V1) corner
○ valuebl (parameter, float or colorN or vectorN): the value at the bottom-left (U0V0) corner
○ valuebr (parameter, float or colorN or vectorN): the value at the bottom-right (U1V0)

corner
○ texcoord (input, vector2, optional): the name of a vector2-type node specifying the 2D

texture coordinate at which the ramp interpolation is evaluated. Default is to use the first set
of texture coordinates.

Supplemental Math Nodes

● place2d: transform incoming UV texture coordinates for 2D texture placement. Parameters
and inputs:
○ texcoord (input, vector2): the input UV coordinate to transform; defaults to the current

surface index=0 uv coordinate.
○ pivot (parameter, vector2): the pivot coordinate for scale and rotate: this is subtracted from

u,v before applying scale/rotate, then added back after. Default is (0,0).
○ scale (input, vector2): divide the u,v coord (after subtracting pivot) by this, so a scale

(2,2) makes the texture image appear twice as big. Negative values can be used to flip or
flop the texture space. Default is (1,1).

○ rotate (input, float): rotate u,v coord (after subtracting pivot) by this amount in degrees, so
a positive value rotates UV coords counter-clockwise, and the image clockwise. Default is 0.

○ offset (input, vector2): subtract this amount from the scaled/rotated/“pivot added back”
UV coordinate; since U0,V0 is typically the lower left corner, a positive offset moves the
texture image up and right. Default is (0,0).

Supplemental Adjustment Nodes

● contrast: increase or decrease contrast of incoming float/color values using a linear slope
multiplier. Parameters and inputs:
○ in (input, float or colorN or vectorN): the input value or nodename
○ amount (input, same type as in or float): slope multiplier for contrast adjustment, 0.0 to

infinity range. Values greater than 1.0 increase contrast, values between 0.0 and 1.0 reduce
contrast. Default is 1.0 in all channels.

○ pivot (parameter, same type as in or float): center pivot value of contrast adjustment; this
is the value that will not change as contrast is adjusted. Default is 0.5 in all channels.

● range: remap incoming values from one range of float/color/vector values to another, optionally

applying a gamma correction "in the middle". Input values below inlow or above outhigh are
extrapolated unless doclamp is true. Parameters and inputs:
○ in (input, float or colorN or vectorN): the input value or nodename
○ inlow (input, same type as in or float): low value for input range. Default is 0.0 in all

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 4

channels.
○ inhigh (input, same type as in or float): high value for input range. Default is 1.0 in all

channels.
○ gamma (input, same type as in or float): inverse exponent applied to input value after first

transforming from inlow ..inhigh to 0..1; gamma values greater than 1.0 make midtones
brighter. Default is 1.0 in all channels.

○ outlow (input, same type as in or float): low value for output range. Default is 0.0 in all
channels.

○ outhigh (input, same type as in or float): high value for output range. Default is 1.0 in all
channels.

○ doclamp (parameter, boolean): If true, the output is clamped to the range
outlow ..outhigh . Default is false.

● hsvadjust: adjust the hue, saturation and value of an RGB color by converting the input color

to HSV, adding amount.x to the hue, multiplying the saturation by amount.y, multiplying the
value by amount.z, then converting back to RGB. A positive "amount.x" rotates hue in the "red
to green to blue" direction, with amount of 1.0 being the equivalent to a 360 degree (e.g. no-op)
rotation. Negative or greater-than-1.0 hue adjustment values are allowed, wrapping at the 0-1
boundaries. For color4 inputs, the alpha value is unchanged. Parameters and inputs:
○ in (input, color3 or color4): the input value or nodename
○ amount (input, vector3): the HSV adjustment; a value of (0, 1, 1) is "no change" and is the

default.

● saturate: (color3 or color4 only) adjust the saturation of a color; the alpha channel will be
unchanged if present. Note that this operation is not equivalent to the "amount.y" saturation
adjustment of hsvadjust , as that operator does not take the working or any other colorspace
into account. Parameters and inputs:
○ in (input, float or colorN or vectorN): the input value or nodename
○ amount (input, float): a multiplier for saturation; the saturate operator performs a linear

interpolation between the luminance of the incoming color value (copied to all three color
channels) and the incoming color value itself. Note that setting amount to 0 will result in an
R=G=B gray value equal to the value that the luminance node (below) returns. Default is
1.0.

○ lumacoeffs (parameter, color3): the luma coefficients of the current working color space;
if no specific color space can be determined, the ACEScg (ap1) luma coefficients [0.272287,
0.6740818, 0.0536895] will be used. Applications which support color management systems
may choose to retrieve this value from the CMS to pass to the <saturate> node's
implementation directly, rather than exposing it to the user.

Supplemental Channel Nodes

● extract: generate a float stream from one channel of a colorN or vectorN stream. Parameters
and inputs:
○ in (input, colorN or vectorN): the input value or nodename
○ index (parameter, integer): the channel number of the input stream to extract, in the range

from 0 to 3. Default is 0.

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 5

● separate2: output each of the channels of a color2 or vector2 as a separate float output.

○ in (input, colorN or vectorN): the input value or nodename
○ outr /outx (output, float): the value of the red (for color2 streams) or x (for vector2 streams)

channel.
○ outg /outy (output, float): the value of the green (for color2 streams) or y (for vector2

streams) channel.

● separate3: output each of the channels of a color3 or vector3 as a separate float output.
○ in (input, colorN or vectorN): the input value or nodename
○ outr /outx (output, float): the value of the red (for color3 streams) or x (for vector3 streams)

channel.
○ outg /outy (output, float): the value of the green (for color3 streams) or y (for vector3

streams) channel.
○ outb /outz (output, float): the value of the blue (for color3 streams) or z (for vector3

streams) channel.

● separate4: output each of the channels of a color4 or vector4 as a separate float output.
○ in (input, colorN or vectorN): the input value or nodename
○ outr /outx (output, float): the value of the red (for color4 streams) or x (for vector4 streams)

channel.
○ outg /outy (output, float): the value of the green (for color4 streams) or y (for vector4

streams) channel.
○ outb /outz (output, float): the value of the blue (for color4 streams) or z (for vector4

streams) channel.
○ outa/outw (output, float): the value of the alpha (for color4 streams) or w (for vector4

streams) channel.

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 6

Recommended Element Naming Conventions

While MaterialX elements can be given any valid name as described in the MaterialX Names section of
the main specification, adhering to the following recommended naming conventions will make it easier
to predict the name of a nodedef for use in implementation and nodegraph elements as well as help
reduce the possibility of elements from different sources having the same name.

Nodedef: "ND_nodename_outputtype[_target][_version]", or for nodes with multiple input types for a
given output type (e.g. <swizzle>), "ND_nodename_inputtype_outputtype[_target][_version]".

Implementation: "IM_nodename[_inputtype]_outputtype[_language][_target][_version]".

Nodegraph, as an implementation for a node:
"NG_nodename[_inputtype]_outputtype[_target][_version]".

Node Definition File Structure

As studios develop and incorporate more MaterialX node types and implementations from various
library sources for various targets, it becomes beneficial to have a consistent, logical organization for the
files on disk that make up these libraries. We propose the following organization for files defining
<nodedef>s, <implementation>s, and actual shader source code.

It should be noted that this file structure is only recommended but is not required, and that it is only used
to help sort out which files are part of which libraries, in which languages, for which targets. The actual
specification of which library/language/target/version/etc. of any node definition element is set by the
contents of the node element itself, e.g. what values its target , language and version attributes
have.

Legend for various components within the folder structure:

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 7

libname The name of the library; the MaterialX Standard nodes are the "stdlib"
library. It is recommended that libraries also declare themselves to be
in the libname namespace, though this is not required.

language The implementation language, e.g. "osl", "glsl", "cpp", etc. See note
below.

target The target for this implementation, e.g. "maya" for "glsl" language, or
"arnold" or "vray" for "osl" language.

sourcefile
s

Source files (including includes and makefiles) for the language/target,
in whatever format and structure the applicable build system requires.

Here are the suggested locations and naming for the various files making up a MaterialX node definition
setup. Italicized terms should be replaced with actual values, while boldface terms should appear
verbatim. $MXROOT is a placeholder for one of any number of studio-dependent root paths for
MaterialX library content as defined in the MATERIALX_SEARCH_PATH environment variable
(Linux, MacOS) or other path list definition mechanism.

 $MXROOT/ libname/ libname[_*] _defs.mtlx (1)

 $MXROOT/ libname/ libname[_*] _ng.mtlx (2)

 $MXROOT/ libname/ language/ libname_ language[_*] _impl.mtlx (3)

 $MXROOT/ libname/ language/ sourcefiles (4)

 $MXROOT/ libname/ language/ target/ libname_ language_ target[_*] _impl.mtlx (5)

 $MXROOT/ libname/ language/ target/ sourcefiles (6)

(1) Nodedefs for targetless or target-specific nodes for library libname.
(2) Nodegraph implementations for nodes in library libname.
(3) Target-independent implementation elements for libname in language language.
(4) Source code files for target-independent libname implementations in language language.
(5) Implementation elements for libname in language language specific to target target.
(6) Source code files for libname implementations in language language specific to target target.

Note that nodedef files and nodegraph-implementation files go at the top libname level, while
<implementation> element files go under the corresponding libname/ language or
libname/ language/target level, next to their source code files. This is so that studios may easily
install only the implementations that are relevant to them, and applications can easily locate the
implementations of nodes for specific desired languages and targets.

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 8

Examples

Standard node definitions and reference OSL implementation:

 $MXROOT/stdlib/stdlib_defs.mtlx (standard library node definitions)
 $MXROOT/stdlib/stdlib_ng.mtlx (supplemental library node nodegraphs)
 $MXROOT/stdlib/osl/stdlib_osl_impl.mtlx (stdlib OSL implementation elem file)
 $MXROOT/stdlib/osl/*.{h,osl} (etc) (stdlib OSL source files)

Layout for "genglsl" and "genosl" language implementations of "stdlib" for MaterialX's shadergen
component, referencing the above standard stdlib_defs.mtlx file. Target-specific implementations
use subfolders to store code specific to that target; otherwise the target will use the common
implementation.

 # Generated-GLSL language implementations

 $MXROOT/stdlib/genglsl/stdlib_genglsl_impl.mtlx (stdlib genGLSL implementation file)
 $MXROOT/stdlib/genglsl/stdlib_genglsl_cm_impl.mtlx (stdlib genGLSL color-mgmt impl. file)
 $MXROOT/stdlib/genglsl/*.{inline,glsl} (stdlib common genGLSL code)

 # Generated-OSL language implementations

 $MXROOT/stdlib/genosl/stdlib_genosl_impl.mtlx (stdlib genOSL implementation file)
 $MXROOT/stdlib/genosl/stdlib_genosl_cm_impl.mtlx (stdlib genOSL color-mgmt impl. file)
 $MXROOT/stdlib/genosl/*.{inline,osl} (stdlib common genOSL code)

Layout for the shadergen PBR shader library ("pbrlib") with implementations in "genglsl" and "genosl"
(generated GLSL and OSL, respectively) languages:

 $MXROOT/pbrlib/pbrlib_defs.mtlx (PBR library definitions)
 $MXROOT/pbrlib/pbrlib_ng.mtlx (PBR library nodegraphs)
 $MXROOT/pbrlib/genglsl/pbrlib_genglsl_impl.mtlx (pbr impl file referencing genGLSL source)
 $MXROOT/pbrlib/genglsl/*.{inline,glsl} (pbr common genGLSL code)
 $MXROOT/pbrlib/genosl/pbrlib_genosl_impl.mtlx (pbr impl file referencing genOSL source)
 $MXROOT/pbrlib/genosl/*.{inline,osl} (pbr common genOSL code)

MaterialX Supplemental Notes v1.37 REV 2 TM & © 2019 Lucasfilm Ltd. All rights reserved. p. 9

