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ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the

numerical solution of systems of nonlinear equations and
nonlinear least squares problems.  This report provides an
overview of the algorithms and software in the package and
includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of

a systematized collection of quality optimization software. The first step

towards  this  goal  has  been  realized  in MINPACK-1,  a package  of  Fortran

programs  for the numerical solution of systems of nonlinear equations and

nonlinear least squares problems.

The  design  of  the  algorithms  and  software  in MINPACK-1  has  several

objectives; the main ones are reliability, ease of use, and transportability.

At  the  algorithmic  level,  reliability  derives  from  the  underlying

algorithms having a sound theoretical basis. Entirely satisfactory global

convergence  results  are  available  for  the  MINPACK-1  algorithms  and,  in

addition, their properties allow scale invariant implementations.

At the software level, reliability derives from extensive testing. The
'

heart  of  the  testing  aids  is  a  large collection of test problems (More,

Garbow, and Hillstrom [1978]). These test problems have been used to measure

the performance of the software on the following computing systems:   IBM

360/370,  CDC  6000-7000,  Univac  1100,  Cray-1,  Burroughs  6700,  DEC PDP-10,

Honeywell 6000,  Prime 400, Itel AS/6, and ICL 2980. At Argonne,  software

performance has been further measured with the help of WATFIV and BRNANL

(Fosdick [1974]). WATFIV detects run-time errors such as undefined variables

and out-of-range subscripts, while BRNANL provides execution counts for each

block of a program and, in particular, has established that the MINPACK-1 test

problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For

example, MINPACK-1 programs access matrices sequentially along columns (rather

than  rows),  since  this  improves  efficiency,  especially on paged  systems.

Also, there are extensive checks on the input parameters, and computations are
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formulated to avoid destructive underflows and overflows. Underflows can then

be  safely  ignored;  overflows  due  to  the  problem  should  of  course  be

investigated.

Ease  of  use  derives  from  the  design  of  the  user interface. Each

algorithmic path in MINPACK-1 includes a core subroutine and a driver with a

simplified calling sequence made possible by assuming default settings for

certain parameters and by returning a limited amount of information; many
applications do not require full flexibility and in these cases the drivers

can be invoked. On the other hand, the core subroutines enable, for example,

scaling of the variables and printing of intermediate results at specified

iterations.

Ease of use is also facilitated by the documentation. Machine-readable

documentation is provided for those programs normally called by the user.  The

documentation includes discussions of all calling sequence parameters and an

actual  example  illustrating  the  use  of  the  corresponding algorithm. In

addition, each program includes detailed prologue comments on its purpose and

the roles of its parameters; in-line comments introduce major blocks in the

body of the program.

To  further  clarify  the  underlying  structure  of  the  algorithms,  the

programs have been formatted by the TAMPR system of Boyle and Dritz [1974].

TAMPR produces implementations in which the loops and logical structure of the

programs are clearly delineated. In addition, TAMPR has been used to produce

the  single  precision  version  of  the  programs  from  the  master  (double

precision) version.

Transportability requires  that a satisfactory transfer to a different

computing system be possible with only a small number of changes to the

software. In MINPACK-1, a change to a new computing system only requires

changes to one program in each precision; all other programs are written in a

portable subset of ANSI standard Fortran acceptable to the PFORT verifier

(Ryder [1974]). This one machine-dependent program provides values of the

machine precision, the smallest magnitude, and the largest magnitude.  Most of

the values for these parameters were obtained from the corresponding PORT

library program (Fox, Hall, and Schryer [1978]); in particular, values are

provided for all of the computing systems on which the programs Vere tested.



7

MINPACK-1 is fully supported. Comments, questions, and reports of poor

or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439
Phone: (312) 972-7184

Of  particular  interest  would  be  reports  of  performance  of  the MINPACK-1

package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and

the testing aids.  The package comprises approximately 28,000 card images and

is transmitted on magnetic tape.  The tape is available from the following two

sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439
Phone: (312) 972-7250

IMSL
Sixth Floor-NBC Building
7500 Bellaire Blvd.

Houston, TX 77036
Phone: (713) 772-1927

The  package  includes  both  single  and  double  precision  versions  of  the

programs, and for those programs normally called by the user machine-readable

documentation is provided in both single and double precision forms. An

implementation guide (Garbow, Hillstrom,  and Mor; [1980]). is also included

with the tape.
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CHAPTER 1

Introduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms

and software in MINPACK-1. Most users need only be acquainted with the first

six sections of this chapter; the remaining two sections describe lower-level

software called from the main programs.

1.1  Systems of Nonlinear Equations

If  n  functions  fl,f2,···,fn  of  the  n  variables  xl,x2,···,xn  are

specified, then MINPACK-1 subroutines can  be used to find values for

X1.,x2,·•·,xn that solve the system of nonlinear equations

fi(xl,x2' ...,Xn)-0, 1<i<n.
.--

To solve this system we have implemented a modification of Powell's hybrid

algorithm. There are two variants of this algorithm. The first variant only

requires that the user calculate the functions fi, while the second variant

requires that the user calculate both the functions fi and the n by n Jacobian

matrix

/3 f·(x)\1 1 1 1 <i<n,  1<jin .
< axi    '      -  -

1.2  Nonlinear Least Squares Problems

If m functions fl,f2,···,fm of the n variables xl,x2,···,xn are specified

with m >  n,  then MINPACK-1 subroutines  can be used to find values for

Xl,x2,···,xn that solve the nonlinear least squares problem

min,  1 fi(x)2: x E Rn  .li=1

To solve this problem we have implemented a modification of the Levenberg-

Marquardt algorithm. There are three variants of this algorithm. The first
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variant only requires that the user calculate the functions f. while the1'

second variant requires that the user calculate both the functions fi and the

m by n Jacobian matrix

<af·(x) I l l
<3xj   j,      l i i.i m,  1<j i n.

1

The third variant also requires that the user calculate the functions and

the Jacobian matrix, but the latter only one row at a time.  This organization

only requires the storage of an n by n matrix (rather than m by n), and is

thus attractive for nonlinear least squares problems with a large number of

functions and a moderate number of variables.

1.3  Derivative Checking

The  main  advantage  of  providing  the  Jacobian  matrix  is  increased

reliability;  for  example,  the  algorithm  is  then much  less  sensitive  to

functions subject to errors. However, providing the Jacobian matrix is an

error-prone task. To  help  identify  errors,  MINPACK-1  also  contains  a

subroutine CHKDER that checks the Jacobian matrix for consistency with the
function values.

1.4  Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There  are  five  general  algorithmic  paths  in MINPACK-1. Each  path

includes a core subroutine and an easy-to-use driver with a simplified calling

sequence made possible by assuming default settings for certain parameters and

by returning a limited amount of information; many applications do not require

full flexibility and in these cases easy-to-use drivers can be invoked. On

the other hand,  the core subroutines enable,  for example,  scaling of the

variables and printing of intermediate results at specified iterations.

1.5  MINPACK-1 Subroutines: Systems of Nonlinear Equations

The  MINPACK-1  subroutines  for  the  numerical  solution  of  systems  of

nonlinear equations are HYBRDl, HYBRD, HYBRJ1, and HYBRJ. These subroutines

provide alternative ways to solve the system of nonlinear equations

fi(xl,x2,•••,xn) =0, 1<i<n
- -
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by a modification of Powell's hybrid algorithm.  The principal requirements of
the subroutines are as follows (see also Figure 1).

HYBRDl, HYBRD

The user must provide a subroutine to calculate the functions

fl'f2, ,fn
The Jacobian matrix is then calculated by a forward-

difference approximation or by an update formula of Broyden. HYBRDl is

the easy-to-use driver for the core subroutine HYBRD.

HYBRJ 1, HYBRJ

The user must provide a subroutine to calculate the functions

fl'f2,...,fn and the Jacobian matrix

/3fi(X)\

»         axj  ,
1<i<n, 1<j<n.-- - -

(Subroutine  CHKDER  can be used to check the Jacobian matrix  for

consistency with the function values.)  HYBRJ1 is the easy-to-use driver

for the core subroutine HYBRJ.

Is the Jacobian
Yes No

matrix available?

Is flexibility Is flexibilityYes No Yes No- required?                             required?

HYBRJ HYBRJ 1 HYBRD HYBRDl

Figure 1
Decision Tree for Systems of Nonlinear Equations
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1.6  MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least

squares problems are LMDIFl, LMDIF, IMDERl, IMDER, LMSTRl, and IMSTR. These

subroutines provide  alternative ways  to solve the nonlinear least  squares

problem

f e

mint.1 fi(x)2: x E Rn li=l

by  a  modification  of  the  Levenberg-Marquardt algorithm. The  principal

requirements of the subroutines are as follows (see also Figure 2).

LMDIFl, LMDIF

The user must provide a subroutine to calculate the functions

fl,f2,•••,fm.   The Jacobian matrix is then calculated by a forward-

difference approximation. LMDIFl is the easy-to-use driver for the core

subroutine LMDIF.

LMDERl, LMDER

The user must provide a subroutine to calculate the functions

fl,f2,···,fm and the Jacobian matrix

/3 f.(x)\1 1 1 1 <i<m, 1<jin .
C exi  / '      -  -

(Subroutine  CHKDER  can  be used to check the Jacobian matrix for

consistency with the function values.) LMDERl is the easy-to-use driver

for the core subroutine LMDER.

LMSTRl, LMSTR

The user must provide a subroutine to calculate the functions

fl,f2,···,fm and the rows of the Jacobian matrix

/3 f·(x)\1 1 1
Caxi /,

1<i<m , i<j<n ,

one row per call. (Subroutine CHKDER can be used to check the row of the

Jacobian matrix for consistency with the corresponding function value.)

LMSTRl is the easy-to-use driver for the core subroutine LMSTR.
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Yes                       No
Is the Jacobian

matrix available?

Is storage
NO Is flexibility

Yes Yes                No
limited? I-   required?

.

IMDIF LMDIFl

Is flexibility Is flexibility
Yes                 No      Yes                 No

 - required? -    required? - 

IMSTR IMSTRl IMDER IMDERl

Figure 2
Decision Tree for Nonlinear Least Squares Problems

1.7  Machine-Dependent Constants

There are three machine-dependent constants that have to be set before

the single or double precision version of MINPACK-1 can be used;  for most

machines the correct values of these constants are encoded into DATA state-

ments in functions SPMPAR (single precision) and DPMPAR (double precision).

These constants are:

1-2
B   , the machine precision ,

 emin-1, the smallest magnitude ,

(1 - B-£)Bemax, the largest magnitude ,

where Z is the number of base B digits on the machine, emin is the smallest

machine exponent, and e is the largest machine exponent.max

The most critical of the constants is the machine precision EDi, since the
MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

lb-al i EM laI ,
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and the above test forms the basis for deciding that no further improvement is

possible with the algorithm.

1.8  MINPACK-1 Internal Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines

and easy-to-use drivers described in the previous sections. Some users,

however, may wish to experiment by modifying an algorithmic path to improve

the performance of the algorithm on a particular application. A modification

to an algorithmic path can often be achieved by modifying or replacing one of

the  internal subprograms. Additionally,  the  internal  subprograms may be

useful  independent  of  the MINPACK-1  algorithmic  paths  in which  they  are

employed.

For these reasons brief descriptions  of the MINPACK-1 internal

subprograms are included below; more complete descriptions can be found in the

prologue comments in the program listings of Chapter 5.

DOGLEG

Given the QR factorization of an m by n matrix A, an n by n nonsingular

diagonal  matrix  D,  an  m-vector  b,  and  a  positive  number  6,  this

subroutine determines the convex combination of  the Gauss-Newton and

scaled gradient directions that solves the problem

min{ 11Ax-bll : 11 Dxll 3 8} .

ENORM

This function computes the Euclidean norm of a vector x.

FDJACl

This  subroutine  computes  a  forward-difference  approximation  to  the

Jacobian matrix associated with n functions in n variables. It includes

a banded Jacobian option.

FDJAC2

This  subroutine  computes  a  forward-difference  approximation  to  the

Jacobian matrix associated with m functions in n variables.
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LMPAR

Given the QR factorization of an m by n matrix A, an n by n nonsingular

diagonal matrix D, an m-vector b, and a positive number A, this subrou-

tine is used to solve the problem

min<11Ax-bll : 11 Dxll < 8} 0

QFORM

Given  the  QR  factorization  of  a  rectangular matrix,  this  subroutine

accumulates the orthogonal matrix Q from its factored form.

QRFAC

This  subroutine uses Householder  transformations with optional column

pivoting  to  compute  a  QR  factorization  of  an  arbitrary rectangular

matrix.

QRSOLV

Given the QR factorization of an m by n matrix A, an n by n diagonal

matrix D,  and an m-vector b,  this subroutine solves the linear least

squares problem

I: x = I:j .

RWUPDT

This subroutine is used in updating the upper triangular part of the QR

decomposition of a matrix A after a row is added to A.

RlMPYQ

This subroutine multiplies a matrix by an orthogonal matrix given as a

product of Givens rotations.

RlUPDT

This subroutine is used in updating the lower triangular part of the LQ

decomposition of a matrix A after a rank-1 matrix is added to A.
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CHAPTER 2

Algorithmic Details

The  purpose  of  this  chapter  is  to  provide  information  about  the

algorithms and to point out some of the ways in which this information can be

used to improve their performance. The first two sections are essential for

the rest of the chapter since they provide the necessary background, but the

other sections are independent of each other.

2.1  Mathematical Background

To  describe  the  algorithms  for  the  solution of  systems  of  nonlinear

equations and nonlinear least squares problems, it is necessary to introduce

some notation.

Let Rn represent the n-dimensional Euclidean space of real n-vectors

  xl  
/ x2 1

X=i

\1 ,n

and Ixl the Euclidean norm of x,

C n A'
Ilxll -1 L x.

J=1 J

A function F with domain in Rn and range in Rm is denoted by F: Rn + Rm.  Such

a function can be expressed as

Xj

/:;1,1 1.F(x) = 1

\ f (x) /\m /

where the component function fi: Rn + R is sometimes called the i-th residual

of F.  The terminology derives from the fact that a common problem is to fit a

model g(t,x) to data y, in which case the fi are of the form
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fi(x) = Yi - g(ti,x) ,

where Yi is measured at ti and x is the set of fit parameters.

In  this  notation  a  system of nonlinear  equations  is  specified  by  a

function F: Rn + Rn, and a solution vector x* in Rn is such that

F(x*) =0.

Similarly, a nonlinear least squares problem is specified by a function

F: Rn + Rm with m 1 n, and a solution vector x* in Rn is such that

IIF(x*)il < #F(x)il for  x E N(x*) ,

where N(x*)  is a neighborhood of x*. If N(x*)  is the entire domain of

definition of the function, then x* is a global solution; otherwise, x* is a

local solution.

Some  of  the  MINPACK-1  algorithms  require  the  specification  of  the

Jacobian matrix of the mapping F: Rn + Rm; that is, the m by n matrix F'(x)

whose (i,j) entry is

3fi(X)
3X.

J

A related concept is the gradient of a function f: Rn + R, which is the

mapping Vf: Rn + Rn defined by

af(x) 
3x

1

3 f(x) 1
Vf(x) =    3x2

af(x)  
3x  In I

Note that the i-th row of the Jacobian matrix F'(x) is the gradient Vfi(x) of
the i-th residual.
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It is well-known that if x* is a solution of the nonlinear least squares

problem, then x* solves the system of nonlinear equations

m

  fi(x)Vfi(x) =0.
i=1

In terms of the Jacobian matrix this implies that

F'(x*)TF(x*) =0,

and shows that at the solution the vector of residuals is orthogonal to the

columns  of  the  Jacobian matrix. This  orthogonality  condition  is  also

satisfied  at  maximizers  and  saddle  points,  but  algorithms  usually  take

precautions to avoid these critical points.

2.2  Overview of the Algorithms

Consider a mapping F: Rn + R , where m=n for systems of nonlinear

equations and m> n for nonlinear  least squares problems. The MINPACK-1

algorithms in these two problem areas seek a solution x* of the problem

(1) minIUF(x)#: x E Rn} .

In particular, if m=n i t i s expected that F(x*) =0.

Our initial description of the algorithms will be at the macroscopic

level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation x = x0 to

the solution of the problem.  The algorithm then determines a correction p to

x that produces a sufficient decrease in the residuals of F at the new point

x+p; it then sets

X t=X+P

and begins a new iteration with x+ replacing x.

A sufficient decrease in the residuals implies, in particular, that

#F(x+p)# < #F(x)# ,

--1
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and thus the algorithms guarantee that

UF(x )# < IF(x)# .

The correction p depends upon a diagonal scaling matrix D, a step bound
8, and an approximation J to the Jacobian matrix of F at x.  Users of the core

subroutines can specify initial values D  and bo; in the easy-to-use drivers

Do and 80 are set internally.   If the user is providing the Jacobian matrix,

then Jo = F'(xo); otherwise the algorithm sets J  to a forward difference

approximation to F'(xo).

To compute p, the algorithm solves (approximately) the problem

(2) min{lif+Jpil : IIDPII < 8} ,

where f is the m-vector of residuals of F at x. If the solution of this

problem does not provide a suitable correction, then 8 is decreased and, if

appropriate, J is updated. A new problem is now solved, and this process is

repeated (usually only once or twice) until a p is obtained at which there is

sufficient decrease in the residuals, and then x is replaced by x+p.  Before

the start of the next iteration, D, A, and J are also replaced.

The motivation for using (2)  to obtain the correction p is that for

appropriate choices of J and 8, the solution of (2) is an approximate solution

of

min{lIF(x+p)11: 11 DPI' 3 8} 0

It follows that if there is a solution x* such that

(3) ID(x-x*)11 <A,

then x+p is close to x*. If this is not the case,  then at least x+p is a

better approximation to x* than x. Under reasonable conditions, it can be

shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least

squares problems differ, for example, in the manner in which the correction p
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is  obtained  as  an  approximate  solution of (2). The nonlinear equations

algorithm obtains  a   p that minimizes 11 f+Jpll  in a two-dimensional subspace  of

the ellipsoid {p: #DPI i 8}.  The nonlinear least squares algorithm obtains a

p that is the exact solution of (2) with a small (10%) perturbation of 8.

Other differences in the algorithms include convergence criteria (Section 2.3)

and the manner in which J is computed (Section 2.4).

It is appropriate to close this overview of the algorithms by discussing

two of their limitations.  First, the algorithms are limited by the precision

of the computations. Although the algorithms are globally convergent under

reasonable  conditions,  the  convergence  proofs  are  only  valid  in  exact

arithmetic and the algorithms may fail in finite precision due to roundoff.

This implies that the algorithms tend to perform better in higher precision.

It also implies that the calculation of the function and the Jacobian matrix

should be as accurate as possible and that improved performance results when

the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To

illustrate this point, consider

3
F(x) =x  -3 x+1 8.

In this case, problem (1) has the global solution x* = -3 with F(x*) = 0 and

the local solution x* = 1 with F(x*) = 16; depending on the starting point,

the algorithms may converge either to the global solution or to the local

solution.

2.3  Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear

equations is based on an estimate of the distance between the current approxi-

mation x and an actual  solution x* of the problem. If D is the current

scaling  matrix,  then  this  convergence  test  (X-convergence)  attempts  to

guarantee that

(1) ID(x-x*)Il < XTOL•#Dx*11 ,

where XTOL is a user-supplied tolerance.
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There  are  three  convergence  tests  in  the  MINPACK-1  algorithms  for

nonlinear least squares problems. One test is again for X-convergence, but

the main convergence test is based on an estimate of the distance between the

Euclidean norm #F(x)U of the residuals at the current approximation x and the

optimal value 1IF(x*)11 at an actual solution x* of the problem. This conver-

gence test (F-convergence) attempts to guarantee that                                   1

(2) IF(x)# < (1 + FTOL) UF(x*)8 ,

where FTOL is a second user-supplied tolerance.

The  third  convergence  test  for  the  nonlinear  least  squares  problem

(G-convergence) guarantees that

f laTfl

(3)              max  H fil : 1 -S i i 1 < GTOL ,
where  al'a2,...,an  are  the  columns  of  the  current  approximation  to  the

Jacobian matrix,  f is  the vector of residuals,  and GTOL is a third user-

supplied tolerance.

Note that individual specification of the above three tolerances for the

nonlinear least squares problem requires direct user call of the appropriate

core subroutine. The easy-to-use driver only accepts the single value TOL.

It then internally sets FTOL = XTOL = TOL and GTOL = 0.

The X-convergence condition (1) is a relative error test; it thus fails

when x* =0 unless x=0 also. Also note that if (1) is satisfied with
XTOL = 10-k, then the larger components of Dx have k significant digits, but

smaller components may not be as accurate. For example, if D is the identity

matrix, XTOL = 0.001, and

x* = (2.0, 0.003) ,

then

x = (2.001, 0.002)

satisfies (1), yet the second component of x has no significant digits.  This
may or may not be important.  However, note that if instead
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D = diag(1,1000) ,

then (1) is not satisfied even for XTOL = 0.1. These scaling considerations

can make  it  important  to choose D carefully. See Section 2.5 for more

information on scaling.

Since x* is unknown, the actual criterion for X-convergence cannot be

based on (1); instead it depends on the step bound A.  That is, the actual

convergence test is

8 < XTOL•#DxU .

The F-convergence condition (2) is a relative error test; it thus fails

when F(x*) = 0 unless F(x) = 0 also. It is for this reason that F-convergence

is not  tested  for systems of nonlinear equations where F(x*) = 0 is the

expected result. Also  note  that  if  (2)  is  satisfied with  FTOL = 10-k,

then #F(x)U has k significant digits,  but x may not be as accurate. For

example, if FTOL = 10-6 and

,(x) =  x   1)  .

then  x* = 1, #F(x*)8 = 1, and  if  x = 1.001  then  (2)  is  satisfied  with

FTOL = 10-6, but (1) is only satisfied with XTOL = 10-3.

In many least squares problems,  if FTOL = (XTOL)2 then X-convergence

implies F-convergence.  This result, however, does not hold if lIF(x*)11 is very

small.  For example, if

A-lj
F(x) = 1

0.0001' '

then x* = 1 and #F(x*)U = 0.0001, but if x = 1.001 then (1) is satisfied with

XTOL = 10 and yet
-3

1IF(x)11 > 101IF(x*)11

Since #F(x*)  is unknown, the actual criterion for F-convergence cannot

be literally (2); instead it is based on estimates of the terms in (2).  If f
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and f  are the vectors of residuals at the current solution approximation x

and at x+p, respectively, then the (relative) actual reduction is

ACTRED = (Ilfll -
Ilf 11)/Ilfll ,

while the (relative) predicted reduction is

PRERED = (Ilfll - Ilf+Jpll)/Ilfll .

The F-convergence test then requires that

PRERED < FTOL

IACTREDI < FTOL

ACTRED < 2•PRERED

all hold.

The X-convergence and F-convergence tests are quite reliable, but it is

important to note that their validity depends critically on the correctness of

the Jacobian. If the user is providing the Jacobian, he may make an error.

(CHKDER can be used to check the Jacobian.) If the algorithm is estimating

the Jacobian matrix, then the approximation may be incorrect if, for example,

the function is subject to large errors and EPSFCN is chosen poorly. (For

more  details  see  Section 2.4.) In  either  case  the  algorithm  usually

terminates suspiciously near the starting point; recommended action if this

occurs is  to rerun the problem from a different starting point.   If the

algorithm also terminates near the new starting.point, then it is very likely

that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances

are  too large. In general,  XTOL and FTOL should be smaller than 10-5;

recommended values for these tolerances are on the order of the square root of

the machine precision. As described in Section 1.7,  the single precision

value of the machine precision can be obtained from the MINPACK-1 function

SPMPAR and the double precision value from DPMPAR. Note, however, that on

some machines the square root of machine precision is larger than 10-5.
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The G-convergence test (3) measures the angle between the residual vector

and the columns of the Jacobian matrix and thus can be expected to fail if

either F(x*) = 0 or any column of F'(x*) is zero.  Also note that there is no

clear relationship between G-convergence and either X-convergence or

F-convergence. . Furthermore,  the G-convergence test detects other critical

points,  namely ·maximizers  and  saddle  points;  therefore,  termination with

G-convergence should be examined carefully.

An important property of the tests described above is that they are scale

invariant. (See Section 2.5 for more details on scaling.) Scale invariance

is a feature not shared by many other convergence tests. For example, the

convergence test

(4) 11  f 11      <    AFTO L     ,

where AFTOL is a user-supplied tolerance, is not scale invariant, and this

makes it difficult to choose an appropriate AFTOL. As an illustration of the

difficulty with this test, consider the function

F(x) = (3x - 10)exp(10xy .

On a computer with 15 decimal digits

1 F(x*)1 1 1,

where x* is  the closest machine-representable number to 10/3,  and thus a

suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can

do  this  by  setting  NPRINT  positive  in  the  call  to  the  respective  core

subroutine. (See Section 2.9 for more information on NPRINT.)  This provides

him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the

iteration sequence, and in this instance he might insert the following program

segment into FCN.



26

IF  (IFLAG  .NE.  0)  GO  TO  10

FNORM = ENORM(LFVEC,FVEC)

IF (FNORM .LE. AFTOL) IFLAG = -1

RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear

equations and LFVEC = M for nonlinear least squares problems.   It is also

assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.

2.4  Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix,  then the MINPACK-1

algorithms compute an approximation J. In the algorithms for nonlinear least

squares problems, J is always determined by a forward difference approxima-

tion,  while  in  the  algorithms  for  systems  of nonlinear  equations,  J  is

sometimes determined by a forward-difference approximation but more often by

an update formula of Broyden.  It is important to note that the update formula

is also used in the algorithms for systems of nonlinear equations where the

user is providing the Jacobian matrix, since the updating tends to improve the

efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian

matrix can be written

F(x+h.e.) - F(x)
(1) J J

h.        '
J

where ej is the j-th column of the identity matrix and hj is the difference

parameter. The  choice  of  hj  depends  on  the  precision of the function

evaluations, which is specified in the MINPACK-1 algorithms by the parameter

EPSFCN.  To be specific,

hj = (EPSFCN)4|xj|

unless xj = 0, in which case
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hj = (EPSFCN)4 .

In  the  easy-to-use  drivers  EPSFCN  is  set  internally  to  the  machine

precision (see Section 1.7), since these subroutines assume that the functions

can be evaluated accurately. In the core subroutines EPSFCN is a user-

supplied parameter; if there are errors in the evaluations of the functions,

then EPSFCN may need to be much larger than the machine precision. For

example, if  the  specification  of  the  function  requires  the  numerical

evaluation of an integral, then EPSFCN should probably be on the order of the

tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See

Section 2.5 for more details on scaling.)  A disadvantage of (1) is that it

assumes EPSFCN the same for each variable, for each component function of F,

and for each vector x.  These assumptions may make it difficult to determine a

suitable value for EPSFCN. The user who is uncertain of an appropriate value

of EPSFCN can run the algorithm with two or three values of EPSFCN and retain

the value that gives the best results. In general, overestimates are better

than underestimates.

The update formula of Broyden depends on the current approximation x, the

correction p, and J. Since

1

F(x+p) - F(x) =  f F'(x+ep)de p ,
0 -

it  is  natural  to  ask that the approximation J  at x+p satisfy the equation

J p = F(x+p) - F(x) ,

and  among  the  possible  choices  be  the  one  closest  to J. To  define  an

appropriate measure of distance, let D be the current diagonal scaling matrix

and define the matrix norm
\1

/ n /110.11 2\1

114'ID   =  1     f   {-d:-/  /1             '\\j=l \   J

where al,a2,···,an are the columns of
A. It is now easy to verify that the

solution of the problem
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min{ lij-JIID: Jp = F(x+p)-F(x)} ,

is given by

(F(x+p)-F(x)-Jp)(DTDP)T3+= 3 +        2
#Dp#

There are many properties of this formula that justify its use in algorithms

for systems of nonlinear equations, but a discussion of these properties lS

beyond the scope of this work.

2.5  Scaling

Scale invariance  is a desirable feature of an optimization algorithm.

Algorithms for systems of nonlinear equations and nonlinear least squares

problems are scale invariant if, given problems related by the change of scale

F(x) = aF(Dvx)
-1

xo = DV xo ,

where  a  is  a positive  scalar  and DV  is  a diagonal  matrix with  positive

entries, the approximations x and x gederated by the algorithms satisfy

-1
x = D -x .

V

Scale invariance is a natural requirement that can have a significant

effect on the implementation and performance of an algorithm. To the user

scale invariance means,  in particular, that he can work with either problem

and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the
initial choice of the scaling matrix satisfies

(1)
Do = aDVD0 ,

./

where Do and D  are the initial scaling matrices of the respective problems
./ -

defined  by F and xo and by F and x .  If the user of the core subroutines has
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requested internal scaling (MODE = 1), then the internal scaling matrix is set

to

diag(#all,#a2I''  '#anI  '

where ai is the i-th column of the initial Jacobian approximation, and (1)

holds. If  the user has stipulated external  scaling (MODE = 2),  then the

initial scaling matrix is specified by the contents of the array DIAG, and

scale invariance is only achieved if the user's choice satisfies (1).

There are certain cases in which scale invariance may be lost, as when

the Jacobian matrix at the starting point has a column of zeroes and internal

scaling is requested. In this case Do would have a zero element and be

singular, but this possibility  is not catered to in the current

implementation. Instead, the zero element is arbitrarily set to 1, preserving

nonsingularity but giving up scale invariance. In practice, however, these

cases seldom arise and scale invariance is usually maintained.

Our  experience  is  that  internal  scaling  is  generally  preferable  for

nonlinear least squares problems and external scaling for systems of nonlinear

equations.  This experience is reflected in the settings built into the easy-

to-use  drivers;  MODE = 1  is  specified  in  the  drivers  for  nonlinear  least

squares problems and MODE = 2 for systems of nonlinear equations. In the

latter case, Do is set to the identity matrix, a choice that generally works

out well in practice; if this choice is not appropriate, recourse to the core

subroutine would be indicated.

It is important to note that scale invariance does not relieve the user

of choosing an appropriate formulation of the problem or a reasonable starting

point. In particular, note that an appropriate formulatian may involve a

scaling of the equations or a nonlinear transformation of the variables and

that  the performance of the MINPACK-1  algorithms can be affected by these

transformations. For example, the  algorithm  for  systems  of  nonlinear

equations usually generates different approximations for problems defined by
-

functions F and F, where

F(x) = DEF(x) ,
X  =X
0 0
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and DE is a diagonal matrix with positive entries.  The main reason for this

is that the algorithm usually decides that x  is a better approximation than x

if

#F(x+)il < #F(x)il ,

and it is entirely possible that

11 F (x ) 8     >    11 F(x) 11      .

The  user  should  thus  scale his  equations  (i.e.,  choose D )  so  that  the

expected errors in the residuals are of about the same order of magnitude.

2.6  Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require  that  the user provide a subroutine  with
name of his choosing, say FCN,  to calculate the residuals of the function

F: Rn + Rm, where m=n for systems of nonlinear equations and m l n for

nonlinear least squares problems. Some of the algorithms also require that

FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix

be as accurate as possible.  It is also important that the coding of FCN be as

efficient  as  possible,  since  the  timing  of  the  algorithm  is  strongly

influenced by the time spent in FCN. In particular, when the residuals f.
1

have common subexpressions it is usually worthwhile to organize the computa-
tion so that these subexpressions need be evaluated only once. For example,

if the residuals are of the form

f.(x) = g(x) + h. (x) ,  1<i<m1                      1              -    -

with g(x) common to all of them, then the coding of FCN is best expressed in

the following form.

T = g(X)
For i = 1,2,...,m

fi(X) =T+ hi(X) .

As another example, assume that the residuals are of the form
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n

fi(x) =  I (aijcos(xj) + Bijsin(xj)) ,
j=1

where the a.· and B·· are given constants.   The following program segment
1 J        1J

evaluates the fi efficiently.

For i = 1,2,...,m

fi(x) = 0

For j = 1,2,...,n

Y = COS(X.)
J

c = sin(x.)
J

For i = 1,2,...,m

fi(x) = fi(x) + yaij + aBij '

If the user is providing the Jacobian matrix of the mapping F, then it is

important  that  its  calculation  also  be  as  efficient  as  possible.    In

particular,  when  the  elements  of  the  Jacobian  matrix  have  common  sub-

expressions,  it is usually worthwhile to organize the computation so that

these subexpressions need be evaluated only once.  For example, if

fi(x) = g(x) + hi(x) , 1<i<m,
- -

then the rows of the Jacobian matrix are

Vfi(x) = Vg(x) + Vhi(x) , 1<i<m,

and the subexpression Vg(x) is thus common to all the rows of the Jacobian

matrix.

As another example, assume that

n
fi(x) =  1 (aijcos(xj) + Bijain(x )) ,

j=1

where the a·· and Bij are given constants.  In this case,1J

3fi(X)
3 x.        1 J     J     1]     J

= - a..sin(x.) + B..cos(x.) ,
J
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and the following program segment evaluates the Jacobian matrix efficiently.

For j = 1,2,...,n

Y = COS(X.)
J

G = sin(x·)
J

For i = 1,2,...,m

3fi(X)
= -ca.. + YB.. .

3 x.        1]     1J
J

The previous example illustrates further the possibility of common sub-

expressions between the function and the Jacobian matrix. For the nonlinear

least squares algorithms advantage can be taken of this, because a call to FCN

to evaluate the Jacobian matrix at x is always preceded by a call to evaluate

the function at x. This  is  not  the  case  for  the  nonlinear  equations

algorithms.

To  specifically  illustrate  this  possibility  of  sharing  information

between function and Jacobian matrix, assume that

fi(x) = g(x)2 + hi(x)
, 1<i<m.

- -

Then the rows of the Jacobian matrix are

Vfi(x) = 2g(x)Vg(x) + Vhi(x) , 1<i<m,

and the coding of FCN is best done as follows.

If FUNCTION EVALUATION then

T = g(X)

Save T in COMMON

For i = 1,2,...,m

fi(X) = T2 + hi(x)

If JACOBIAN EVALUATION then

V = Vg(X)

For i = 1,2,...,m

Vfi(x) = 2Tv + Vhi(x) .
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2.7  Constraints

Systems of nonlinear equations and nonlinear least squares problems often

impose constraints on the solution. For example, on physical grounds it is

sometimes necessary that the solution vector have positive components.

At  present  there  are  no  algorithms  in MINPACK  that  formally  admit

constraints, but in some cases they can be effectively achieved with ad hoc

strategies. In this section we describe two strategies for restricting the

solution approximations to a region D of Rn.

The user has control over the initial approximation xo.  It may happen,

however, that x is in D but the algorithm computes a correction p such that

x+p is not in D. If this correction is permitted, the algorithm may never

recover;  that  is,  the approximations may now converge to an unacceptable

solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty

on the function if the algorithm attempts to step outside of D.  For example,

let ·P be any number such that

1 f i(x o)1      <11 , 1<i<m,

and in FCN define

fi(x) =U, 1<i<m
- -

whenever x does not belong to D. If FCN is coded in this way, a correction p

for which  x+p  lies outside of D will not decrease  the residuals  and  is

therefore not acceptable. It follows that this penalty on FCN forces all the

approximations x to lie in D.

Note that this strategy restricts all the corrections, and as a conse-

quence may lead to very slow convergence if the solution is near the boundary

of D. It usually suffices to only restrict the initial correction, and users

of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p  satisfies a bound

of the form
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#DOPO# < 8-0

where Do is a diagonal scaling matrix and 80 is a step bound.  The contents of

Do are governed by the parameter MODE.  If MODE = 1 then Do is internally set,

while if MODE = 2 then D  is specified by the user through the array DIAG.
The step bound Ao is determined from the parameter FACTOR.  By definition

A  = FACTOR•ID x I.
0              0 0  '

unless xo is the zero vector, in which case

8  = FACTOR .
0

It is clear from this definition that smaller values of FACTOR lead to smaller
steps. For a sufficiently small value of FACTOR (usually 0.01 suffices), an

improved point xo+po will be found that belongs to D.

Be aware that the step restriction is on Dopo and not on po directly.  A

small element of Do, which can be set by internal scaling when MODE = 1, may

lead to a large component in the correction p0.   In many cases it is not

necessary to control po directly, but if this is desired then MODE = 2 must be

used.

When MODE = 2,  the contents of Do are specified by the user, and this

allows direct control of p .  If, for example, it is desired to restrict the

components of p  to small relative corrections of the corresponding components

of xo (assumed nonzero), then this can be done by setting

Do =  „ag  T 17-'  Tt,-,  .0 0'  t)   .
where E. is the i-th component of x and by choosing FACTOR appropriately.1                            0'

To justify this choice, note that po satisfies

"Dopo"   Ao = FACTOR' 11Doxoll ,

and that the choice of Do guarantees that
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U D x i i=n   .
00

Thus, if P. is the i-th component of po, then
1

|P.| < n5 FACTOR•IEil ,1 -

which justifies the choice of Do.

2.8  Error Bounds

A problem of general interest is the determination of error bounds on the

components of a solution vector. It is beyond the scope of this work to

discuss this topic in depth, so the discussion below is limited to the compu-

tation of bounds on the sensitivity of the parameters, and of the covariance

- matrix. The discussion is in terms of the nonlinear least squares problem,

but some of the results also apply to systems of nonlinear equations.

Let F: Rn + Rm define a nonlinear least squares problem (m 1 n), and let

x* be a solution. Given E > 0,  the problem is to determine sensitivity

(upper) bounds 01'02'...'an such that, for each i, the condition

Ix.-x*l < 0. , with x. =x* for j t i,
1 1 -1 J J

implies that

#F(x)U < (1 + E)UF(x*)U .

Of particular interest are values of ai which are large relative to |xi I,

since then the residual norm UF(x)U is insensitive to changes in the i-th

parameter and may therefore indicate a possible deficiency in the formulation

of the problem.

A first order estimate of the sensitivity bounds Gi shows that

(1) G. = ERI1 (  ZIF(x*)il   

1                       l F '  (x* ) 'e.  11   1     '1 
where F'(x*) is the Jacobian matrix of F at x* and ei is the i-th column of

the identity matrix.   Note that if IF'(x*)0eil is small relative to #F(x*)U,

then the residual norm is insensitive to changes in the i-th parameter.
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If x is an approximation to the solution x* and J is an approximation to

F'(x*), then the bounds (1) can usually be replaced by

(2) (  = £4 (#F(x)U\
1      I UJe.#  1

\1/

The MINPACK-1 nonlinear least squares programs (except LMDIFl) return enough
information to compute the sensitivity bounds (2). On a normal exit, these

programs return F(x) and part of the QR decomposition of J; namely, an upper

triangular matrix R and a permutation matrix P such that

(3) JP = QR

for some matrix Q with orthogonal columns.  The vector F(x) is returned in the

array FVEC and the matrix R is returned in the upper triangular part of the

array FJAC. The permutation matrix P is defined by the contents of the

integer array IPVT; if

IPVT = (p(1),p(2),...,p(n)) ,

then the j-th column of P is the p(j)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting

that (3) implies that

Jep(j) = QRej ,

and hence,

il Je 11   =  11 Re . 11P(j)       1

The following loop uses this relationship to store nJe£# in the E-th position

of an array FJNORM; with this information it is then easy to compute the

sensitivity bounds (2).

DO 10 J = 1, N

L = IPVT(J)

FJNORM(L) = ENORM(J,FJAC(l,J))

10    CONTINUE
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This loop assumes that ENORM and FJNORM have been declared to the precision of

the computation.

In addition to sensitivity bounds for the individual parameters, it is

sometimes desirable to determine a bound for the sensitivity of the residual

norm to changes in some linear combination of the parameters.  Given E>0 and

a vector v with Ilvll = 1, the problem is to determine a bound G such that

UF(x*+Gv)  < (1 + E)UF(x*)# .

A first order estimate of a is now

5 < #F(x*)I   C=E

<lIF'(x*)'vil  i

if HF'(x*)ov# is small relative to UF(x*)U, then a is large and the residual

norm is insensitive to changes in the linear combination of the parameters

specified by v.

For example, if the level set

{x:  1IF(x)11 S (1 + E)1IF(x*)11}

is as in Figure 3, then the residual norm, although sensitive to changes in x1

and x2, is relatively insensitive to changes along v = (1,1).

If the residual norm is relatively insensitive to changes in some linear

combination of the parameters,  then the Jacobian matrix at the solution is

nearly rank-deficient, and in these cases it may be worthwhile to attempt to

determine a set of linearly independent parameters. In some statistical

applications, the covariance matrix

(JTJ)-1

is used for this purpose.
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Figure 3

Subroutine COVAR, which appears at the end of this section, will compute

the covariance matrix. The computation of the covariance matrix from the QR

factorization of J depends on the relationship

(4) (JTJ)-1 = p(RTR)-lpT

which is an easy consequence of (3). Subroutine COVAR overwrites R with the

upper  triangular part  of (RTR)-1 and then computes  the covariance matrix

from (4).

Note that for proper execution of COVAR the QR factorization of J must

have used column pivoting.  This guarantees that for the resulting R

(5) Ir  I > Ir..1, k<i<j,
kk - i J
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thereby allowing a reasonable determination of the numerical rank of J.  Most

of the MINPACK-1 nonlinear least squares subroutines return the correct

factorization; the QR factorization in LMSTRl and LMSTR, however, satisfies

Jpl = Q1Rl

but Rl does not usually satisfy (5).   To obtain the correct factorization,

note that the QR factorization with column pivoting of Rl satisfies

R1P2 = Q2R2

where R2 satisfies (5), and therefore

J(PlP2) = (QiQ2)R2

is  the  desired  factorization  of J. The  program segment below uses  the

MINPACK-1 subroutine QRFAC to compute R2 from Rl.

DO 30 J = 1, N

JP1 =J+1

IF (N .LT. JP 1) GO TO 20

DO 10 I = JP 1, N

FJAC(I,J) = ZERO

10       CONTINUE

20    CONTINUE

30    CONTINUE

CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,WAl,WA2,WA3)

DO 40 J = 1, N

FJAC(J,J) = WAl(J)

L = IPVT2(J)

IPVT2(J) = IPVT1(L)

40    CONTINUE

Note that QRFAC sets the contents of the array IPVT2 to define the permutation

matrix P2, and the final  loop in the program segment overwrites IPVT2 to

define the permutation matrix PlP2.
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SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA) COVRO010
INTEGER N,LDR COVRO020
INTEGER IPVT(N) COVRO030
DOUBLE PRECISION TOL COVR0040
DOUBLE PRECISION R(LDR,N),WA(N) COVRO050

C ********** COVR0060
C                                                                       COVRO070
C     SUBROUTINE COVAR COVRO080
C                                                                       COVRO090
C     GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE COVRO 100

C     THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS COVRO 110
C                                                                       COVRO 120
C                    T                                                  COVRO 130
C           INVERSE(A *A) . COVR0140
C                                                                       COVRO150
C     THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM COVR0160
C     IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE COVR0170
C     QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF COVRO 180

C     A*P = n*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL COVRO190
C     COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL COVRO200
C     ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS COVRO210
C     THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P. COVR0220
C     THE COVARIANCE MATRIX IS THEN COMPUTED AS COVRO230
C                                                                       COVRO240
C                      T     T                                          COVRO250
C           P*INVERSE(R *R)*P COVRO260
C                                                                       COVRO270
C     IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE COVR0280
C     THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT COVRO290
C     COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES COVRO300
C     THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT COVRO310
C                                                                       COVRO320
C           ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) , COVR0330
C                                                                       COVRO340
C     THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO COVRO350
C     THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN COVRO360
C     AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO. COVRO370
C                                                                          COVRO380
C     THE SUBROUTINE STATEMENT IS COVRO390
C                                                                       COVRO400
C       SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA) COVR0410
C COVR0420
C WHERE COVRO430
C                                                                          COVRO440
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. COVRO450
C                                                                       COVRO460
C       R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST COVR0470

i C         CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT COVRO480
C         R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX. COVR0490
C                                                                          COVRO500
C       LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N COVRO510
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R. COVR0520
C                                                                          COVRO530
C       IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE COVRO540
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C         PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P COVRO550

C         IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. COVR0560

C                                                                          COVRO570
C       TOL IS A NONNEGATIVE INPUT VARIABLE USED TO DEFINE THE COVRO580

C         NUMERICAL RANK OF A IN THE MANNER DESCRIBED ABOVE. COVRO590

C                                                                       COVRO600
C       WA IS A WORK ARRAY OF LENGTH N. COVR0610

C                                                                       COVRO620
C     SUBPROGRAMS CALLED COVR0630

C                                                                       COVRO640
C       FORTRAN-SUPPLIED ... DABS COVR0650

C                                                                       COVRO660
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980. COVR0670

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE COVR0680

C                                                                       COVRO690
C ********** COVRO700

INTEGER I,II,J,JJ,K,KMl,L COVRO 710

LOGICAL SING COVR0720
DOUBLE PRECISION ONE,TEMP,TOLR,ZERO COVR0730

DATA ONE,ZERO /1.ODO,0.ODO/ COVR0740
C                                                                       COVRO750
C     FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R. COVR0760

C                                                                       COVRO770
TOLR = TOL*DABS(R(1,1)) COVR0780
L=0 COVR0790·

DO 40 K = 1, N COVRO800

IF (DABS(R(K,K)) .LE. TOLR) GO TO 50 COVRO810

R(K,K) = ONE/R(K,K) COVRO820
KM1 =K-1 COVR0830

IF (KM1 .LT. 1) GO TO 30 COVR0840

DO 20 J = 1, KM1 COVRO850       -

TEMP = R(K,K)*R(J,K) COVR0860

R(J,K) = ZERO COVR0870

DO 10 I = 1, J COVRO880

R(I,K) = R(I,K) - TEMP*R(I,J) COVR0890
10 CONTINUE COVRO900
20 CONTINUE COVRO910
30 CONTINUE COVRO920

L=K COVRO930
40 CONTINUE COVR0940

50 CONTINUE COVR0950

C                                                                       COVRO960
C     FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R COVR0970

C     IN THE FULL UPPER TRIANGLE OF R. COVR0980

C                                                                       COVRO990
IF (L .LT. 1) GO TO 110 COVR1000

DO 100 K = 1, L COVR1010
KM1 =K-1 COVR1020

IF (KM1 .LT. 1) GO TO 80 COVR1030

DO 70 J = 1, KM1 COVR1040
TEMP = R(J,K) COVR1050

DO 60 I = 1, J COVR1060

R(I,J) = R(I,J) + TEMP*R(I,K) COVR1070

60 CONTINUE COVR1080
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70 CONTINUE COVR1090
80 CONTINUE COVR1100

TEMP = R(K,K) COVR1110
DO 90 I = 1, K COVR1120

R(I,K) = TEMP*R(I,K) COVR1130
90 CONTINUE COVR1140

100 CONTINUE COVR1150
110 CONTINUE COVR1160

C COVR1170
C     FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX COVR1180
C     IN THE STRICT LOWER TRIANGLE OF R AND IN WA. COVR1190
C                                                                       COVR1200

DO 130 J = 1, N COVR1210
JJ = IPVT(J) COVR1220
SING = J .GT. L COVR1230
DO 120 I = 1, J                                                COVR1240

IF (SING) R(I,J) = ZERO COVR 1250
II = IPVT(I) COVR1260
IF (II .GT. JJ) R(II,JJ) = R(I,J) COVR1270
IF (II .LT. JJ) R(JJ,II) = R(I,J) COVR1280

120 CONTINUE COVR1290
WA(JJ) = R(J,J) COVR 1300

130 CONTINUE COVR1310
C                                                                       COVR1320
C     SYMMETRIZE THE COVARIANCE MATRIX IN R. COVR 1330
C                                                                       COVR1340

DO 150 J = 1, N COVR1350
DO 140 I = 1, J COVR 1360

R(I,J) = R(J,I) COVR1370
140 CONTINUE COVR 1380

R(J,J) = WA(J) COVR1390
150 CONTINUE COVR1400

RETURN COVR 1410
C                                                                       COVR1420
C     LAST CARD OF SUBROUTINE COVAR. COVR 1430
C                                                                       COVR1440

END COVR1450
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2.9  Printing

No  printing  is  done  in  any of  the MINPACK-1 subroutines. However,

printing of certain parameters through FCN can be facilitated with the integer

parameter NPRINT that is available to users of the core subroutines. For

these subroutines,  setting NPRINT positive results in special calls to FCN

with  IFLAG = 0  at  the  beginning of  the  first  iteration  and  every NPRINT

iterations thereafter and immediately prior to return.  On these calls to FCN,

the parameters X and FVEC are available for printing; FJAC is additionally

available if using LMDER.

Often it suffices to print some simple measure of the iteration progress,

and the Euclidean norm of the residuals is usually a good choice. This norm

can be printed by inserting the following program segment into FCN.

IF (IFLAG .NE. 0) GO TO 10

FNORM = ENORM(LFVEC,FVEC)

WRITE (---,1000) FNORM

1000 FORMAT (---)

RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear

equations and LFVEC = M for nonlinear least squares problems. It is also

assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.
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CHAPTER 3

Notes and References

This  chapter  provides  notes  relating  the  MINPACK-1  algorithms  and

software to other work.  The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many

respects from the original version. For example,  the "special iterations"

used  in  the  original  algorithm proved  to  be  inefficient  and  have  been

replaced. The updating method used is due to Broyden [1965]; the MINPACK-1

algorithm is a scaled version of the original. A comparison of an earlier

version of the MINPACK-1 algorithm with other algorithms for systems of non-

linear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and

modified by Marquardt [1963].   An advantage of the MINPACK-1 version is that

it avoids the difficulties associated with choosing the Levenberg-Marquardt

parameter,  and this allows a very strong global convergence result. The

MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the

ideas of Mor; [1977]. A comparison of an earlier version of the MINPACK-1

algorithm with other algorithms for nonlinear least squares problems has been

made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical

Algorithms Group (NAG) library.  An advantage of CHKDER is its generality; it

can  be  used  to  check Jacobians,  gradients,  and  Hessians  (second  deriva-

tives). To enable this generality,  CHKDER presumes no specific parameter

sequence for the function evaluation program, returning control instead to the

user.  This in turn makes necessary a second call to CHKDER for each check.

--
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MINPACK-1 Internal Subprograms                  ·                                       I

Subroutines DOGLEG and LMPAR are used to generate search directions in

the algorithms for systems of nonlinear equations and nonlinear least squares

problems, respectively. The algorithm used in DOGLEG is a fairly straight-
forward implementation of the ideas of Powell [1970], while LMPAR is a refined

.

version of the algorithm described by More [1977].  The LMPAR algorithm is the

more complicated;  in particular,  it requires the solution of a sequence of

linear least squares problems of special form. It is for this purpose that

subroutine QRSOLV is·used.

The algorithm used in ENORM is a simplified version of Blue's  [1978]

algorithm.  An advantage of the MINPACK-1 version is that it does not require

machine  constants;  a  disadvantage  is  that  nondestructive  underflows  are

allowed.

The banded Jacobian option in FDJACl is based on the work of Curtis,

Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK

(Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RlUPDT is based on the work of Gill, Golub, Murray,

and Saunders [1974].
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CHAPTER 4

Documentation

This  chapter  contains  the  double  precision  version of  the MINPACK-1

documentation; both single and double precision versions of the documentation

are available in machine-readable form with the MINPACK-1 package. The docu-

mentation appears in the following order:

Systems of nonlinear equations

HYBRDl, HYBRD, HYBRJ 1, HYBRJ

Nonlinear least squares problems

LMDIFl, LMDIF, LMDERl, LMDER, LMSTRl, LMSTR

Derivative checking

CHKDER
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Documentation for MINPACK subroutine HYBRDl

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRDl is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRD. The user must provide a subroutine which
calculates the functions. The Jacobian is then calculated by a
forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE HYBRD 1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
INTEGER N, INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRDl and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRDl.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRDl. In this case set
IFLAG to a negative integer.
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N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2  Number of calls to FCN has reached or exceeded
200*(N+1).

INFO = 3  TOL is too small. No further improvement in the,
approximate solution X is possible.

INFO = 4  Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(3*N+13))/2.

4. Successful completion.

The accuracy of HYBRDl is controlled by the convergence parame-
ter TOL. This parameter is used in a test which makes a compar-
ison between the approximation X and a solution XSOL. HYBRDl
terminates when the test is satisfied. If TOL is less than the
machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRDl only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions are reasonably well behaved.
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If this condition is not satisfied, then HYBRDl may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRDl with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).
\

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRDl usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRDl can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, errors in the functions, or lack of good prog-
ress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
TOL .LT. O.DO, or LWA .LT. (N*(3*N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRDl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRD, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 2. This situation should be unu-
sual because, as indicated below, lack of good progress is
usually diagnosed earlier by HYBRDl, causing termination with
INFO = 4.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative error.s in the functions are of the order of the
machine precision. If this is not the case, HYBRDl may fail
(usually with INFO = 4). The user should then use HYBRD
instead, or one of the programs which require the analytic
Jacobian (HYBRJ1 and HYBRJ).
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Lack of good progress. HYBRDl searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRDl from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRDl is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1 method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRDl to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRDl is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRDl will be strongly influenced by the time spent
in FCN.

Storage. HYBRDl requires (3*N**2 + 17*N)/2 double precision
-storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,FDJACl,HYBRD,
QFORM,QRFAC,RlMPYQ,RlUPDT

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.                                                                 1
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The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) = -1

-x(i-1) + (3-2*x(i))*x(i)         -2*x(i+1) = -1, i=2-8
-x(8) + (3-2*x(9))*x(9) = -1

C     **********
C
C     DRIVER FOR HYBRDl EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,N, INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),WA(180)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N=9
C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LWA = 180
C
C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL HYBRD 1(FCN,N,X,FVEC,TOL, INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
*        SX, 15H EXIT PARAMETER, 16X, I 10 //
*        5X, 27H FINAL APPROXIMATE SOLUTION // (5X, 3D15.7))

C
C     LAST CARD OF DRIVER FOR HYBRDl EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N),FVEC(N)

C



56

Page 6

C     SUBROUTINE FCN FOR HYBRDl EXAMPLE.
C

INTEGER K
DOUBLE PRECISION ONE,TEMP,TEMPl,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /0.DO,1.DO,2.DO,3.DO/

C
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMPl = ZERO
IF (K .NE. 1) TEMPl = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPl - TWO*TEMP2 + ONE

10 CONTINUE
RETURN

C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.701369OD+00 -0.6918656D+00
-0.665792OD+00 -0.5960342D+00 -0.4164121D+00
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Documentation for MINPACK subroutine HYBRD

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRD is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions. The Jacobian is then calculated by a for-
ward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE HYBRD(FCN,N,X, FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
*                 MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
*                 R, LR,QTF,WAl,WA2,WA3,WA4)
INTEGER N,MAXFEV,ML,MU,MODE,NPRINT, INFO,NFEV,LDFJAC,LR
DOUBLE PRECISION XTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),
*                 WAl(N),WA2(N),WA3(N),WA4(N)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
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user wants to terminate execution of HYBRD. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

ML is a nonnegative integer input variable which specifies the
number of subdiagonals within the band of the Jacobian matrix.
If the Jacobian is not banded, set ML to at least N - 1.

MU is a nonnegative integer input variable which specifies the
number of superdiagonals within the band of the Jacobian
matrix. If the Jacobian is not banded, set MU to at least
N - 1.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.
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NPRINT is an integer input variable that enables controlled        ·
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See

description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Relative error between two consecutive iterates is
at most XTOL.

INFO = 2 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 3  XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

INFO = 5 Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

R is an oUtput array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.
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4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRD termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRD only attempts to satisfy the
test defined by the machine precision. Further progress is not
usually possible.

The test assumes that the functions are reasonably well behaved.
If this condition is not satisfied, then HYBRD may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRD usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
XTOL .LT. O.DO, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
or FACTOR .LE. 0.DO, or LDFJAC .LT. N, or LR .LT. (N*(N+1))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRD. In this
case, it may be possible to remedy the situation by rerunning
HYBRD with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of 2VEC, and
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INFO is set to 2. This situation should be unusual because,
as indicated below, lack of good progress is usually diagnosed
earlier by HYBRD, causing termination with INFO = 4 or
INFO = 5.

Lack of good progress. HYBRD searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRD is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRD to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD will be strongly influenced by the time spent
in FCN.

Storage. HYBRD requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM, FDJACl,
QFORM,QRFAC,RlMPYQ,RlUPDT

«        FORTRAN-supplied . . . DABS,DMAXl,DMINl,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
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Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

The problem is to determine the values of x(1), x(2), ..., x (9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) = -1
-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8

-x(8) + (3-2*x(9))*x(9) = -1

C     **********
C
C     DRIVER FOR HYBRD EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,N,MAXFEV,ML,MU,MODE,NPRINT, INFO,NFEV,LDFJAC,LR,NWRITE
DOUBLE PRECISION XTOL,EPSFCN, FACTOR,FNORM
DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),QTF(9),
*                 WA1(9),WA2(9),WA3(9),WA4(9)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N=9
C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LR = 45

C

C     SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

XTOL = DSQRT(DPMPAR(1))
C

MAXFEV = 2000
ML = 1
MU = 1
EPSFCN = O.DO
MODE = 2
DO 20 J = 1, 9

DIAG(J) = 1.DO
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20 CONTINUE
FACTOR = 1.D2
NPRINT = 0

C
CALL HYBRD(FCN,N,X, FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
*           MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
*           R,LR,QTF,WAl,WA2,WA3,WA4)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
*        5X,31H NUMBER OF FUNCTION EVALUATIONS,I 10 //
*        SX, 15H EXIT PARAMETER, 16X, I 10 //
*        5X, 27H FINAL APPROXIMATE SOLUTION // (5X, 3D15.7))

C
C     LAST CARD OF DRIVER FOR HYBRD EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC, IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N),FVEC(N)

C
C     SUBROUTINE FCN FOR HYBRD EXAMPLE.
C

INTEGER K
DOUBLE PRECISION ONE,TEMP,TEMPl,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /0.DO,1.DO,2.DO,3.DO/

C
IF (IFLAG .NE. 0) GO TO 5

C
C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMPl = ZERO
IF (K .NE. 1) TEMPl = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPl - TWO*TEMP2 + ONE

10 CONTINUE
RETURN

C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 14



64

Page 8

EXIT PARAMETER                          1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.701369OD+00 -0.6918656D+00
-0.66579,20D+00 -0.5960342D+00 -0.4164121D+00
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Documentation for MINPACK subroutine HYBRJ1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ1 is to find a zero of a system of N non-

linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear

equation solver HYBRJ. The user must provide a subroutine which
calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJ 1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,WA,LWA)
INTEGER N,LDFJAC, INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declaredin an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PREC I S I O N   X(N) , FVEC (N) , FJAC ( LDFJAC,N)
----------

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
----------

RETURN
END

The value of IFLAG should not be changed by FCN unless the
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user wants to terminate execution of HYBRJ1. In this case set      
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2  Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 3  TOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4  Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(N+13))/2.

4. Successful co,mpletion.

The accuracy of HYBRJ1 is controlled by the convergence
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parameter TOL. This parameter is used in a test which makes a
comparison between the approximation X and a solution XSOL.
HYBRJ1 terminates when the test is satisfied. If TOL is less
than the machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRJ1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ1 may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ1 with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRJ1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
LDFJAC .LT. N, or TOL .LT. O.DO, or LWA .LT. (N*(N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRJ, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
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by the progress of FVEC, and INFO is set to 2. This situation
should be unusual because, as indicated below, lack of good
progress is usually diagnosed earlier by HYBRJ1, causing ter-
mination with INFO = 4.

Lack of good progress. HYBRJ1 searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ1 from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ1 is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1 method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
calculated at the starting point, but it is not recalculated
until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1 to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ1 is about 11.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ1 will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ1 requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,HYBRJ,
QFORM,QRFAC,RlMPYQ,RlUPDT

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MINO,MOD

8. References.
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M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) -1

-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8
-x(8) + (3-2*x(9))*x(9) = -1

C     **********
C
C     DRIVER FOR HYBRJ 1 EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,N,LDFJAC, INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),WA(99)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N=9
C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LWA = 99

C
C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL HYBRJ 1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL, INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS,D 15.7 //
*        5X, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

A               -
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C
C     LAST CARD OF DRIVER FOR HYBRJ 1 EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

C
C     SUBROUTINE FCN FOR HYBRJ1 EXAMPLE.
C

INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMPl,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.DO,1.DO,2.DO,3.DO,4.DO/

C
IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N

TEMP = (THREE - TWO*X (K)) *X (K)
TEMPl = ZERO
IF (K .NE. 1) TEMPl = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPl - TWO*TEMP2 + ONE

10 CONTINUE
GO TO 50

20 CONTINUE
DO 40 K = 1, N

DO 30 J = 1, N
FJAC(K,J) = ZERO

30 CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO

40 CONTINUE
50 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

EXIT PARAMETER                          1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.701369OD+00 -0.6918656D+00
-0.665792OD+00 -0.5960342D+00 -0.4164121D+00

A
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Documentation for MINPACK subroutine HYBRJ

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJ(FCN,N,X, FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
*                 MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,R,LR,QTF,
*                 WAl,WA2,WA3,WA4)
INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV,LR
DOUBLE PRECISION XTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N),
*                 WAl(N),WA2(N),WA3(N),WA4(N)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

 
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.                  1

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. FVEC and
FJAC should not be altered. If NPRINT is not positive, no
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special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Relative error between two consecutive iterates is
' at most XTOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 3  XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

INFO = 5 Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.

4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRJ termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRJ only attempts to satisfy the
test defined by the machine precision. Further progress is not
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usually possible.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRJ usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
LDFJAC .LT. N, or XTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO, or LR .LT. (N*(N+1))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ. In this
case, it may be possible to remedy the situation by rerunning
HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 2. This situation should be unusual
because, as indicated below, lack of good progress is usually
diagnosed earlier by HYBRJ, causing termination with INFO = 4
or INFO = 5.

Lack of good progress. HYBRJ searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
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doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is calcu-
lated at the starting point, but it is not recalculated until
the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ is about 11.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,
QFORM,QRFAC,RlMPYQ,RlUPDT

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.
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The problem is to determine the values of x(1), x(2), ..., x(9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) -1
-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8

-x(8) + (3-2*x(9))*x(9) = -1

C     **********
C
C     DRIVER FOR HYBRJ EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,N, LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV, LR,NWRITE
DOUBLE PRECISION XTOL,FACTOR,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),
*                 WA1(9),WA2(9),WA3(9),WA4(9)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N=9
C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LR = 45

C
C     SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

XTOL = DSQRT(DPMPAR(1))
C

MAXFEV = 1000
MODE = 2
DO 20 J = 1, 9

DIAG(J) = 1.DO
20 CONTINUE

FACTOR = 1.D2
NPRINT = 0

C
CALL HYBRJ(FCN,N,X, FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
*           MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,R,LR,QTF,
*           WAl,WA2,WA3,WA4)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=l,N)
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STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

*        SX, 31H NUMBER OF FUNCTION EVALUATIONS, I 10 //
*        5X, 31H NUMBER OF JACOBIAN EVALUATIONS, I 10 //
*        SX, 15H EXIT PARAMETER, 16X, I 10 //
*        5X, 273 FINAL APPROXIMATE SOLUTION // (5X, 3015.7))

C
C     LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

C
C SUBROUTINE FCN FOR HYBRJ EXAMPLE.
C

INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMPl,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.DO,1.DO,2.DO,3.DO,4.DO/

C
IF (IFLAG .NE. 0) GO TO 5

C
C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMPl = ZERO
IF (K .NE. 1) TEMPl = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPl - TWO*TEMP2 + ONE

10 CONTINUE
GO TO 50

20 CONTINUE
DO 40 K = 1, N

DO 30 J = 1, N
FJAC(K,J) = ZERO

30 CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO

40 CONTINUE
50 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.
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FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 11

NUMBER OF JACOBIAN EVALUATIONS         1

EXIT PARAMETER                          1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.701369OD+00 -0.6918656D+00
-0.665792OD+00 -0.5960342D+00 -0.4164121D+00
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Documentation for MINPACK subroutine LMDERl

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDERl is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDER. The user must provide a
subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
*                  INFO, IPVT,WA,LWA)
INTEGER M,N,LDFJAC, INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDERl and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDERl.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X, FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDERl. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T     T            T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3  Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

L_
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INFO = 5  Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 6  TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMDERl is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDERl terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDERl only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible.  Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDERl may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDERl with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this

condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also
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satisfied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDERl) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDERl, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDERl can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or TOL .LT. O.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDERl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDER, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,
it may be helpful to restart LMDERl, thereby forcing it to
disregard old (and possibly harmful) information.
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6. Characteristics of the algorithm.

LMDERl is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDERl and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDERl to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDERl is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and M*(N**2) to process each evaluation of the Jacobian (call
to FCN with IFLAG = 2). Unless FCN can be evaluated quickly,
the timing of LMDERl will be strongly influenced by the time
spent in FCN.

Storage. LMDERl requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

- 7. Subprograms required.

... FCNUSER-supplied ...

MINPACK-supplied ... DPMPAR,ENORM,LMDER,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data
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y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     **********
C
C     DRIVER FOR LMDERl EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,M,N,LDFJAC, INFO,LWA,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 15
LWA = 30

C
C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
*            INFO, IPVT,WA, LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
*        5X, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // 5X,3015.7)

C
C     LAST CARD OF DRIVER FOR LMDERl EXAMPLE.
C
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END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

C
C     SUBROUTINE FCN FOR LMDERl EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP 1*TMP2/TMP4
FJAC(I,3) = TMP 1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER(FCN,M,N,X, FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
*                 MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,
*                 IPVT,QTF,WAl,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
*                 WAl(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T     T            T
P *(JAC *JAC)*P = R *R,

Where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal. part of FJAC
contains' information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.
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DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X, FVEC, and FJAC available for printing.
FVEC and FJAC should not be altered. If NPRINT is not posi-
tive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See

description of FCN.  Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2  Relative error between two consecutive iterates is
at most XTOL.

INFO = 3  Conditions for INFO 1 and INFO = 2 both hold.

INFO = 4  The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  XTOL is too small. No further improvement in the

approximate solution X is possible.

INFO = 8  GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.
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NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDER is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDER terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDER only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
precision.



91

Page 5

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the

machine precision.

Third convergence test. This test is satisfied when the cosine

of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-

tionship between this test and the accuracy of LMDER, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,

termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDER can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. O.DO, or
XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER. In this

case, it may be possible to remedy the situation by rerunning
LMDER with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. In this case, it may be helpful to
restart LMDER with MODE set to 1.

6. Characteristics of the algorithm.

LMDER is a modification of the Levenberg-Marquardt algorithm.
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Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDER and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDER to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDER is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
M*(N**2) to process each evaluation of the Jacobian (call to
FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the
timing of LMDER will be strongly influenced by the time spent
in FCN.

Storage. LMDER requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DPMPAR,ENORM,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
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where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     **********
C
C     DRIVER FOR LMDER EXAMPLE.
C     DOUBLE PRECISION VERSION
C                                                                                      I
C     **********

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
*                 WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO

C
LDFJAC = 15

C
C     SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C     AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
C     REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = O.DO

C
MAXFEV = 400
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
*           MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,
*           IPVT,QTF,WAl,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D 15.7 //
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*        SX,31H NUMBER OF FUNCTION EVALUATIONS,I 10 //
*        SX, 31H NUMBER OF JACOBIAN EVALUATIONS,I 10 //
*        5X, 15H EXIT PARAMETER, 16X, I 10 //
*        5X, 27H FINAL APPROXIMATE SOLUTION // 5X,3015.7)

C
C     LAST CARD OF DRIVER FOR LMDER EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

C
C     SUBROUTINE FCN FOR LMDER EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
IF (IFLAG .NE. 0) GO TO 5

C
C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP 1*TMP2/TMP4
FJAC(I,3) = TMP 1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END
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Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS         6

NUMBER OF JACOBIAN EVALUATIONS         5

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMSTRl

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTRl is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage.  This
is done by using the more general least-squares solver LMSTR.
The user must provide a subroutine which calculates the func-
tions and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
*                   INFO, IPVT,WA, LWA)
INTEGER M,N,LDFJAC, INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTRl and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTRl.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN
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END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTRl. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T     T            T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1  Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3  Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4  FVEC is orthogonal to the columns of the Jacobian to
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machine precision.

INFO = 5  Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 6  TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMSTRl is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMSTRl terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMSTRl only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTRl may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTRl with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
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INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMSTRl) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative· errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMSTRl, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMSTRl can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or TOL .LT. O.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTRl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMSTR, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,
it may be helpful to restart LMSTRl, thereby forcing it to
disregard old (and possibly harmful) information.
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6. Characteristics of the algorithm.

LMSTRl is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMSTRl and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMSTRl to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTRl is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.5*(N**2) to process each row of the Jacobian (call to
FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly,
the timing of LMSTRl will be strongly influenced by the time
spent in FCN.

Storage. LMSTRl requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DPMPAR,ENORM,LMSTR,LMPAR,QRFAC,QRSOLV,
RWUPDT

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15
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to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     **********
C
C     DRIVER FOR LMSTRl EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,M,N,LDFJAC, INFO,LWA,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 3
LWA = 30

C
C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C     UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
*            INFO, IPVT,WA,LWA)

FNORM = ENORM (M, FVEC )-
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
*        5X, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
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C     LAST CARD OF DRIVER FOR LMSTRl EXAMPLE.

END
SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

C
C     SUBROUTINE FCN FOR LMSTRl EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
I = IFLAG - 1

TMPl = I
TMP2 = 16 - I

3        TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJROW(1) = -1.DO
FJROW(2) = TMP 1*TMP2/TMP4
FJROW(3) = TMP 1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMSTR

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. The
user must provide a subroutine which calculates the functions
and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
*                 MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,
*                 IPVT,QTF,WAl,WA2,WA3,WA4)
INTEGER M,N, LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
*                 WAl(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTR.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN
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END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T     T            T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
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MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG. is

internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the             
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See

description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2  Relative error between two consecutive iterates is
at most XTOL.

INFO = 3  Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4  The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8  GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.
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Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

. 4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMSTR terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMSTR only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
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precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMSTR, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or FTOL .LT. O.DO, or
XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR. In this
case, it may be possible to remedy the situation by rerunning
LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. In this case, it may be helpful to
restart LMSTR with MODE set to 1.

b. Characteristics of the algorithm.



110

Page 6

LMSTR is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMSTR and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMSTR to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
1.5*(N**2) to process each row of the Jacobian (call to FCN
with IFLAG .GE. 2). Unless FCN can be evaluated quickly , the
timing of LMSTR will be strongly influenced by the time spent
in FCN.

Storage. LMSTR requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally      I
declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DPMPAR,ENORM, LMPAR,QRFAC,QRSOLV,RWUPDT

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data

y = (0.14,0 .18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),
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where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     *4********
C
C     DRIVER FOR LMSTR EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO,NFEV,NJEV,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),DIAG(3),QTF(3),
*                 WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 3

C
C     SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C     AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
C     REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = O.DO

C
MAXFEV = 400
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
*           MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,
*           IPVT,QTF,WAl,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
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*        5X,31H NUMBER OF FUNCTION EVALUATIONS,I 10 //
*        5X,31H NUMBER OF JACOBIAN EVALUATIONS,I 10 //
*        SX, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C     LAST CARD OF DRIVER FOR LMSTR EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

C
C     SUBROUTINE FCN FOR LMSTR EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
IF (IFLAG .NE. 0) GO TO 5

C
C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
I = IFLAG - 1

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJROW(1) = -1.DO
FJROW(2) = TMP 1*TMP2/TMP4
FJROW(3) = TMP 1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END
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Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS         6

NUMBER OF JACOBIAN EVALUATIONS         5

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMDIFl

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIFl is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDIF. The user must provide a
subroutine which calculates the functions. The Jacobian is then
calculated by a forward-difference approximation.

2. Subroutine aid type statements.

SUBROUTINE LMDIF 1(FCN,M,N,X,FVEC,TOL, INFO, IWA,WA,LWA)
INTEGER M,N, INFO,LWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIFl and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIFl.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)
--------

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIFl. In this case set
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IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1  Algorithm estimates that the relative error in the
sum of squhres is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3  Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

INFO = 5  Number of calls to FCN has reached or exceeded
200*(N+1).

INFO = 6  TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IWA is an integer work array of length N.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
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M*N+5*N+M.

4. Successful completion.

The accuracy of LMDIFl is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDIFl terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDIFl only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIFl may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIFl with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDIFl) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDIFl, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Also, errors in the functions (see below) may
result in the test being satisfied at a point not close to the
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minimum. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDIFl can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or errors in the functions.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or TOL .LT. O.DO, or LWA .LT. M*N+5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIFl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDIF, which
includes in its calling sequence the step-length-governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 5. In this case, it may be help-
ful to restart LMDIFl, thereby forcing it to disregard old
(and possibly harmful) information.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, LMDIFl may fail
(usually with INFO = 4). The user should then use LMDIF
instead, or one of the programs which require the analytic
Jacobian (LMDERl and LMDER).

6. Characteristics of the algorithm.

LMDIFl is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDIFl and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDIFl to solve a given problem
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depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIFl is about N**3 to process
each evaluation of the functions (one call to FCN) and
M*(N**2) to process each approximation to the Jacobian (N
calls to FCN). Unless FCN can be evaluated quickly, the tim-
ing of LMDIFl will be strongly influenced by the time spent in
FCN.

Storage. LMDIFl requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMDIF,LMPAR,
QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data

y = (0.14,0 .18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     **********
C
C     DRIVER FOR LMDIFl EXAMPLE.
C     DOUBLE PRECISION VERSION
C
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C     **********
INTEGER J,M,N, INFO,LWA,NWRITE
INTEGER IWA(3)
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(3),FVEC(15),WA(75)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LWA 75

C

C     SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C     THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL LMDIF 1(FCN,M,N,X,FVEC,TOL, INFO, IWA,WA,LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D 15.7 //
*        5X, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C     LAST CARD OF DRIVER FOR LMDIFl EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)

C
C     SUBROUTINE FCN FOR LMDIFl EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
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DO 10 I = 1, 15
TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
RETURN

C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER                          1

FINAL APPROXIMATE SOLUTION

0.8241057D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine LMDIF

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIF is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions. The Jacobian is then cal-
culated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
*                 DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
*                  IPVT,QTF,WAl,WA2,WA3,WA4)
INTEGER M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
*                 WAl(N),WA2(N),WA3(N),WA4(M)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should·be written as follows.

SUBROUTINE FCN(M,N,X, FVEC, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END
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The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is
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specified by the input DIAG. Other values of MODE are equiva-
lent to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0  Improper input parameters.

INFO = 1 Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

INFO = 2  Relative error between two consecutive iterates is
at most XTOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4  The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

INFO = 5 Number of calls to FCN has reached or exceeded
MAXFEV.

INFO = 6 FTOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7  XTOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 8  GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that
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T     T            T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA# is a work array of length M.

4. Successful completion.

The accuracy of LMDIF is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDIF terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDIF only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIF with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
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recommended value for FTOL is the square root of the machine
precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts      I
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDIF, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. O.DO, or
XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIF. In this
case, it may be possible to remedy the situation by rerunning
LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and
INFO is set to 5. In this case, it may be helpful to restart
LMDIF with MODE set to 1.
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6. Characteristics of the algorithm.

LMDIF is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDIF and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDIF to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF is about N**3 to process each
evaluation of the functions (one call to FCN) and M*(N**2) to
process each approximation to the Jacobian (N calls to FCN).
Unless FCN can be evaluated quickly, the timing of LMDIF will
be strongly influenced by the time spent in FCN.

Storage. LMDIF requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ...... FCN

MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAXl,DMINl,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G..A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data
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y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)).  The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C     **********
C
C     DRIVER FOR LMDIF EXAMPLE.
C     DOUBLE PRECISION VERSION
C
c     **********

INTEGER J,M,N,MAXFEV,MODE,NPRINT, INFO,NFEV,LDFJAC,NWRITE

INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR, FNORM
DOUBLE PRECISION X(3),FVEC(15),DIAG(3),FJAC(15,3),QTF(3),
*                 WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 15

C
C     SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C     AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE

C     REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = 0.DO

C
MAXFEV = 800
EPSFCNF= O.DO
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMDIF(FCN,M,N,X, FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
*           DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,

*           IPVT,QTF,WAl,WA2,WA3,WA4)
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FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV, INFO, (X(J),J=l,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
*        5X,31H NUMBER OF FUNCTION EVALUATIONS, 110 //
*        SX, 15H EXIT PARAMETER, 16X, I 10 //
*        5X,27H FINAL APPROXIMATE SOLUTION // 5X, 3D15.7)

C
C     LAST CARD OF DRIVER FOR LMDIF EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M)

C
C     SUBROUTINE FCN FOR LMDIF EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C

IF (IFLAG .NE. 0) GO TO 5
C

C     INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
RETURN

C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 21

EXIT PARAMETER                         1

FINAL APPROXIMATE SOLUTION
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0.8241057D-01 0.1133037D+01 0.2343695D+01
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Documentation for MINPACK subroutine CHKDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear
functions in N variables, evaluated at a point X, for consis-
tency with the funttions themselves. The user must call CHKDER
twice, firs.t·with MODE = 1 and then with MODE = 2.

2. Subroutine and type statements.

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
INTEGER M,N,LDFJAC,MODE                                                  
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
*                 ERR(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to CHKDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from CHKDER.

M is a positive integer input variable set to the number of
functions.

N i·s a positive integer input variable set to the number of
variables.

X is an input array of length N.

FVEC is an array df length M. On input when MODE = 2, FVEC must
contain the functions evaluated at X.

FJAC is an M by N array. On input when MODE = 2 , the rows of
FJAC must contain the gradients of the respective functions
evaluated at X.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE 1, XP is set
to a neighboring point of X.
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FVECP is an array of length M. On input when MODE = 2, FVECP
must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and
2 on the second. Other values of MODE are equivalent to
MODE = 1.

ERR is an array of length M. On output when MODE = 2, ERR con-
tains measures of correctness of the respective gradients. If
there is no severe loss of significance, then if ERR(I) is 1.0
the I-th gradient is correct, while if ERR(I) is 0.0 the I-th
gradient is incorrect. For values of ERR between 0.0 and 1.0,
the categorization is less certain. In general, a value of
ERR(I) greater than 0.5 indicates that the I-th gradient is
probably correct, while a value of ERR(I) less than 0.5 indi-
cates that the I-th gradient is probably incorrect.

4. Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0, then the I-th
gradient at X is consistent with the I-th function. This sug-
gests that the input X be such that consistency of the gradient
at X implies consistency of the gradient at all points of inter-
est. If all the components of X are distinct and the fractional
part of each one has two nonzero digits, then X is likely to be
a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5, then the I-th gra-
dient is probably consistent with the I-th function (the more so
the larger ERR(I) is), but the conditions for ERR(I) to be 1.0
have not been completely satisfied. In this case, it is recom-
mended that CHKDER be rerun with other input values of X. If
ERR(I) is always greater than 0.5, then the I-th gradient is
consistent with the I-th function.

5. Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding
errors cause a severe loss of significance in the evaluation of
a function. Therefore, none of the components. of X should be
unusually small (in particular, zero) or any other value which
may cause loss of significance. The relative differences
between corresponding elements of FVECP and FVEC should be at
least two orders of magnitude greater than the machine precision
(as defined by the MINPACK function DPMPAR(1)). If there is a
severe loss of significance in the evaluation of the I-th func-
tion, then ERR(I) may be 0.0 and yet the I-th gradient could be
correct.

If ERR(I) is not 0.0 but is less than 0.5, then the I-th gra-
dient is probably not consistent with the I-th function (the
more so the smaller ERR(I) is), but the conditions for ERR(I) to
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be 0.0 have not been completely satisfied. In this case, it is
recommended that CHKDER be rerun with other input values of X.
If ERR(I) is always less than 0.5 and if there is no severe loss
of significance, then the I-th gradient is not consistent with
the I-th function.

6. Characteristics of the algorithm.

CHKDER checks the I-th gradient for consistency with the I-th
function by computing a forward-difference approximation along a
suitably chosen direction and comparing this approximation with
the user-supplied gradient along the same direction. The prin-
cipal characteristic of CHKDER is its invariance to changes in
scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N.
The number of arithmetic operations needed by CHKDER is about
N when MODE = 1 and M*N when MODE = 2.

Storage. CHKDER requires M*N + 3*M + 2*N double precision stor-
age locations, in addition to the storage required by the pro-
gram. There are no internally declared storage arrays.

7. Subprograms required.

MINPACK-supplied ... DPMPAR

FORTRAN-supplied ... DABS,DLOG10,DSQRT

8. References.

None.

9. Example.

This example checks the Jacobian matrix for the problem that
determines the values of x(1), x(2), and x(3) which provide the
best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)),  i = 1, 15

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).
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C     **********
C
C     DRIVER FOR CHKDER EXAMPLE.
C     DOUBLE PRECISION VERSION
C
C     **********

INTEGER I,M,N,LDFJAC,MODE,NWRITE
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),XP(3),FVECP(15),
*                 ERR(15)

C
C     LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N=3

C
C     THE FOLLOWING VALUES SHOULD BE SUITABLE FOR
C     CHECKING THE JACOBIAN MATRIX.
C

X(1) = 9.2D-1
X(2) = 1.3D-1
X(3) = 5.4D-1

C
LDFJAC = 15

C
MODE = 1
CALL CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
MODE = 2
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,1)
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,2)
CALL FCN(M,N,XP,FVECP,FJAC,LDFJAC,1)
CALL CHKDER(M,N,X, FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

C
DO 10 I = 1, M

FVECP(I) = FVECP(I) - FVEC(I)
10 CONTINUE

WRITE (NWRITE,1000) (FVEC(I),I=l,M)
WRITE (NWRITE,2000) (FVECP(I),I=l,M)
WRITE (NWRITE,3000) (ERR(I),I=l,M)
STOP

1000 FORMAT (/5X,SH FVEC // (5X,3D15.7))
2000 FORMAT (/5X, 13H FVECP - FVEC // (5X,3D15.7))
3000 FORMAT (/5X, 4H ERR // (5X,3D15.7))

C
C     LAST CARD OF DRIVER FOR CHKDER EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER M,N, LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

C
C     SUBROUTINE FCN FOR CHKDER EXAMPLE.
C
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INTEGER I
DOUBLE PRECISION TMPl,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
*     Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
*     /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D,-1,3.5D-1,3.9D-1,
*      3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

C
IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMPl = I
TMP2 = 16 - I
TMP3 = TMPl
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMPl/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMPl = I
TMP2 = 16 - I

C
C        ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
C        CORRECTED STATEMENT SHOULD READ TMP3 = TMPl .
C

TMP3 = TMP2
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP 1*TMP2/TMP4
FJAC(I,3) = TMP 1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C     LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be different. In particular, the differences
FVECP - FVEC are machine dependent.

FVEC

-0.1181606D+01 -0.1429655D+01 -0.1606344D+01
-0.1745269D+01 -0.1840654D+01 -0.1921586D+01
-0.1984141D+01 -0.2022537D+01 -0.2468977D+01
-0.2827562D+01 -0.3473582D+01 -0.4437612D+01
-0.6047662D+01 -0.9267761D+01 -0.1891806D+02

FVECP - FVEC

-0.7724666D-08 -0.3432405D-08 -0.2034843D-09
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0.2313685D-08 0.4331078D-08 0.5984096D-08
0.7363281D-08 0.853147OD-08 0.1488591D-07
0.233585OD-07 0.3522012D-07 0.5301255D-07
0.826666OD-07 0.1419747D-06 0.319899OD-06

ERR

0.1141397D+00 0.9943516D-01 0.9674474D-01
0.9980447D-01 0.1073116D+00 0.1220445D+00
0.1526814D+00 0.100000OD+01 0.100000OD+01
0.100000OD+01 0.100000OD+01 0.100000OD+01
0.100000OD+01 0.100000OD+01 0.100000OD+01
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CHAPTER 5

Program Listings

This  chapter contains  the double precision version of the MINPACK-1

program listings; both single and double precision versions of the subprograms

are  available  with  the  MINPACK-1 package. The  listings  appear  in  the

following (alphanumeric) order:

CHKDER,  DOGLEG,  ENORM,  FDJACl,  FDJAC2,  HYBRD,  HYBRDl,

HYBRJ, HYBRJ 1, LMDER, LMDERl, LMDIF, LMDIFl, LMPAR, LMSTR,

LMSTRl, QFORM, QRFAC, QRSOLV, RWUPDT, RlMPYQ, RlUPDT.

Functions  SPMPAR  (single  precision)  and  DPMPAR  (double  precision),  which

provide the machine-dependent constants, appear at the end.
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SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR) CHDR0010
INTEGER M,N,LDFJAC,MODE CHDR0020
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M), CHDR0030

* ERR(M) CHDR0040
C     **********                                                        CHDR0050
C                                                                       CHDR0060
C     SUBROUTINE CHKDER CHDR0070
C                                                                       CHDR0080
C     THIS SUBROUTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS CHDR0090

C     IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH CHDR0100
C     THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE, CHDR0110
C     FIRST WITH MODE = 1 AND THEN WITH MODE = 2. CHDR0120
C                                                                          CHDR0130
C     MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION. CHDR0140

C               ON OUTPUT, XP IS SET TO A NEIGHBORING POINT. CHDR0150
C                                                                          CHDR0160
C     MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE CHDR0170
C                          ROWS OF FJAC MUST CONTAIN THE GRADIENTS CHDR0180
C                         OF THE RESPECTIVE FUNCTIONS EACH EVALUATED CHDR0190

C                         AT X, AND FVECP MUST CONTAIN THE FUNCTIONS    CHDR0200
C.                         EVALUATED AT XP. CHDR0210

C               ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF CHDR0220
C                          THE RESPECTIVE GRADIENTS. CHDR0230
C                                                                          CHDR0240
C     THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR CHDR0250
C     ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE · CHDR0260
C     EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS CHDR0270

C     OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY CHDR0280
C     OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE. CHDR0290
C                                                                       CHDR0300
C     THE SUBROUTINE STATEMENT IS CHDR0310
C                                                                       CHDR0320
C       SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR) CHDR0330
C                                                                       CHDR0340
C WHERE CHDR0350
C                                                                       CHDR0360
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER CHDR0370
C         OF FUNCTIONS. CHDR0380
C                                                                          CHDR0390
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER CHDR0400
C         OF VARIABLES. CHDR0410
C                                                                       CHDR0420
C       X IS AN INPUT ARRAY OF LENGTH N. CHDR0430
C CHDR0440
C       FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2, CHDR0450
C FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X. CHDR0460
C                                                                          CHDR0470
C       FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2, CHDR0480
C         THE ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF CHDR0490
C         THE RESPECTIVE FUNCTIONS EVALUATED AT X. CHDR0500
C                                                                          CHDR0510
C       LDFJAC IS A POSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M CHDR0520
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. CHDR0530
C                                                                       CHDR0540
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C       XP IS AN ARRAY OF LENGTH N. ON OUTPUT WHEN MODE = 1, CHDR0550-

C         XP IS SET TO A NEIGHBORING POINT OF X. CHDR0560
CHDR0570

1

C

C       FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2, CHDR0580
C         FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP. CHDR0590
C                                                                       CHDR0600
C       MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL CHDR0610
C         AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT CHDR0620
C         TO MODE = 1. CHDR0630
C                                                                       CHDR0640
C       ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE = 2, CHDR0650
C         ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE CHDR0660
C         GRADIENTS. IF THERE IS NO SEVERE LOSS OF SIGNIFICANCE, CHDR0670

C         THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT, CHDR0680

C         WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT. CHDR0690

C         FOR VALUES OF ERR BETWEEN 0.0 AND 1.0, THE CATEGORIZATION CHDR0700

C         IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER CHDR0710
C         THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY CHDR0720

C         CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES CHDR0730
C         THAT THE I-TH GRADIENT IS PROBABLY INCORRECT. CHDR0740
C                                                                       CHDR0750
C     SUBPROGRAMS CALLED CHDR0760
C                                                                       CHDR0770
C       MINPACK SUPPLIED ... DPMPAR CHDR0780
C                                                                       CHDR0790
C       FORTRAN SUPPLIED ... DABS,DLOG 10,DSQRT CHDR0800
C                                                                       CHDR0810
C ARGONNE- NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. CHDR0820

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE CHDR0830
C                                                                       CHDR0840
C ********** CHDR0850

INTEGER I,J CHDR0860
DOUBLE PRECISION EPS,EPSF,EPSLOG,EPSMCH,FACTOR,ONE,TEMP,ZERO CHDR0870
DOUBLE PRECISION DPMPAR CHDR0880

DATA FACTOR,ONE,ZERO /1.OD2,1.ODO,0.ODO/ CHDR0890
C                                                                          CHDR0900
C     EPSMCH IS THE MACHINE PRECISION. CHDR0910
C                                                                       CHDR0920

EPSMCH = DPMPAR(1) CHDR0930
C                                                                       CHDR0940

EPS = DSQRT(EPSMCH) CHDR0950
C                                                                       CHDR0960

IF (MODE .EQ. 2) GO TO 20 CHDR0970
C                                                                       CHDR0980
C        MODE = 1. CHDR0990
C                                                                       CHDR1000

DO 10 J = 1, N CHDR1010
TEMP = EPS*DABS(X(J)) CHDR1020

IF (TEMP .EQ. ZERO) TEMP = EPS CHDR1030

XP(J) = X(J) + TEMP CHDR1040

10 CONTINUE CHDR1050
GO TO 70 CHDR1060

20 CONTINUE CHDR1070

C                                                                       CHDR1080
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C        MODE = 2. CHDR1090
C                                                                          CHDR1100

EPSF = FACTOR*EPSMCH CHDR1110
EPSLOG = DLOG 10(EPS) CHDR1120

DO 30 I = 1, M CHDR1130

ERR(I) = ZERO CHDR1140
30 CONTINUE CHDR1150

DO 50 J = 1, N CHDR1160
TEMP = DABS(X(J)) CHDR1170

IF (TEMP .EQ. ZERO) TEMP = ONE CHDR1180

DO 40 I = 1, M CHDR1190

ERR(I) = ERR(I) + TEMP*FJAC(I,J) CHDR1200
40 CONTINUE                                                   CHDR1210
50 CONTINUE CHDR1220

DO 60 I = 1, M CHDR1230
TEMP = ONE CHDR1240

IF (FVEC(I) .NE. ZERO .AND. FVECP(I) .NE. ZERO CHDR1250

*          .AND. DABS(FVECP(I)-FVEC(I)) .GE. EPSF*DABS(FVEC(I))) CHDR1260
*         TEMP = EPS*DABS((FVECP(I)-FVEC(I))/EPS-ERR(I)) CHDR1270

*                /(DABS(FVEC(I)) + DABS(FVECP(I))) CHDR1280

ERR(I) = ONE CHDR1290

IF (TEMP .GT. EPSMCH .AND. TEMP .LT. EPS) CHDR1300

*         ERR(I) = (DLOG10(TEMP) - EPSLOG)/EPSLOG CHDR1310

IF (TEMP .GE. EPS) ERR(I) = ZERO CHDR1320
60 CONTINUE CHDR1330
70 CONTINUE CHDR1340

C                                                                          CHDR1350
RETURN CHDR 1360

C                                                                       CHDR1370
C     LAST CARD OF SUBROUTINE CHKDER. CHDR1380
C                                                                       CHDR1390

END CHDR1400
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SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGL0010

INTEGER N,LR DOGL0020

DOUBLE PRECISION DELTA DOGL0030

DOUBLE PRECISION R(LR),DIAG(N),QTB(N),X(N),WAl(N),WA2(N) DOGL0040

C ********** DOGL0050

C                                                                       DOGL0060
C     SUBROUTINE DOGLEG DOGL0070

C                                                                          DOGL0080
C     GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL DOGL0090

C     MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE DOGL0100

C     PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE DOGL0110

C     GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES DOGL0120

C     (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE DOGL0130

C     RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. DOGL0140

C                                                                          DOGL0150
C     THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM DOGL0160

C     IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE DOGL0170

C     QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS DOGL0180

C     ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, DOGL0190

C     THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND DOGL0200

C     THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. DOGL0210

C                                                                          DOGL0220
C     THE SUBROUTINE STATEMENT IS DOGL0230

C                                                                       DOGL0240
C       SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WAl,WA2) DOGL0250

C                                                                          DOGL0260
C WHERE DOGL0270

C                                                                       DOGL0280
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. DOGL0290

C                                                                          DOGL0300
C       R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER DOGL0310

C         TRIANGULAR MATRIX R STORED BY ROWS. DOGL0320

C DOGL0330

C       LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN DOGL0340

C (N*(N+1))/2. DOGL0350

C                                                                          DOGL0360
C       DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE DOGL0370

C         DIAGONAL ELEMENTS OF THE MATRIX D. DOGL0380

C                                                                       DOGL0390
C       QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST  DOGL0400
C         N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. DOGL0410

C                                                                       DOGL0420
C       DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER DOGL0430

C         BOUND ON THE EUCLIDEAN NORM OF D*X. DOGL0440

C                                                                       DOGL0450
C       X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED DOGL0460

C         CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE DOGL0470

C         SCALED GRADIENT DIRECTION. DOGL0480

C                                                                          DOGL0490
C       WAl AND WA2 ARE WORK ARRAYS OF LENGTH N. DOGL0500

C                                                                          DOGLO510
C     SUBPROGRAMS CALLED DOGL0520

C                                                                       DOGL0530
C       MINPACK-SUPPLIED ... DPMPAR,ENORM DOGL0540
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C                                                                       DOGL0550
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,DSQRT DOGL0560
C                                                                       DOGL0570
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. DOGL0580
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE DOGL0590
C                                                                       DOGL0600
C ********** DOGL0610

INTEGER I,J,JJ,JPl,K,L DOGL0620
DOUBLE PRECISION ALPHA,BNORM,EPSMCH,GNORM,ONE,QNORM,SGNORM,SUM, DOGL0630

* TEMP,ZERO DOGL0640
DOUBLE PRECISION DPMPAR,ENORM DOGL0650
DATA ONE,ZERO /1.ODO,0.ODO/ DOGL0660

C                                                                       DOGL0670
C     EPSMCH IS THE MACHINE PRECISION. DOGL0680
C                                                                       DOGL0690

EPSMCH = DPMPAR(1) DOGL0700
C                                                                       DOGL0710
C     FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION. DOGL0720
C                                                                       DOGL0730

JJ = (N*(N + 1))/2 + 1 DOGL0740
DO 50 K = 1, N DOGL0750
J=N-K+1 DOGL0760
JP 1 =J+1 DOGL0770
33 = 33 - K DOGL0780
L = JJ + 1 DOGL0790
SUM = ZERO DOGL0800
IF (N .LT. JP1) GO TO 20 DOGL0810
DO 10 I = JP 1, N DOGL0820

SUM = SUM + R(L)*X(I) DOGL0830
L=L+1 DOGL0840

10 CONTINUE DOGL0850
20 CONTINUE DOGL0860

TEMP = R(JU) DOGL0870
IF (TEMP .NE. ZERO) GO TO 40 DOGL0880
L=J DOGL0890
DO 30 I = 1, J DOGL0900

TEMP = DMAX 1(TEMP,DABS(R(L))) DOGL0910
L=L+N-I DOGL0920

30 CONTINUE DOGL0930
TEMP = EPSMCH*TEMP DOGL0940
IF (TEMP .EQ. ZERO) TEMP = EPSMCH DOGL0950

40 CONTINUE DOGL0960
X(J) = (QTB(J) - SUM)/TEMP DOGL0970

50 CONTINUE DOGL0980
C                                                                       DOGL0990
C     TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE. DOGL1000
C                                                                       DOGL1010

DO 60 J = 1, N DOGL1020
WAl(J) = ZERO DOGL1030
WA2(J) = DIAG(J)*X(J) DOGL1040

60 CONTINUE DOGL1050
QNORM = ENORM(N,WA2) DOGL1060
IF (QNORM .LE. DELTA) GO TO 140 DOGL1070

C                                                                       DOGL1080
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C     THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE. DOGL1090

C     NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. DOGL1100

C                                                                          DOGL1110
L=1 DOGL1120

DO 80 J = 1, N DOGL1130

TEMP = QTB(J) DOGL1140

DO 70 I = J, N DOGL1150

WAl(I) = WAl(I) + R(L)*TEMP DOGL1160

L=L+1 DOGL1170

70 CONTINUE .
DOGL1180

WAl(J) = WAl(J)/DIAG(J) DOGL1190

80 CONTINUE DOGL1200

C                                                                          DOGL1210
C     CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR DOGL1220

C     THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO. DOGL1230

C                                                                          DOGL1240
GNORM = ENORM(N,WAl) DOGL1250

SGNORM = ZERO DOGL1260

ALPHA = DELTA/QNORM DOGL1270

IF (GNORM .EQ. ZERO) GO TO 120 DOGL1280

C                                                                          DOGL1290
C     CALCULATE THE POINT ALONG THE SCALED GRADIENT DOGL1300

C     AT WHICH THE QUADRATIC IS MINIMIZED. DOGL1310

C                                                                          DOGL1320
DO 90 J = 1, N DOGL1330

WAl(J) = (WAl(J)/GNORM)/DIAG(J) DOGL1340

90 CONTINUE DOGL1350

L=1 DOGL1360

DO 110 J = 1, N DOGL1370

SUM = ZERO DOGL1380

DO 100 I = J, N DOGL1390

SUM = SUM + R(L)*WAl(I) DOGL1400

L=L+1 DOGL1410

100 CONTINUE DOGL1420

WA2(J) = SUM DOGL1430

110 CONTINUE DOGL1440

TEMP = ENORM(N,WA2) DOGL1450

SGNORM = (GNORM/TEMP)/TEMP DOGL1460

C                                                                          DOGL1470
C     TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE. DOGL1480

C                                                                          DOGL1490
ALPHA = ZERO DOGL1500

IF (SGNORM .GE. DELTA) GO TO 120 DOGL1510

C                                                                          DOGL1520
C     THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE. DOGL1530

C     FINALLY, CALCULATE THE POINT ALONG THE DOGLEG DOGL1540

C     AT WHICH THE QUADRATIC IS MINIMIZED. DOGL1550

C                                                                          DOGL1560
BNORM = ENORM(N,QTB) DOGL1570

TEMP = (BNORM/GNORM)*(BNORM/QNORM)*(SGNORM/DELTA) DOGL1580

TEMP = TEMP - (DELTA/QNORM)*(SGNORM/DELTA)**2 DOGL1590

*       + DSQRT((TEMP-(DELTA/QNORM))**2 DOGL1600
* +(ONE-(DELTA/QNORM)**2)*(ONE-(SGNORM/DELTA)**2)) DOGL1610

ALPHA = ((DELTA/QNORM)*(ONE - (SGNORM/DELTA)**2))/TEMP DOGL1620
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120 CONTINUE DOGL1630
C                                                                       DOGL1640
C     FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON DOGL1650
C     DIRECTION AND THE SCALED GRADIENT DIRECTION. DOGL1660
C                                                                          DOGL1670

TEMP = (ONE - ALPHA)*DMIN1(SGNORM,DELTA) DOGL1680
DO 130 J = 1, N DOGL1690

X(J) = TEMP*WAl(J) + ALPHA*X(J) DOGL1700
130 CONTINUE DOGL1710
140 CONTINUE DOGL1720

RETURN DOGL1730
C                                                                       DOGL1740
C     LAST CARD OF SUBROUTINE DOGLEG. DOGL1750
C                                                                       DOGL1760

END DOGL1770

2,
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DOUBLE PRECISION FUNCTION ENORM(N,X) ENRM0010

INTEGER N ENRM0020

DOUBLE PRECISION X(N) ENRM0030

C ********** ENRM0040

C                                                                       ENRM0050

C     FUNCTION ENORM ENRM0060

C                                                                       ENRM0070

C     GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE ENRM0080

C     EUCLIDEAN NORM OF X. ENRM0090

C                                                                       ENRM0100

C     THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF ENRM0110

C     SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE ENRM0120

C     SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS ENRM0130

C     OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS ENRM0140

C     AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED ENRM0150

C     SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS. ENRM0160

C     THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS ENRM0170

C     DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN              ENRM0180

C     RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT ENRM0190

C     UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS ENRM0200

C     GIVEN HERE ARE SUITABLE FOR EVERY KNMWN COMPUTER. ENRM0210

C                                                                       ENRM0220

C     THE FUNCTION STATEMENT IS ENRM0230

C                                                                       ENRM0240

C       DOUBLE PRECISION FUNCTION ENORM(N,X) ENRM0250

C                                                                       ENRM0260

C WHERE ENRM0270

C
ENRM0280

C N IS A POSITIVE INTEGER INPUT VARIABLE. ENRM0290

C                                                                       ENRM0300

C       X IS AN INPUT ARRAY OF LENGTH N. ENRM0310

C                                                                       ENRM0320

C     SUBPROGRAMS CALLED ENRM0330

C                                                                       ENRM0340

C       FORTRAN-SUPPLIED ... DABS,DSQRT ENRM0350

C                                                                       ENRM0360

C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. ENRM0370

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J.
MORE ENRM0380

C                                                                       ENRM0390

C     **********                                                        ENRM0400

INTEGER I
ENRM0410

DOUBLE PRECISION AGIANT,FLOATN,ONE,RDWARF,RGIANT,Sl,S2,S3,XABS, ENRM0420

* X1MAX,X3MAX,ZERO ENRM0430

DATA ONE,ZERO,RDWARF,RGIANT /1.ODO,0.ODO,3.834D-20,1.304D19/ ENRM0440

Sl = ZERO ENRM0450

S2 = ZERO ENRM0460

S3 = ZERO ENRM0470

X1MAX = ZERO                                                      ENRM0480

X3MAX = ZERO ENRM0490

FLOATN = N ENRM0500

AGIANT = RGIANT/FLOATN ENRM0510

DO 90 I = 1, N ENRM0520

XABS = DABS(X(I)) ENRM0530

IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70 ENRM0540
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IF (XABS .LE. RDWARF) GO TO 30 ENRM0550
C                                                                       ENRM0560
C              SUM FOR LARGE COMPONENTS. ENRM0570
C                                                                       ENRM0580

IF (XABS .LE. X1MAX) GO TO 10 ENRM0590
Sl = ONE + Sl*(XlMAX/XABS)**2 ENRM0600
X1MAX = XABS ENRM0610
GO TO 20 ENRM0620

10 CONTINUE ENRM0630
Sl = Sl + (XABS/XlMAX)**2 ENRM0640

20 CONTINUE                                                 ENRM0650
GO TO 60 ENRM0660

30 CONTINUE ENRM0670
C                                                                       ENRM0680
C              SUM FOR SMALL COMPONENTS. ENRM0690
C                                                                       ENRM0700

IF (XABS .LE. X3MAX) GO TO 40 ENRM0710
S3 = ONE + S3*(X3MAX/XABS)**2 ENRM0720
X3MAX = XABS ENRM0730
GO TO 50 ENRM0740

40 CONTINUE ENRM0750
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2 ENRM0760

50 CONTINUE ENRM0770
60 CONTINUE ENRM0780

GO TO 80 ENRM0790
70 CONTINUE ENRM0800

C                                                                       ENRM0810
C           SUM FOR INTERMEDIATE COMPONENTS. ENRM0820
C                                                                       ENRM0830

S2 = S2 + XABS**2 ENRM0840
80 CONTINUE ENRM0850
90 CONTINUE ENRM0860

C                                                                       ENRM0870
C     CALCULATION OF NORM. ENRM0880
C                                                                       ENRM0890

IF (Sl .EQ. ZERO) GO TO 100 ENRM0900
ENORM = X1MAX*DSQRT(Sl+(S2/XlMAX)/XlMAX) ENRM0910
GO TO 130 ENRM0920

100 CONTINUE ENRM0930
IF (S2 .EQ. ZERO) GO TO 110 ENRM0940

IF (S2 .GE. X3MAX) ENRM0950
*         ENORM = DSQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3))) ENRM0960

IF (S2 .LT. X3MAX) ENRM0970
*         ENORM = DSQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3))) ENRM0980

GO TO 120 ENRM0990
110 CONTINUE ENRM1000

ENORM = X3MAX*DSQRT(S3) ENRM1010
120 CONTINUE ENRM1020
130 CONTINUE ENRM1030

RETURN ENRM1040
C                                                                       ENRM1050
C     LAST CARD OF FUNCTION ENORM. ENRM1060
C                                                                       ENRM1070

END ENRM1080
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SUBROUTINE FDJAC 1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN, FDJ10010
* WAl,WA2) FDJ10020

INTEGER N,LDFJAC,IFLAG,ML,MU FDJ10030

DOUBLE PRECISION EPSFCN FDJ10040

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WAl(N),WA2(N) FDJ10050

C ********** FDJ10060

C                                                                          FDJ10070
C     SUBROUTINE FDJACl FDJ 10080 .

C                                                                          FDJ10090
C     THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION FDJ10100

C     TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED FDJ10110

C     PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS FDJ10120

C     A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLY FDJ10130

C     APPROXIMATING THE NONZERO TERMS. FDJ10140

C                                                                          FDJ10150
C     THE SUBROUTINE STATEMENT IS FDJ10160

C                                                                          FDJ10170
C       SUBROUTINE FDJAC 1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,  FDJ10180
C WAl,WA2) FDJ10190

C                                                                          FDJ10200
C     WHERE                                                               FDJ10210
C                                                                          FDJ10220
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH FDJ10230

C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED FDJ10240

C         IN AN EXTERNAL STATEMENT IN THE USER CALLING FDJ10250

C         PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. FDJ10260

C                                                                          FD310270
C         SUBROUTINE FCN(N,X,FVEC,IFLAG) FDJ10280

C         INTEGER N,IFLAG                                                FDJ10290
C         DOUBLE PRECISION X(N),FVEC(N) FDJ10300

c ---------- FDJ10310

C         CALCULATE THE FUNCTIONS AT X AND FDJ10320

C         RETURN THIS VECTOR IN FVEC. FDJ10330

c ---------- FDJ10340

C RETURN FDJ10350

C END FDJ10360

C                                                                          FDJ10370
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS FDJ10380

C         THE USER WANTS TO TERMINATE EXECUTION OF FDJACl. FDJ10390

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. FDJ10400

C                                                                          FDJ10410
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER FDJ10420

C         OF FUNCTIONS AND VARIABLES. FDJ10430

C                                                                          FDJ10440
C       X IS AN INPUT ARRAY OF LENGTH N. FDJ10450

C                                                                          FDJ10460
C       FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FDJ104ZO

C         FUNCTIONS EVALUATED AT X. FDJ10480

C                                                                          FDJ10490
C       FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE FDJ10500

C         APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. FDJ10510

C                                                                          FDJ10520
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N FDJ10530

C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. FDJ10540
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C                                                                       FDJ10550
C       IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE FDJ10560
C         THE EXECUTION OF FDJACl. SEE DESCRIPTION OF FCN. FDJ10570
C                                                                       FDJ10580
C       ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES FDJ10590
C         THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE FDJ10600
C         JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET FDJ10610
C         ML TO AT LEAST N - 1. FDJ10620
C                                                                       FDJ10630
C     · EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE FDJ10640
C         STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS FDJ10650
C         APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FDJ10660
C         FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS

FDJ10670         
C         THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE FDJ10680
C         ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE FDJ10690
C PRECISION. FDJ10700
C                                                                       FDJ10710
C       MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES FDJ10720
C         THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE FDJ10730
C         JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET FDJ10740
C         MU TO AT LEAST N - 1. FDJ10750
C                                                                       FDJ10760
C WAl AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT FDJ10770
C         LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS FDJ10780
C         NOT REFERENCED. · FDJ10790
C                                                                       FDJ10800
C     SUBPROGRAMS CALLED FDJ10810
C FDJ10820
C MINPACK-SUPPLIED ... DPMPAR FDJ10830
C                                                                       FDJ10840
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DSQRT FDJ10850
C                                                                       FDJ10860
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. FDJ10870
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE FDJ10880
C                                                                       FDJ10890
C ********** FDJ10900

INTEGER I,J,K,MSUM FDJ10910
DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO FDJ10920
DOUBLE PRECISION DPMPAR FDJ10930
DATA ZERO /0.ODO/ FDJ10940

C                                                                          FDJ10950
C     EPSMCH IS THE MACHINE PRECISION. FDJ10960
C                                                                       FDJ10970

EPSMCH = DPMPAR(1) FDJ10980
C                                                                       FDJ10990

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH)) FDJ11000
MSUM = ML + MU + 1 FDJ11010
IF (MSUM .LT. N) GO TO 40 FDJ11020

C                                                                       FDJ11030
C        COMPUTATION OF DENSE APPROXIMATE. JACOBIAN. FDJ11040
C                                                                          FDJ11050

DO 20 J = 1, N FDJ11060
TEMP = X(J) FDJ11070
H = EPS*DABS(TEMP) FDJ11080

- ..
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IF (H .EQ. ZERO) H = EPS              -                     FDJ11090
X(J) = TEMP + H FDJ11100

CALL FCN(N,X,WAl,IFLAG) FDJ11110

IF (IFLAG .LT. 0) GO TO 30 FDJ11120

X(J) = TEMP FDJ11130

DO 10 I = 1, N FDJ11140

FJAC(I,J) = (WAl(I) - FVEC(I))/H FDJ11150

10 CONTINUE FDJ11160

20 CONTINUE FDJ11170

30 CONTINUE FDJ11180

GO TO 110 FDJ11190

40 CONTINUE FDJ11200

C                                                                          FDJ11210
C        COMPUTATION OF BANDED APPROXIMATE JACOBIAN. FDJ11220

C                                                                          FDJ11230
DO 90 K = 1, MSUM FDJ11240

DO 60 J = K, N, MSUM FDJ11250

WA2(J) = X(J) FDJ11260

H = EPS*DABS(WA2(J)) FDJ11270

IF (H .EQ. ZERO) H = EPS FDJ11280

X(J) = WA2(J) + H FDJ11290

60 CONTINUE FDJ11300

CALL FCN(N,X,WAl,IFLAG) FDJ11310

IF (IFLAG .LT. 0) GO TO 100 FDJ11320

DO 80 J = K, N, MSUM FDJ11330

X(J) = WA2(J) FDJ11340

H = EPS*DABS(WA2(J)) FDJ11350

IF (H .EQ. ZERO) H = EPS FDJ11360

DO 70 I = 1, N FDJ11370

FJAC(I,J) = ZERO FDJ11380

IF (I .GE. J - MU .AND. I .LE. J + ML) FDJ11390

*               FJAC(I,J) = (WAl(I) - FVEC(I))/H FDJ11400

70 CONTINUE FDJ11410

80 CONTINUE FDJ11420

90 CONTINUE FDJ11430

100 CONTINUE FDJ11440

110 CONTINUE FDJ11450

RETURN FDJ11460

C                                                                          FDJ11470
C     LAST CARD OF SUBROUTINE FDJACl. FDJ11480

C                                                                          FDJ11490
END· FDJ11500
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SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA) FDJ20010

INTEGER M,N,LDFJAC,IFLAG FDJ20020

DOUBLE PRECISION EPSFCN FDJ20030

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(M) FDJ20040

C ********** FDJ20050

C FDJ20060

C     SUBROUTINE FDJAC2 FDJ20070

C                                                                       FDJ20080
C     THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION FDJ20090

C     TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED FDJ20100

C     PROBLEM OF M FUNCTIONS IN N VARIABLES. FDJ20110

C                                                                          FDJ20120
C     THE SUBROUTINE STATEMENT IS FDJ20130

C                                                                          FDJ20140
C       SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA) FDJ20150

C                                                                          FDJ20160
C WHERE FDJ20170

C                                                                       FDJ20180
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH FDJ20190

C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED FDJ20200

C         IN AN EXTERNAL STATEMENT IN THE USER CALLING FDJ20210

C         PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. FDJ20220

C                                                                       FDJ20230
C         SUBROUTINE FCN(M,N,X,FVEC,IFLAG) FDJ20240

C         INTEGER M,N,IFLAG FDJ20250

C         DOUBLE PRECISION X(N),FVEC(M) FDJ20260

C         -                                                               FDJ20270
C         CALCULATE THE FUNCTIONS AT X AND FDJ20280

C         RETURN THIS VECTOR IN FVEC. FDJ20290

C FDJ20300

C RETURN FDJ20310

C END FDJ20320

C                                                                          FDJ20330
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS FDJ20340

C         THE USER WANTS TO TERMINATE EXECUTION OF FDJAC2. FDJ20350

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. FDJ20360

C                                                                          FDJ20370

C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER FDJ20380

C         OF FUNCTIONS. FDJ20390

C                                                                          FDJ20400

C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER FDJ20410

C         OF VARIABLES. N MUST NOT EXCEED M. FDJ20420

C                                                                          FDJ20430

C       X IS AN INPUT ARRAY OF LENGTH N. FDJ20440

C                                                                       FDJ20450

C       FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE FDJ20460

C         FUNCTIONS EVALUATED AT X. FDJ20470

C                                                                          FDJ20480

C       FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE FDJ20490

C         APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X. FDJ20500

C                                                                          FDJ20510

C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M FDJ20520

C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. FDJ20530

C                                                                          FDJ20540
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C       IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE FDJ20550
C         THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN. FDJ20560
C                                                                       FDJ20570
C       EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE FDJ20580
C         STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS FDJ20590
C         APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FDJ20600
C         FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS FDJ20610
C         THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE FDJ20620
C         ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE FDJ20630
C PRECISION. FDJ20640
C                                                                       FDJ20650
C       WA IS A WORK ARRAY OF LENGTH M. FDJ20660
C                                                                       FDJ20670
C     SUBPROGRAMS CALLED FDJ20680
C                                                                       FDJ20690
C       USER-SUPPLIED ...... FCN FDJ20700
C                                                                       FDJ20710
C       MINPACK-SUPPLIED ... DPMPAR FDJ20720
C                                                                       FDJ20730
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DSQRT FDJ20740
C                                                                          FDJ20750
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. FDJ20760
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE FDJ20770
C                                                                       FDJ20780
C ********** FDJ20790

INTEGER I,J FDJ20800
DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO FDJ20810
DOUBLE PRECISION DPMPAR FDJ20820
DATA ZERO /0.ODO/ FDJ20830

C                                                                       FDJ20840
C EPSMCH IS THE MACHINE PRECISION. FDJ20850
C                                                                       FDJ20860

EPSMCH = DPMPAR(1) FDJ20870
C                                                                       FDJ20880

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH)) FDJ20890
DO 20 J = 1, N FDJ20900

TEMP = X(J) FDJ20910
H = EPS*DABS(TEMP) FDJ20920
IF (H .EQ. ZERO) H = EPS FDJ20930
X(J) = TEMP + H FDJ20940
CALL FCN(M,N,X,WA,IFLAG) FDJ20950
IF (IFLAG .LT. 0) GO TO 30 FDJ20960
X(J) = TEMP FDJ20970
DO 10 I = 1, M FDJ20980

FJAC(I,J) = (WA(I) - FVEC(I))/H FDJ20990
10 CONTINUE FDJ21000
20 CONTINUE FDJ21010
30 CONTINUE FDJ21020

RETURN FDJ21030
C                                                                       FDJ21040
C     LAST CARD OF SUBROUTINE FDJAC2. FDJ21050
C                                                                       FDJ21060

END FDJ21070
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SUBROUTINE HYBRD(FCN,N,X,FVEC, XTOL,MAXFEV,ML,MU,EPSFCN,DIAG, HYBD0010
* MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,R,LR, HYBD0020
* QTF,WAl,WA2,WA3,WA4) HYBD0030
INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR HYBD0040
DOUBLE PRECISION XTOL,EPSFCN,FACTOR HYBD0050
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR), HYBD0060

* QTF(N),WAl(N),WA2(N),WA3(N),WA4(N) HYBD0070
EXTERNAL FCN HYBD0080

C ********** HYBD0090
C                                                                       HYBD0100
C     SUBROUTINE HYBRD HYBD0110
C                                                                          HYBD0120
C     THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF HYBD0130
C     N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION HYBD0140
C     OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A HYBD0150
C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS HYBD0160
C     THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. HYBD0170
C                                                                       HYBD0180
C     THE SUBROUTINE STATEMENT IS HYBD0190
C                                                                       HYBD0200
C       SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN, HYBD0210
C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC, HYBD0220

LDFJAC,R,LR,QTF,WAl,WA2,WA3,WA4) HYBD0230
C HYBD0240
C WHERE HYBD0250
C                                                                          HYBD0260
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH HYBD0270
C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED HYBD0280
C         IN AN EXTERNAL STATEMENT IN THE USER CALLING HYBD0290
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. HYBD0300
C                                                                       HYBD0310

-
C SUBROUTINE FCN(N,X,FVEC,IFLAG) HYBD0320
C         INTEGER N,IFLAG HYBD0330
C         DOUBLE PRECISION X(N),FVEC(N) HYBD0340
C                                                                       HYBD0350
C         CALCULATE THE FUNCTIONS AT X AND HYBD0360
C         RETURN THIS VECTOR IN FVEC. HYBD0370
C                                                                          HYBD0380
C RETURN HYBD0390
C END HYBD0400
C                                                                       HYBD0410
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS HYBD0420
C         THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. HYBD0430
C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. HYBD0440
C                                                                          HYBD0450
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER HYBD0460
C         OF FUNCTIONS AND VARIABLES. HYBD0470
C                                                                          HYBD0480
C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN HYBD0490
C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X HYBD0500
C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. HYBD0510
C                                                                       HYBD0520
C       FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBD0530
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. HYBD0540
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C                                                                       HYBD0550
C       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION HYBD0560
C         OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE HYBD0570
C         ITERATES IS AT MOST XTOL. HYBD0580
C                                                                       HYBD0590
C       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION HYBD0600
C         OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV HYBD0610
C         BY THE END OF AN ITERATION. HYBD0620
C                                                                       HYBD0630
C       ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES HYBD0640
C         THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE HYBD0650
C         JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET HYBD0660
C         ML TO AT LEAST N - 1. HYBD0670
C HYBD0680
C       MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES HYBD0690
C         THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE HYBD0700
C         JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET HYBD0710
C         MU TO AT LEAST N - 1. HYBD0720
C                                                                       HYBD0730
C       EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE HYBD0740
C         STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS HYBD0750
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE HYBD0760
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS HYBD0770
C         THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE HYBD0780
C         ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE HYBD0790
C PRECISION. HYBD0800
C                                                                       HYBD0810
C       DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE HYBD0820
C         BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG HYBD0830
C         MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS HYBD0840
C         MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. HYBD0850
C                                                                       HYBD0860
C       MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE HYBD0870
C         VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, HYBD0880
C         THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER HYBD0890
C         VALUES OF MODE ARE EQUIVALENT TO MODE = 1. HYBD0900
C                                                                       HYBD0910
C       FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE HYBD0920
C         INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF HYBD0930
C         FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE HYBD0940
C         TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE HYBD0950
C         INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. HYBD0960
C                                                                       HYBD0970
C       NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED HYBD0980
C         PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, HYBD0990
C         FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST HYBD 1000
C         ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND HYBD 1010

C         IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE HYBD 1020

C         FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS HYBD 1030
C         OF FCN WITH IFLAG = 0 ARE MADE. HYBD 1040
C                                                                          HYBD1050
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYBD 1060

C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYBD1070
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYBD 1080
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C         INFO IS SET AS FOLLOWS. HYBD1090
C                                                                          HYBD1100
C         INFO = 0 IMPROPER INPUT PARAMETERS. HYBD1110
C                                                                          HYBD1120
C         INFO = 1   RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES HYBD1130
C                    IS AT MOST XTOL. HYBD1140
C                                                                          HYBD1150
C         INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED HYBD1160
C MAXFEV. HYBD1170
C                                                                       HYBD1180
C         INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYBD1190
C                    THE APPROXIMATE SOLUTION X IS POSSIBLE. HYBD 1200

C                                                                          HYBD 1210
C         INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD 1220

C                    MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD 1230

C                    FIVE JACOBIAN EVALUATIONS. HYBD 1240
C                                                                          HYBD 1250
C         INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBD1260
C                    MEASURED BY THE IMPROVEMENT FROM THE LAST HYBD1270
C                    TEN ITERATIONS. HYBD 1280

C
 ' HYBD1290

6 NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF HYBD1300
C CALLS TO FCN. HYBD1310
C                                                                          HYBD1320
C       FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE HYBD1330
C         ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION HYBD1340
C         OF THE FINAL APPROXIMATE JACOBIAN. HYBD1350
C                                                                          HYBD1360
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYBD1370

WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYBD1380
'. C HYBD1390

C R I S A N OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS· THE HYBD 1400

C         UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION HYBD 1410

C         OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. HYBD1420
C                                                                       HYBD 1430
C       LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYBD1440
C (N*(N+1))/2. HYBD1450
C                                                                       HYBD 1460
C       QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBD1470

C         THE VECTOR (Q TRANSPOSE)*FVEC. HYBD 1480

C                                                                          HYBD 1490
C       WAl, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. HYBD1500
C                                                                          HYBD 1510
C     SUBPROGRAMS CALLED HYBD1520
C                                                                          HYBD1530
C       USER-SUPPLIED ...... FCN HYBD1540
C                                                                       HYBD1550
C       MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,FDJACl, HYBD1560
C QFORM,QRFAC,RlMPYQ,RlUPDT HYBD1570
C                                                                          HYBD 1580
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,MINO,MOD HYBD1590
C                                                                          HYBD 1600
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYBD 1610

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYBD 1620
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C                                                                       HYBD1630
C ********** HYBD 1640

INTEGER I,IFLAG,ITER,J,JMl,L,MSUM,NCFAIL,NCSUC,NSLOWl,NSLOW2 HYBD1650
INTEGER IWA(1)                                                    HYBD1660
LOGICAL JEVAL,SING HYBD1670
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORMl,ONE,PNORM, HYBD1680

* PRERED,Pl,P5,POOl,P0001,RATIO,SUM,TEMP,XNORM, HYBD1690
* ZERO HYBD1700
DOUBLE PRECISION DPMPAR,ENORM HYBD 1710
DATA ONE,Pl,PS,POOl,P0001,ZERO HYBD1720

* /1.ODO,1.OD-1,5.OD-1,1.OD-3,1.OD-4,0.ODO/ HYBD1730
C                                                                       HYBD 1740
C     EPSMCH IS THE MACHINE PRECISION. HYBD1750
C                                                                       HYBD1760

EPSMCII = DPMPAR (1) HYBD1770
C                                                                       HYBD1780

INFO = 0 HYBD1790
IFLAG = 0 HYBD 1800
NFEV = 0 HYBD 1810

C                                                                       HYBD1820
C     CHECK THE INPUT PARAMETERS FOR ERRORS. HYBD1830
C                                                                       HYBD 1840

IF (N .LE. 0 .OR. XTOL .LT. ZERO .OR. MAXFEV .LE. 0 HYBD1850
*    .OR. ML .LT. 0 .OR. MU .LT. 0 .OR. FACTOR .LE. ZERO HYBD 1860

*    .OR. LDFJAC .LT. N .OR. LR .LT. (N*(N + 1))/2) GO TO 300 HYBD1870
IF (MODE .NE. 2) GO TO 20 HYBD1880

DO 10 J = 1, N HYBD1890
IF (DIAG(J) .LE. ZERO) GO TO 300 HYBD1900

10 CONTINUE HYBD 1910
20 CONTINUE HYBD1920

C                                                                       HYBD1930
C     EVALUATE THE FUNCTION AT THE STARTING POINT HYBD 1940
C     AND CALCULATE ITS NORM. HYBD1950
C                                                                       HYBD1960

IFLAG = 1 HYBD1970
CALL FCN(N,X,FVEC,IFLAG)             ·                              HYBD1980
NFEV = 1 HYBD1990
IF (IFLAG .LT. 0) GO TO 300 HYBD2000
FNORM = ENORM(N,FVEC) HYBD2010

C                                                                       HYBD2020
C     DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE HYBD2030
C     THE JACOBIAN MATRIX. HYBD2040
C                                                                       HYBD2050

MSUM = MINO(ML+MU+1,N) HYBD2060
C                                                                       HYBD2070
C     INITIALIZE ITERATION COUNTER AND MONITORS. HYBD2080
C                                                                          HYBD2090

ITER = 1 HYBD2100
NCSUC = 0 HYBD2110
NCFAIL = 0 HYBD2120
NSLOWl = 0 HYBD2130
NSLOW2 = 0 HYBD2140

C                                                                       HYBD2150
C     BEGINNING OF THE OUTER LOOP. HYBD2160
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C                                                                       HYBD2170
7-

30 CONTINUE HYBD2180

JEVAL = .TRUE. HYBD2190

C                                                                          HYBD2200
C        CALCULATE THE JACOBIAN MATRIX. HYBD2210

C                                                                       HYBD2220
IFLAG = 2 HYBD2230

CALL FDJAC 1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WAl, HYBD2240
* WA2) HYBD2250

NFEV = NFEV + MSUM HYBD2260

IF (IFLAG .LT. 0) GO TO 300 HYBD2270

C                                                                          HYBD2280
C        COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. HYBD2290

C                                                                          HYBD2300
CALL QRFAC(N,N,FJAC,LDFJAC,.FALSE.,IWA,l,WAl,WA2,WA3) HYBD2310

C                                                                          HYBD2320
C        ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING HYBD2330

C        TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. HYBD2340

C                                                                          HYBD2350
IF (ITER .NE. 1) GO TO 70 HYBD2360

IF (MODE .EQ. 2) GO TO 50 HYBD2370

DO 40 J = 1, N HYBD2380

DIAG(J) = WA2(J) HYBD2390-

IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE HYBD2400

40 CONTINUE HYBD2410

50 CONTINUE                                                         HYBD2420
C                                                                          HYBD2430
C        ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X HYBD2440

C        AND INITIALIZE THE STEP BOUND DELTA. HYBD2450

C                                                                          HYBD2460
DO 60 J = 1, N HYBD2470

WA3(J) = DIAG(J)*X(J) HYBD2480

60 CONTINUE HYBD2490

XNORM = ENORM(N,WA3) HYBD2500

DELTA = FACTOR*XNORM HYBD2510

IF (DELTA .EQ. ZERO) DELTA = FACTOR HYBD2520

70 CONTINUE HYBD2530

C                                                                          HYBD2540
C        FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. HYBD2550

C                                                                          HYBD2560
DO 80 I = 1, N HYBD2570

QTF(I) = FVEC(I) HYBD2580

80 CONTINUE HYBD2590

DO 120 J = 1, N HYBD2600

IF (FJAC(J,J) .EQ. ZERO) GO TO 110 HYBD2610

SUM = ZERO HYBD2620

DO 90 I = J, N HYBD2630

SUM = SUM + FJAC(I,J)*QTF(I) HYBD2640

90 CONTINUE HYBD2650

TEMP = -SUM/FJAC(J,J) HYBD2660

DO 100 I = J, N HYBD2670

QTF(I) = QTF(I) + FJAC(I,J)*TEMP HYBD2680

100 CONTINUE HYBD2690

110 CONTINUE HYBD2700
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120 CONTINUE HYBD2710
--

C                                    -                                  HYBD2720
C        COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. · HYBD2730
C                                                                          HYBD2740

SING = .FALSE. HYBD2750
DO 150 J = 1, N HYBD2760

L=J HYBD2770
JM 1 =J-1 HYBD2780
IF (JM 1 .LT. 1) GO TO 140 HYBD2790
DO 130 I = 1, JM1 HYBD2800

R(L) = FJAC(I,J) HYBD2810
L=L+N-I HYBD2820

130 CONTINUE HYBD2830
140 CONTINUE HYBD2840

R(L) = WAl(J) HYBD2850
IF (WAl(J) .EQ. ZERO) SING = .TRUE. HYBD2860

150 CONTINUE HYBD2870
C                                                                       HYBD2880
C        ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. HYBD2890
C                                                                          HYBD2900

CALL QFORM(N,N,FJAC,LDFJAC,WAl) HYBD2910
C                                                                       HYBD2920
C        RESCALE IF NECESSARY. HYBD2930
C                                                                          HYBD2940

IF (MODE .EQ. 2) GO TO 170 HYBD2950
DO 160 J = 1, N                                                HYBD2960      0

DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBD2970
160 CONTINUE HYBD2980
170 CONTINUE HYBD2990

C                                                                       HYBD3000
C        BEGINNING OF THE INNER LOOP. HYBD3010
C                                                                       HYBD3020

180 CONTINUE HYBD3030
C                                                                       HYBD3040
C           IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBD3050
C                                                                       HYBD3060

IF (NPRINT .LE. 0) GO TO 190 HYBD3070
IFLAG = 0 HYBD3080
IF (MOD(ITER-l,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC,IFLAG) HYBD3090
IF (IFLAG .LT. 0) GO TO 300 HYBD3100

190 CONTINUE HYBD3110
C                                                                       HYBD3120
C           DETERMINE THE DIRECTION P. HYBD3130
C                                                                       HYBD3140

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3) HYBD3150
C                                                                       HYBD3160
C           STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBD3170
C                                                                       HYBD3180

DO 200 J = 1, N HYBD3190
WAl(J) = -WAl(J) HYBD3200
WA2(J) = X(J) + WAl(J) HYBD3210
WA3(J) = DIAG(J)*WAl(J) HYBD3220

200 CONTINUE HYBD3230
PNORM = ENORM(N,WA3) HYBD3240
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C                                                                          HYBD3250
C           ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. HYBD3260

C                                                                          HYBD3270
IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) HYBD3280

C                                                                          HYBD3290
C           EVALUATE THE FUNCTION AT X+P AND CALCULATE ITS NORM. HYBD3300

C                                                                          HYBD3310
IFLAG = 1 HYBD3320
CALL FCN(N,WA2,WA4,IFLAG) HYBD3330

NFEV = NFEV + 1 HYBD3340

 

IF (IFLAG .LT. 0) GO TO 300 HYBD3350

FNORMl = ENORM(N,WA4) HYBD3360

C                                                                          HYBD3370
C           COMPUTE THE SCALED ACTUAL REDUCTION. HYBD3380

C                                                                          HYBD3390
ACTRED = -ONE HYBD3400

IF (FNORMl .LT. FNORM) ACTRED = ONE - (FNORMl/FNORM)**2 HYBD3410

C                                                                          HYBD3420
C           COMPUTE THE SCALED PREDICTED REDUCTION. HYBD3430

C                                                                          HYBD3440
L=1 HYBD3450

DO 220 I = 1, N HYBD3460
SUM = ZERO HYBD3470

DO 210 J = I, N HYBD3480
SUM = SUM + R(L)*WAl(J) HYBD3490
L=L+1 HYBD3500

210 CONTINUE HYBD3510

WA3(I) = QTF(I) + SUM HYBD3520

220 CONTINUE HYBD3530

TEMP = ENORM(N,WA3) HYBD3540

PRERED = ZERO HYBD3550

IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)**2 HYBD3560

C                                                                          HYBD3570
C           COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED HYBD3580

C REDUCTION. HYBD3590

C                                                                       HYBD3600
RATIO = ZERO HYBD3610

IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED HYBD3620

C                                                                          HYBD3630
C           UPDATE THE STEP BOUND. HYBD3640

C                                                                       HYBD3650
IF (RATIO .GE. Pl) GO TO 230 HYBD3660

NCSUC = 0 HYBD3670

NCFAIL = NCFAIL + 1 HYBD3680

DELTA = P5*DELTA HYBD3690

GO TO 240 HYBD3700

230 CONTINUE HYBD3710

NCFAIL = 0 HYBD3720

NCSUC = NCSUC + 1 HYBD3730

IF (RATIO .GE. P5 .OR. NCSUC .GT. 1) HYBD3740

*            DELTA = DMAX1(DELTA,PNORM/PS) HYBD3750

IF (DABS(RATIO-ONE) .LE. Pl) DELTA = PNORM/P5 HYBD3760

240 CONTINUE HYBD3770

C                                                                          HYBD3780
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C           TEST FOR SUCCESSFUL ITERATION. HYBD3790
C                                                                       HYBD3800

IF (RATIO .LT. P0001) GO TO 260 HYBD3810
C                                                                       HYBD3820
C           SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. HYBD3830
C                                                                       HYBD3840

DO 250 J = 1, N HYBD3850
X(J) = WA2(J) HYBD3860
WA2(J) = DIAG(J)*X(J) HYBD3870
FVEC(J) = WA4(J) HYBD3880

250 CONTINUE HYBD3890
XNORM = ENORM(N,WA2) HYBD3900
FNORM = FNORMl HYBD3910
ITER = ITER + 1 HYBD3920

260 CONTINUE HYBD3930
C                                                                       HYBD3940
C           DETERMINE THE PROGRESS OF THE ITERATION. HYBD3950
C                                                                       HYBD3960

NSLOWl = NSLOWl + 1 HYBD3970
IF (ACTRED .GE. P001) NSLOWl = 0 HYBD3980
IF (JEVAL) NSLOW2 = NSLOW2 + 1 HYBD3990
IF (ACTRED .GE. Pl) NSLOW2 = 0 HYBD4000

C                                                                       HYBD4010
C           TEST FOR CONVERGENCE. HYBD4020
C                                                                       HYBD4030

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1 HYBD4040
IF (INFO .NE. 0) GO TO 300 HYBD4050

C                                                                       HYBD4060
C           TESTS FOR TERMINATION AND STRINGENT TOLERANCES. HYBD4070
C                                                                       HYBD4080

IF (NFEV .GE. MAXFEV) INFO = 2 HYBD4090
IF (Pl*DMAX1(Pl*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3 HYBD4100
IF (NSLOW2 .EQ. 5) INFO = 4 HYBD4110
IF (NSLOWl .EQ. 10) INFO = 5 HYBD4120
IF (INFO .NE. 0) GO TO 300 HYBD4130

C                                                                       HYBD4140
C           CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION HYBD4150
C           BY FORWARD DIFFERENCES. HYBD4160
C                                                                       HYBD4170

IF (NCFAIL .EQ. 2) GO TO 290 HYBD4180
C                                                                          HYBD4190
C           CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN HYBD4200
C           AND UPDATE QTF IF NECESSARY. HYBD4210
C                                                                       HYBD4220

DO 280 J = 1, N HYBD4230
SUM = ZERO HYBD4240
DO 270 I = 1, N HYBD4250

SUM = SUM + FJAC(I,J)*WA4(I) HYBD4260
270 CONTINUE HYBD4270

WA2(J) = (SUM - WA3(J))/PNORM HYBD4280
WAl(J) = DIAG(J)*((DIAG(J)*WAl(J))/PNORM) HYBD4290
IF (RATIO .GE. P0001) QTF(J) = SUM HYBD4300

280 CONTINUE HYBD4310
C                                                                       HYBD4320
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C           COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. HYBD4330

C                                                                       HYBD4340
CALL RlUPDT(N,N,R,LR,WAl,WA2,WA3,SING) HYBD4350
CALL RlMPYQ(N,N,FJAC,LDFJAC,WA2,WA3) HYBD4360
CALL RlMPYQ(l,N,QTF,l,WA2,WA3) HYBD4370

C                                                                       HYBD4380
C           END OF THE INNER LOOP. HYBD4390

C                                                                          HYBD4400
JEVAL = .FALSE. HYBD4410
GO TO 180 HYBD4420

290 CONTINUE HYBD4430

C        END OF THE OUTER LOOP. HYBD4450

C                                                                       HYBD4460
GO TO 30 HYBD4470

300 CONTINUE HYBD4480

C                                                                       HYBD4490
C     TERMINATION, EITHER NORMAL OR USER IMPOSED. HYBD4500

C                                                                          HYBD4510
IF (IFLAG .LT. 0) INFO = IFLAG HYBD4520

IFLAG = 0 HYBD4530

IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,IFLAG) HYBD4540

RETURN HYBD4550

C                                                                          HYBD4560
C     LAST CARD OF SUBROUTINE HYBRD. HYBD4570

C                                                                       HYBD4580
END HYBD4590
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SUBROUTINE HYBRD 1(FCN,N,X,FVEC;TOL,INFO,WA,LWA) HYD 10010

INTEGER N,INFO,LWA HYD10020

DOUBLE PRECISION TOL HYD10030

DOUBLE PRECISION X(N),FVEC(N),WA(LWA) HYD10040

EXTERNAL FCN HYD 10050

C ********** HYD 10060

C                                                                       HYD10070
C     SUBROUTINE HYBRDl HYD 10080

C                                                                       HYD10090
C     THE PURPOSE OF HYBRDl IS TO FIND A ZERO OF A SYSTEM OF HYD10100

C     N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION HYD10110

C     OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE HYD 10120

C     MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER HYD 10130

C     MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS. HYD 10140

C     THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE HYD10150

C APPROXIMATION. HYD 10160

C                                                                       HYD10170
C     THE SUBROUTINE STATEMENT IS HYD 10180

C                                                                       HYD10190
C       SUBROUTINE HYBRD 1(FCN,N,X,FVEC,TOL,INFO,WA,LWA) HYD10200

C                                                                       HYD10210
C WHERE HYD10220

C                                                                       HYD10230
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH HYD 10240

C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED HYD10250

C         IN AN EXTERNAL STATEMENT IN THE USER CALLING HYD 10260

C         PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. HYD10270

C                                                                       HYD10280
C         SUBROUTINE FCN(N,X,FVEC,IFLAG) HYD10290

C         INTEGER N,IFLAG HYD10300

C         DOUBLE PRECISION X(N),FVEC(N) HYD10310

C         -                                                             HYD10320
C         CALCULATE THE FUNCTIONS AT X AND HYD10330

C         RETURN THIS VECTOR IN FVEC. HYD 10340

C                                                                       HYD10350
C RETURN HYD10360

C END HYD10370

C                                                                       HYD10380
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS HYD10390

C         THE USER WANTS TO TERMINATE EXECUTION OF HYBRDl. HYD 10400

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. HYD 10410

C                                                                       HYD 10420
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER HYD 10430

C         OF FUNCTIONS AND VARIABLES.                                    HYD 10440
C                                                                       HYD10450
C        X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN HYD 10460

C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X HYD10470

C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. HYD 10480

C                                                                       HYD 10490
C       FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYD10500

C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. HYD 10510

C                                                                       HYD10520
C       TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS HYD10530

C         WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYD10540

L
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C         BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYD10550
C                                                                       HYD 10560
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYD10570
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYD10580
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYD10590
C         INFO IS SET AS FOLLOWS. HYD10600
C                                                                       HYD10610
C         INFO = 0 IMPROPER INPUT PARAMETERS. HYD10620
C                                                                       HYD10630
C         INFO = 1   ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYD 10640
C                    BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYD10650
C                                                                       HYD10660
C         INFO = 2   NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED HYD10670
C 200*(N+1) HYD10680
C                                                                       HYD10690
C         INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYD10700
C                    THE APPROXIMATE SOLUTION X IS POSSIBLE. HYD10710
C                                                                       HYD10720
C         INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. HYD10730
C                                                                       HYD10740
C       WA IS A WORK ARRAY OF LENGTH LWA. HYD10750
C                                                                       HYD10760
C       LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYD10770
C (N*(3*N+13))/2. HYD10780
C                                                                       HYD10790
C     SUBPROGRAMS CALLED HYD10800
C                                                                       HYD 10810
C       USER-SUPPLIED ...... FCN HYD10820
C                                                                       HYD10830
C       MINPACK-SUPPLIED ... HYBRD HYD 10840
C                                                                       HYD10850
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYD10860
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYD10870
C                                                                       HYD10880
C ********** HYD10890

INTEGER INDEX,J,LR,MAXFEV,ML,MODE,MU,NFEV,NPRINT HYD10900
DOUBLE PRECISION EPSFCN,FACTOR,ONE,XTOL,ZERO HYD 10910

DATA FACTOR,ONE,ZERO /1.OD2,1.ODO,0.ODO/ HYD10920
INFO = 0 HYD10930

C                                                                       HYD10940
C     CHECK THE INPUT PARAMETERS FOR ERRORS. HYD10950
C                                                                       HYD10960

IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. (N*(3*N + 13))/2) HYD10970
*   GO TO 20 HYD10980

C                                                                       HYD10990         C     CALL HYBRD. HYD 11000
C                                                                       HYD11010

MAXFEV = 200*(N + 1) HYD11020
XTOL = TOL HYD 11030         '
M L=N-1 HYD11040
M U=N-1 HYD11050
EPSFCN = ZERO HYD 11060
MODE = 2 HYD11070
DO 10 J = 1, N HYD11080
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WA(J) = ONE                                                    HYD 11090
10 CONTINUE HYD 11100

NPRINT = 0 HYD11110

LR = (N*(N + 1))/2 HYD11120

INDEX = 6*N + LR HYD11130

CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,WA(1),MODE, HYD 11140
* FACTOR,NPRINT,INFO,NFEV,WA(INDEX+1),N,WA(6*N+1),LR, HYD 11150
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) HYD 11160

IF (INFO .EQ. 5) INFO = 4 HYD11170

20 CONTINUE HYD11180

RETURN HYD11190

C                                                                       HYD 11200
C     LAST CARD OF SUBROUTINE HYBRDl. HYD 11210

C                                                                       HYD11220
END HYD11230
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SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,  HYBJ0010
* FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,WAl,WA2, HYBJ0020
* WA3,WA4) HYBJ0030
INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR HYBJ0040
DOUBLE PRECISION XTOL,FACTOR HYBJ0050
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR), HYBJ0060

* QTF(N),WAl(N),WA2(N),WA3(N),WA4(N) HYBJ0070
C ********** HYBJ0080
C                                                                       HYBJ0090
C     SUBROUTINE HYBRJ HYBJ0100
C                                                                          HYBJ0110
C     THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF HYBJ0120
C     N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION HYBJ0130
C     OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A HYBJ0140
C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. HYBJ0150
C                                                                          HYBJ0160
C     THE SUBROUTINE STATEMENT IS HYBJ0170
C                                                                          HYBJ0180
C       SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG, HYBJ0190
C MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF, HYBJ0200
C WAl,WA2,WA3,WA4) HYBJ0210
C                                                                       HYBJ0220
C WHERE HYBJ0230
C                                                                          HYBJ0240
C        FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH HYBJ0250
C         CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST HYBJ0260
C         BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER HYBJ0270

C         CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. HYBJ0280
C                                                                          HYBJ0290
C         SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ0300
C         INTEGER N,LDFJAC,IFLAG HYBJ0310
C         DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) HYBJ0320
C                                                                          HYBJ0330
C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND HYBJ0340
C         RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. HYBJ0350
C         IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND HYBJ0360
C         RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. HYBJ0370
C                                                                       HYBJ0380
C RETURN HYBJ0390
C END HYBJ0400
C                                                                       HYBJ0410
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS HYBJ0420
C         THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ. HYBJ0430
C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. HYBJ0440
C                                                                          HYBJ0450
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER HYBJ0460
C         OF FUNCTIONS AND VARIABLES. HYBJ0470
C                                                                       HYBJ0480
C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN HYBJ0490
C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X HYBJ0500
C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. HYBJ0510
C                                                                          HYBJ0520
C       FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBJ0530
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. HYBJ0540
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C HYBJ0550
C FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE HYBJ0560
C         ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION HYBJ0570
C         OF THE FINAL APPROXIMATE JACOBIAN. HYBJ0580
C                                                                       HYBJ0590
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYBJ0600
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYBJ0610
C                                                                       HYBJ0620
C       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION HYBJ0630
C         OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE HYBJ0640
C         ITERATES IS AT MOST XTOL. HYBJ0650
C                                                                       HYBJ0660
C       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION HYBJ0670
C         OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 HYBJ0680
C         HAS REACHED MAXFEV. HYBJ0690
C                                                                       HYBJ0700
C       DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE HYBJ0710
C         BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG HYBJ0720
C         MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS HYBJ0730
C         MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. HYBJ0740
C                                                                       HYBJ0750
C MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE HYBJ0760
C         VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, HYBJ0770
C         THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER HYBJ0780
C         VALUES OF MODE ARE EQUIVALENT TO MODE = 1. HYBJ0790
C                                                                       HYBJ0800
C       FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE HYBJ0810
C         INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF HYBJ0820
C         FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE HYBJ0830
C         TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE HYBJ0840
C         INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. HYBJ0850
C                                                                       HYBJ0860
C       NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED HYBJ0870
C         PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, HYBJ0880
C         FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST HYBJ0890
C         ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND HYBJ0900
C         IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE HYBJ0910
C         FOR PRINTING. FVEC AND FJAC SHOULD NOT BE ALTERED. HYBJ0920
C         IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN HYBJ0930
C         WITH IFLAG = 0 ARE MADE. HYBJ0940
C                                                                       HYBJ0950
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYBJ0960
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYBJ0970
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYBJ0980
C         INFO IS SET AS FOLLOWS. HYBJ0990
C                                                                          HYBJ1000
C         INFO = 0 IMPROPER INPUT PARAMETERS. HYBJ1010
C                                                                       HYBJ1020
C         INFO = 1   RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES HYBJ1030
C                  . IS AT MOST XTOL. HYBJ1040
C                                                                          HYBJ1050
C         INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS HYBJ1060
C REACHED MAXFEV. HYBJ1070
C                                                                          HYBJ1080
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C         INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYBJ1090
C                    THE APPROXIMATE SOLUTION X IS POSSIBLE. HYBJ1100
C                                                                       HYBJ1110
C         INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBJ1120
C                    MEASURED BY THE IMPROVEMENT FROM THE LAST HYBJ1130
C FIVE JACOBIAN EVALUATIONS. HYBJ 1140

C                                                                       HYBJ1150
C         INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS HYBJ1160
C                     MEASURED BY THE IMPROVEMENT FROM THE LAST HYBJ1170
C                    TEN ITERATIONS. HYBJ1180
C                                                                       HYBJ1190
C       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF HYBJ1200
C         CALLS TO FCN WITH IFLAG = 1. HYBJ1210
C                                                                       HYBJ1220
C       NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF HYBJ1230
C         CALLS TO FCN WITH IFLAG = 2. HYBJ1240
C                                                                       HYBJ1250
C       R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE HYBJ1260
C         UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION HYBJ1270

C         OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE. HYBJ1280
C                                                                          HYBJ1290
C       LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYBJ1300
C (N*(N+1))/2. HYBJ1310
C                                                                       HYBJ1320
C       QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBJ1330

C         THE VECTOR (Q TRANSPOSE)*FVEC. HYBJ1340
C                                                                          HYBJ1350
C       WAl, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N. HYBJ1360
C                                                                       HYBJ1370
C     SUBPROGRAMS CALLED HYBJ1380
C                                                                       HYBJ1390
C       USER-SUPPLIED ...... FCN HYBJ1400
C                                                                       HYBJ1410
C       MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM, HYBJ1420
C QFORM,QRFAC,RlMPYQ,RlUPDT HYBJ1430
C                                                                       HYBJ1440
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,MOD HYBJ1450
C                                                                       HYBJ1460
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYBJ1470

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYBJ1480
C                                                                       HYBJ1490
C ********** HYBJ1500

INTEGER I,IFLAG,ITER,J,JMl,L,NCFAIL,NCSUC,NSLOWl,NSLOW2 HYBJ1510
INTEGER IWA(1) HYBJ1520
LOGICAL JEVAL,SING HYBJ1530
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORMl,ONE,PNORM, HYBJ1540

* PRERED,Pl,PS,POOl,P0001,RATIO,SUM,TEMP,XNORM, HYBJ1550
* ZERO HYBJ1560
DOUBLE PRECISION DPMPAR,ENORM HYBJ1570
DATA ONE,Pl,P5,POOl,P0001,ZERO HYBJ1580

* /1.ODO,1.OD-1,5.OD-1,1.OD-3,1.OD-4,0.ODO/ HYBJ1590
C                                                                       HYBJ1600
C     EPSMCH IS THE MACHINE PRECISION. HYBJ1610

C                                                                       HYBJ1620
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EPSMCH = DPMPAR(1) HYBJ1630
C HYBJ1640

INFO = 0 HYBJ1650
IFLAG = 0 HYBJ1660
NFEV = 0 HYBJ1670
NJEV = 0 HYBJ1680

C                                                                       HYBJ1690
C     CHECK THE INPUT PARAMETERS FOR ERRORS. HYBJ1700
C                                                                       HYBJ1710

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. XTOL .LT. ZERO HYBJ1720
*    .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO HYBJ1730
*    .OR. LR .LT. (N*(N + 1))/2) GO TO 300 HYBJ1740
IF (MODE .NE. 2) GO TO 20 HYBJ1750
DO 10 J = 1, N HYBJ1760

IF (DIAG(J) .LE. ZERO) GO TO 300 HYBJ1770
10 CONTINUE HYBJ1780
20 CONTINUE HYBJ1790

C                                                                       HYBJ1800
C     EVALUATE THE FUNCTION AT THE STARTING POINT HYBJ1810
C     AND CALCULATE ITS NORM. HYBJ1820
C                                                                       HYBJ1830

IFLAG = 1 HYBJ1840
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ1850
NFEV = 1 HYBJ1860
IF (IFLAG .LT. 0) GO TO 300 HYBJ1870
FNORM = ENORM(N,FVEC) HYBJ1880

C                                                                       HYBJ1890
C     INITIALIZE ITERATION COUNTER AND MONITORS. HYBJ1900
C                                                                       HYBJ1910

ITER = 1 HYBJ1920
NCSUC = 0 HYBJ1930
NCFAIL = 0 HYBJ1940
NSLOWl = 0 HYBJ1950
NSLOW2 = 0 HYBJ1960

C                                                                       HYBJ1970
C     BEGINNING OF THE OUTER LOOP. HYBJ1980
C                                                                       HYBJ1990

30 CONTINUE HYBJ2000
JEVAL = .TRUE. HYBJ2010

C                                                                       HYBJ2020
C        CALCULATE THE JACOBIAN MATRIX. HYBJ2030
C                                                                       HYBJ2040

IFLAG = 2 HYBJ2050
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ2060
NJEV = NJEV + 1 HYBJ2070
IF (IFLAG .LT. 0) GO TO 300 HYBJ2080

C                                                                       HYBJ2090
C        COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. HYBJ2100
C                                                                       HYBJ2110

CALL QRFAC(N,N,FJAC,LDFJAC,.FALSE.,IWA,l,WAl,WA2,WA3) HYBJ2120
C                                                                       HYBJ2130
C        ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING HYBJ2140
C        TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. HYBJ2150
C                                                                       HYBJ2160
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IF (ITER .NE. 1) GO TO 70 HYBJ2170

IF (MODE .EQ. 2) GO TO 50 HYBJ2180

DO 40 J = 1, N HYBJ2190

DIAG(J) = WA2(J) HYBJ2200

IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE HYBJ2210
40 CONTINUE HYBJ2220
50 CONTINUE HYBJ2230

C                                                                          HYBJ2240
C        ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X HYBJ2250

C        AND INITIALIZE THE STEP BOUND DELTA. HYBJ2260
C                                                                          HYBJ2270

DO 60 J = 1, N HYBJ2280

WA3(J) = DIAG(J)*X(J) HYBJ2290
60 CONTINUE HYBJ2300

XNORM = ENORM(N,WA3) HYBJ2310
DELTA = FACTOR*XNORM HYBJ2320

IF (DELTA .EQ. ZERO) DELTA = FACTOR HYBJ2330
70 CONTINUE HYBJ2340

C                                                                          HYBJ2350
C        FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. HYBJ2360
C                                                                          HYBJ2370

DO 80 I = 1, N HYBJ2380

QTF(I) = FVEC(I) HYBJ2390
80 CONTINUE HYBJ2400

DO 120 J = 1, N HYBJ2410

IF (FJAC(J,J) .EQ. ZERO) GO TO 110 HYBJ2420
SUM = ZERO HYBJ2430

DO 90 I = J, N HYBJ2440
SUM = SUM + FJAC(I,J)*QTF(I) HYBJ2450

90 CONTINUE HYBJ2460
TEMP = -SUM/FJAC(J,J) HYBJ2470

DO 100 I = J, N HYBJ2480

QTF(I) = QTF(I) + FJAC(I,J)*TEMP HYBJ2490
100 CONTINUE HYBJ2500

110 CONTINUE HYBJ2510

120 CONTINUE HYBJ2520

C                                                                          HYBJ2530
C        COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. HYBJ2540

C                                                                          HYBJ2550
SING = .FALSE. HYBJ2560

DO 150 J = 1, N HYBJ2570
L=J HYBJ2580
JM1 =J-1 HYBJ2590

IF (JM1 .LT. 1) GO TO 140 HYBJ2600

DO 130 I = 1, JM1 HYBJ2610

R(L) = FJAC(I,J) HYBJ2620
L=L+N-I HYBJ2630

130 CONTINUE HYBJ2640

140 CONTINUE HYBJ2650

R(L) = WAl(J)                                               HYBJ2660
IF (WAl(J) .EQ. ZERO) SING = .TRUE. HYBJ2670

150 CONTINUE                                                      HYBJ2680
C                                                                       HYBJ2690
C        ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. HYBJ2700

-
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C                                                                          HYBJ2710
CALL QFORM(N,N,FJAC,LDFJAC,WAl) HYBJ2720

C                                                                       HYBJ2730
C        RESCALE IF NECESSARY. HYBJ2740
C                                                                       HYBJ2750

IF (MODE .EQ. 2) GO TO 170 HYBJ2760
DO 160 J = 1, N HYBJ2770

DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBJ2780
160 CONTINUE HYBJ2790
170 CONTINUE HYBJ2800

C                                                                       HYBJ2810
C        BEGINNING OF THE INNER LOOP. HYBJ2820
C                                                                       HYBJ2830

180 CONTINUE HYBJ2840
C                                                                       HYBJ2850
C           IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBJ2860
C                                                                       HYBJ2870

IF (NPRINT .LE. 0) GO TO 190 HYBJ2880
IFLAG = 0 HYBJ2890
IF (MOD(ITER-l,NPRINT) .EQ. 0) HYBJ2900

*         CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ2910
IF (IFLAG .LT. 0) GO TO 300 HYBJ2920

190 CONTINUE HYBJ2930
C                                                                          HYBJ2940
C           DETERMINE THE DIRECTION P. HYBJ2950
C                                                                       HYBJ2960

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WAl,WA2,WA3) HYBJ2970
C                                                                          HYBJ2980
C           STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBJ2990
C                                                                       HYBJ3000

DO 200 J = 1, N HYBJ3010
WAl(J) = -WAl(J) HYBJ3020
WA2(J) = X(J) + WAl(J) HYBJ3030
WA3(J) = DIAG(J)*WAl(J) HYBJ3040

200 CONTINUE HYBJ3050
PNORM = ENORM(N,WA3) HYBJ3060

C                                                                       HYBJ3070
C           ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. HYBJ3080
C                                                                       HYBJ3090

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) HYBJ3100
C                                                                          HYBJ3110
C           EVALUATE THE FUNCTION AT X+P AND CALCULATE ITS NORM. HYBJ3120
C                                                                       HYBJ3130

IFLAG = 1 HYBJ3140
CALL FCN(N,WA2,WA4,FJAC,LDFJAC,IFLAG) HYBJ3150
NFEV = NFEV + 1 HYBJ3160
IF (IFLAG .LT. 0) GO TO 300 HYBJ3170
FNORMl = ENORM(N,WA4) HYBJ3180

C HYBJ3190
C           COMPUTE THE SCALED ACTUAL REDUCTION. HYBJ3200
C                                                                          HYBJ3210

ACTRED = -ONE HYBJ3220
IF (FNORMl .LT. FNORM) ACTRED = ONE - (FNORMl/FNORM)**2 HYBJ3230

C                                                                          HYBJ3240
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C           COMPUTE THE SCALED PREDICTED REDUCTION. HYBJ3250

C                                                                       HYBJ3260

L=1 HYBJ3270

DO 220 I = 1, N HYBJ3280

SUM = ZERO HYBJ3290

DO 210 J = I, N HYBJ3300

SUM = SUM + R(L)*WAl(J) HYBJ3310

L=L+1 HYBJ3320

210 CONTINUE HYBJ3330

WA3(I) = QTF(I) + SUM HYBJ3340

220 CONTINUE HYBJ3350

TEMP = ENORM(N,WA3) HYBJ3360

PRERED = ZERO HYBJ3370

IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)**2 HYBJ3380

C                                                                          HYBJ3
390

C           COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED HYBJ3400

C REDUCTION. HYBJ3410

C                                                                          HYBJ3
420

RATIO = ZERO HYBJ3430

IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED HYBJ3440

C                                                                       HYBJ3450

'C           UPDATE THE STEP BOUND. HYBJ3460

C                                                                          HYBJ3
470

IF (RATIO .GE. Pl) GO TO 230 HYBJ3480

NCSUC = 0 HYBJ3490

NCFAIL = NCFAIL + 1 HYBJ3500

DELTA = PS*DELTA HYBJ3510

GO TO 240 HYBJ3520

230 CONTINUE HYBJ3530

NCFAIL = 0 HYBJ3540

NCSUC = NCSUC + 1 HYBJ3550

IF (RATIO .GE. PS .OR. NCSUC .GT. 1) HYBJ3560

*            DELTA = DMAX1(DELTA,PNORM/P5) HYBJ3570

IF (DABS(RATIO-ONE) .LE. Pl) DELTA = PNORM/PS HYBJ3580

240 CONTINUE HYBJ3590

C                                                                       HYBJ3
600

C           TEST FOR SUCCESSFUL ITERATION. HYBJ3610

C                                                                        
 HYBJ3620

IF (RATIO .LT. P0001) GO TO 260 HYBJ3630

C                                                                        
 HYBJ3640

C           SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR
NORMS. HYBJ3650

C                                                                       H
YBJ3660

DO 250 J = 1, N HYBJ3670

X(J) = WA2(J)
HYBJ3680

WA2(J) = DIAG(J)*X(J) HYBJ3690

FVEC(J) = WA4(J)
HYBJ3700

250 CONTINUE HYBJ3710

XNORM = ENORM(N,WA2)
HYBJ3720

FNORM = FNORMl HYBJ3730

ITER = ITER + 1
HYBJ3740

260 CONTINUE HYBJ3750

C                                                                     
     HYBJ3760

C           DETERMINE THE PROGRESS OF THE ITERATION. HYBJ3770

C                                                                     
     HYBJ3780
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NSLOWl = NSLOWl + 1 HYBJ3790
IF (ACTRED .GE. P001) NSLOWl = 0 HYBJ3800
IF (JEVAL) NSLOW2 = NSLOW2 + 1 HYBJ3810
IF (ACTRED .GE. Pl) NSLOW2 = 0 HYBJ3820

C HYBJ3830
C           TEST FOR CONVERGENCE. HYBJ3840
C                                                                       HYBJ3850

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1 HYBJ3860
IF (INFO .NE. 0) GO TO 300 HYBJ3870

C                                                                       HYBJ3880
C           TESTS FOR TERMINATION AND STRINGENT TOLERANCES. HYBJ3890
C                                                                       HYBJ3900

IF (NFEV .GE. MAXFEV) INFO = 2 HYBJ3910        1
IF (Pl*DMAX1(Pl*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3 HYBJ3920
IF (NSLOW2 .EQ. 5) INFO = 4 HYBJ3930
IF (NSLOWl .EQ. 10) INFO = 5 HYBJ3940
IF (INFO .NE. 0) GO TO 300 HYBJ3950

C                                                                       HYBJ3960
C           CRITERION FOR RECALCULATING JACOBIAN. HYBJ3970
C                                                                       HYBJ3980

IF (NCFAIL .EQ. 2) GO TO 290 HYBJ3990
C                                                                       HYBJ4000
C           CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN HYBJ4010
C           AND UPDATE QTF IF NECESSARY. HYBJ4020
C                                                                       HYBJ4030

DO 280 J = 1, N HYBJ4040
SUM = ZERO HYBJ4050
DO 270 I = 1, N HYBJ4060

SUM = SUM + FJAC(I,J)*WA4(I) HYBJ4070
270 CONTINUE HYBJ4080

WA2(J) = (SUM - WA3(J))/PNORM HYBJ4090
WAl(J) = DIAG(J)*((DIAG(J)*WAl(J))/PNORM) HYBJ4100
IF (RATIO .GE. P0001) QTF(J) = SUM HYBJ4110

280 CONTINUE HYBJ4120
C                                                                       HYBJ4130
C           COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. HYBJ4140
C                                                                          HYBJ4150

CALL RlUPDT(N,N,R,LR,WAl,WA2,WA3,SING) HYBJ4160
CALL RlMPYQ(N,N,FJAC,LDFJAC,WA2,WA3) HYBJ4170
CALL RlMPYQ(l,N,QTF,l,WA2,WA3) HYBJ4180

C                                                                       HYBJ4190
C           END OF THE INNER LOOP. HYBJ4200
C                                                                       HYBJ4210

JEVAL = .FALSE. HYBJ4220
GO TO 180 HYBJ4230

290 CONTINUE HYBJ4240
C                                                                       HYBJ4250
C        END OF THE OUTER LOOP. HYBJ4260
C                                                                       HYBJ4270

GO TO 30 HYBJ4280
300 CONTINUE HYBJ4290

C                                                                       HYBJ4300
C     TERMINATION, EITHER NORMAL OR USER IMPOSED. HYBJ4310
C                                                                       HYBJ4320
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IF (IFLAG .LT. 0) INFO = IFLAG HYBJ4330

IFLAG = 0 HYBJ4340

IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ4350

RETURN HYBJ4360

C                                                                          HYBJ4370
C     LAST CARD OF SUBROUTINE HYBRJ. HYBJ4380

C                                                                          HYBJ4390
END HYBJ4400
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SUBROUTINE HYBRJ 1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA) HYJ10010

INTEGER N,LDFJAC,INFO,LWA HYJ10020

DOUBLE PRECISION TOL HYJ 10030

DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA) HYJ10040

EXTERNAL FCN HYJ10050

C ********** HYJ10060

C                                                                       HYJ10070

C     SUBROUTINE HYBRJ 1
HYJ10080

C                                                                          HYJ10090

C     THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF HYJ10100

C     N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION HYJ10110

C     OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE HYJ 10120

C     MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER HYJ10130

C     MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS HYJ 10140

C     ANDhTHE JACOBIAN. HYJ10150

C                                                                          HYJ 10160

C     THE SUBROUTINE STATEMENT IS                                        HYJ10170

C                                                                          HYJ10180

C       SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA) HYJ10190

C                                                                          HYJ10200

C WHERE HYJ10210

C                                                                          HYJ10220

C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE.WHICH HYJ10230

C         CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST HYJ10240

C               BE' DECLARED  IN AN EXTERNAL STATEMENT  IN THE USER HYJ10250

C         CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. HYJ10260

C                                                                       HYJ10270

C         SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYJ10280

C         INTEGER N,LDFJAC,IFLAG HYJ10290

C         DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) HYJ 10300

C         ----------                                                      HYJ10310

C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND HYJ10320

C         RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. HYJ10330

C         IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND HYJ10340

C         RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. HYJ10350

C         --                                                            HYJ10360

C RETURN HYJ10370

C END HYJ10380

C                                                                          HYJ10390

C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS HYJ10400

C         THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1. HYJ10410

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. HYJ10420

C                                                                          HYJ10430

C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER HYJ 10440

C         OF FUNCTIONS AND VARIABLES. HYJ10450

C                                                                          HYJ 1046
0

C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN HYJ10470

C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X HYJ10480

C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. HYJ10490

C                                                                          HYJ10
500

C       FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYJ10510

C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. HYJ10520

C                                                                          HYJ10
530

C       FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE HYJ10540
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C         ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION HYJ10550
C         OF THE FINAL APPROXIMATE JACOBIAN. HYJ10560
C                                                                       HYJ10570
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYJ10580
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYJ10590
C                                                                          HYJ10600
C       TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS HYJ10610
C         WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYJ 10620
C         BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYJ10630
C                                                                          HYJ10640
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYJ10650
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYJ10660
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYJ10670
C         INFO IS SET AS FOLLOWS. HYJ10680
C                                                                                                                                                                                                                                                              HYJ 1 0 6 9 0
C         INFO = 0   IMPROPER INPUT PARAMETERS. HYJ10700
C                                                                       HYJ10710
C         INFO = 1   ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYJ10720
C        ·            BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYJ10730
C                                                                          HYJ10740
C         INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS HYJ10750
C                     REACHED 100*(N+1). HYJ10760
C                                                                          HYJ10770
C         INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYJ10780
C                     THE APPROXIMATE SOLUTION X IS POSSIBLE. HYJ10790
C                                                                          HYJ10800
C         INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. HYJ 10810
C                                                                       HYJ10820
C       WA IS A WORK ARRAY OF LENGTH LWA. HYJ10830
C                                                                       HYJ 10840
C       LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYJ10850
C (N*(N+13))/2. HYJ10860
C                                                                                         HY.T10870
C     SUBPROGRAMS CALLED HYJ10880
C                                                                          HYJ10890
C       USER-SUPPLIED ...... FCN HYJ10900
C                                                                          HYJ10910
C       MINPACK-SUPPLIED ... HYBRJ HYJ10920
C                                                                       HYJ 10930
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYJ10940
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYJ10950
C                                                                          HYJ10960
C ********** HYJ10970

INTEGER J,LR,MAXFEV,MODE,NFEV,NJEV,NPRINT HYJ10980
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO HYJ10990
DATA FACTOR,ONE,ZERO /1.OD2,1.ODO,0.ODO/ HYJ11000
INFO = 0 HYJ11010

C                                                                       HYJ 11020
C     CHECK THE INPUT PARAMETERS FOR ERRORS. HYJ11030
C                                                                       HYJ 11040

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO HYJ11050
I.

"    .OR. LWA .LT. (N*(N + 13))/2) GO TO 20 HYJ 11060
C                                                                       HYJ11070
C     CALL HYBRJ. HYJ11080
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C                                                                          HYJ11090

MAXFEV = 100*(N + 1)
HYJ11100

XTOL = TOL HYJ11110

MODE = 2 HYJ11120

DO 10 J = 1, N HYJ11130

WA(J) = ONE HYJ11140

10 CONTINUE HYJ11150

NPRINT = 0 HYJ11160

LR = (N*(N + 1))/2 HYJ11170

CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA(1),MODE, HYJ11180
* FACTOR,NPRINT,INFO,NFEV,NJEV,WA(6*N+1),LR,WA(N+1), HYJ11190
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) HYJ11200

IF (INFO .EQ. 5) INFO = 4 HYJ 11210

20 CONTINUE .

HYJ11220

RETURN HYJ11230

C                                                                          HYJ11240

C     LAST CARD OF SUBROUTINE HYBRJ1. HYJ11250

C                                                                          HYJ 11260

END HYJ11270
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SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL, LMDR0010
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV, LMDR0020
* IPVT,QTF,WAl,WA2,WA3,WA4) LMDR0030

INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV LMDR0040

INTEGER IPVT(N)                                                     LMDR0050
' DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR LMDR0060

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N), LMDR0070
* WAl(N),WA2(N),WA3(N),WA4(M) LMDR0080

C ********** LMDR0090

C                                                          ·               LMDR0100
C     SUBROUTINE LMDER LMDR0110

C                                   ·                                      LMDR0120
C     THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF LMDR0130

C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF LMDR0140

C     THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A LMDR0150
' C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. LMDR0160

C                                                                          LMDR0170
C     THE SUBROUTINE STATEMENT IS LMDR0180

C                                                                          LMDR0190
C       SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL, LMDR0200

C MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV, LMDR0210

C NJEV,IPVT,QTF,WAl,WA2,WA3,WA4) LMDR0220

C                                                                          LMDR0230
C WHERE LMDR0240

C                                                                          LMDR0250
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMDR0260

C         CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST LMDR0270

C         BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER LMDR0280

C         CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMDR0290

C                                                                          LMDR0300
C         SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR0310

C         INTEGER M,N,LDFJAC,IFLAG LMDR0320

C         DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N) LMDR0330

C                                                                          LMDR0340
C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND LMDR0350

C         RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. LMDR0360

C         IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND LMDR0370

C         RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. LMDR0380

C                                                                       LMDR0390
C RETURN LMDR0400

C END LMDR0410

C                                                                          LMDR0420
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMDR0430

C         THE USER WANTS TO TERMINATE EXECUTION OF LMDER. LMDR0440

C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMDR0450

C                                                                          LMDR0460
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDR0470

C         OF FUNCTIONS. LMDR0480

C                                                                          LMDR0490
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDR0500

C         OF VARIABLES. N MUST NOT EXCEED M. LMDR0510

C                                                                          LMDR0520
C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMDR0530\
C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMDR0540./
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C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMDR0550
C                                                                       LMDR0560
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMDR0570
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMDR0580
C                                                                          LMDR0590
C       FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMDR0600
C         OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMDR0610
C         DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMDR0620
C LMDR0630
C                T     T           T                                    LMDR0640
C               P *(JAC *JAC)*P = R *R, LMDR0650
C                                                                       LMDR0660
C         WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMDR0670
C         CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMDR0680
C         (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMDR0690
C         PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMDR0700
C         THE COMPUTATION OF R. LMDR0710
C                                                                       LMDR0720
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMDR0730
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMDR0740
C                                                                       LMDR0750
C       FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0760
C         OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE LMDR0770
C         REDUCTIONS IN THE SUM OF'SQUARES ARE AT MOST FTOL. LMDR0780
C         THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED LMDR0790
C         IN THE SUM OF SQUARES. LMDR0800
C                                                                       LMDR0810
C       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0820
C         OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE LMDR0830
C         ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE LMDR0840
C         RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION. LMDR0850
C                                                                       LMDR0860
C       GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0870
C         OCCURS WHEN THE COSINE OF·THE ANGLE BETWEEN FVEC AND LMDR0880
C         ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE LMDR0890
C         VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY LMDR0900
C         DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS LMDR0910
C         OF THE JACOBIAN. LMDR0920
C                                                                          LMDR0930
C       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION LMDR0940
C         OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 LMDR0950
C         HAS REACHED MAXFEV. LMDR0960
C                                                                          LMDR0970
C       DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE LMDR0980
C         BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG LMDR0990
C         MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS LMDR 1000
C         MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. LMDR1010
C                                                                          LMDR1020

C       MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE LMDR1030
C         VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, LMDR 1040
C         THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER LMDR1050
C         VALUES OF MODE ARE EQUIVALENT TO MODE = 1. LMDR1060
C                                                                          LMDR1070
C       FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMDR 1080
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C         INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMDR1090

C         FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMDR 1100

C         TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMDR 1110

C         INTERVAL (.1,100.).100. IS A GENERALLY RECOMMENDED VALUE. LMDR1120
C                                                                          LMDR1130
C       NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMDR1140
C         PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMDR1150
C         FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMDR1160
C         ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMDR1170

C         IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC LMDR1180
C         AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE LMDR1190

C         ALTERED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMDR 1200

C         OF FCN WITH IFLAG = 0 ARE MADE. LMDR 1210

C                                                                          LMDR1220
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMDR1230

C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMDR1240
C         VALUE OF. IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMDR1250
C         INFO IS SET AS FOLLOWS. LMDR1260
C                                                                       LMDR1270
C         INFO = 0  IMPROPER INPUT PARAMETERS. LMDR1280
C                                                                          LMDR1290
C         INFO = 1  BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMDR1300

C                   IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDR 1310

C                                                                          LMDR1320
C         INFO = 2  RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMDR1330
C                   IS AT MOST XTOL. LMDR1340
C                                                                          LMDR1350
C         INFO = 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMDR1360
C                                                                       LMDR1370
C         INFO = 4  THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMDR1380

C                   COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMDR1390
C                   ABSOLUTE VALUE. LMDR1400
C                                                                          LMDR1410
C         INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMDR1420
C                   REACHED MAXFEV. LMDR1430

C                                                                          LMDR 1440
C         INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMDR1450

C                   THE SUM OF SQUARES IS POSSIBLE. LMDR 1460

C                                                                          LMDR1470
C         INFO = 7 XTOL   IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMDR1480

C                   THE APPROXIMATE SOLUTION X IS POSSIBLE. LMDR1490

C                                                                          LMDR1500
C         INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMDR1510

C                    COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMDR1520

C                                                                          LMDR1530
C       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1540

C         CALLS TO FCN WITH IFLAG = 1.                                   LMDR1550
C                                                                          LMDR1560
C       NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1570

C         CALLS TO FCN WITH IFLAG = 2. LMDR1580

C                                                                          LMDR1590
C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDR1600

C         DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDR1610

C         WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDR1620



188

C         ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMDR1630
C         WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMDR 1640

C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMDR1650
C                                                                       LMDR1660.
C       QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMDR1670
C         THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMDR1680
C                                                                       LMDR1690
C       WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMDR1700
C                                                                       LMDR 1710
C       WA4 IS A WORK ARRAY OF LENGTH M. LMDR1720
C                                           ·                           LMDR1730
C     SUBPROGRAMS CALLED LMDR1740
C                                                                       LMDR1750
C       USER-SUPPLIED ...... FCN LMDR1760
C                                                                       LMDR1770
C       MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC LMDR1780
C                                                                       LMDR1790
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,DSQRT,MOD LMDR1800
C                                                                       LMDR1810
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMDR1820

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMDR1830
C                                                                       LMDR 1840
C     **4 -'rk***** LMDR1850

INTEGER I,IFLAG,ITER,J,L LMDR1860
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORMl,GNORM, LMDR1870

* ONE,PAR,PNORM,PRERED,Pl,P5,P25,P75,P0001,RATIO, LMDR1880
+

SUM,TEMP,TEMPl,TEMP2,XNORM,ZERO LMDR1890"

DOUBLE PRECISION DPMPAR,ENORM LMDR1900
DATA ONE,Pl,P5,P25,P75,P0001,ZERO LMDR 1910

+
/1.ODO,1.OD-1,5.OD-1,2.5D-1,7.5D-1,1.OD-4,0.ODO/ LMDR1920"

C                                                                       LMDR1930
C     EPSMCH IS THE MACHINE PRECISION. LMDR1940
C                              ·                                        LMDR1950

EPSMCH = DPMPAR(1) LMDR1960
C                                                                       LMDR1970

INFO = 0 LMDR1980
IFLAG = 0 LMDR1990
NFEV = 0 LMDR2000
NJEV = 0 LMDR2010

C                                                                       LMDR2020
C     CHECK THE INPUT PARAMETERS FOR ERRORS. LMDR2030
C                                                                       LMDR2040

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M LMDR2050
*    .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMDR2060
*    .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300 LMDR2070

IF (MODE .NE. 2) GO TO 20 LMDR2080

DO 10 J = 1, N LMDR2090

IF (DIAG(J) .LE. ZERO) GO TO 300 LMDR2100
10 CONTINUE LMDR2110
20 CONTINUE LMDR2120

C                                                                       LMDR2130
C     EVALUATE THE FUNCTION AT THE STARTING POINT LMDR2140
C     AND CALCULATE ITS NORM. LMDR2150
C LMDR2160
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IFLAG = 1 LMDR2170
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2180

NFEV = 1 LMDR2190

IF (IFLAG .LT. 0) GO TO 300 LMDR2200
FNORM = ENORM(M,FVEC) LMDR2210

C                                                                          LMDR2220
C     INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER. LMDR2230

C                                                                          LMDR2240
PAR = ZERO LMDR2250
ITER = 1 LMDR2260

C LMDR2270

C     BEGINNING OF THE OUTER LOOP. LMDR2280

C                                                                          LMDR2290
30 CONTINUE LMDR2300

C                                                                          LMDR2310
C        CALCULATE THE JACOBIAN MATRIX. LMDR2320
C                                                                       LMDR2330

IFLAG = 2 LMDR2340
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2350
NJEV = NJEV + 1 LMDR2360

IF (IFLAG .LT. 0) GO TO 300 LMDR2370

C LMDR2380

C        IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. LMDR2390
C                                                                          LMDR2400

IF (NPRINT .LE. 0) GO TO 40 LMDR2410
IFLAG = 0 LMDR2420

IF (MOD(ITER-l,NPRINT) .EQ. 0)                 ·                 LMDR2430
*      CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2440

IF (IFLAG .LT. 0) GO TO 300 LMDR2450
40 CONTINUE LMDR2460

C LMDR2470

C     ·   COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. · LMDR2480
C                                                                          LMDR2490

CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WAl,WA2,WA3) LMDR2500
C                                                                          LMDR2510
C        ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING LMDR2520
C        TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. LMDR2530
C                                                                          LMDR2540

IF (ITER .NE. 1) GO TO 80 LMDR2550

IF (MODE .EQ. 2) GO TO 60 LMDR2560

DO 50 J = 1, N LMDR2570

DIAG(J) = WA2(J) LMDR2580

IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE LMDR2590
50 CONTINUE LMDR2600
60 CONTINUE LMDR2610

C                                                                          LMDR2620
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X LMDR2630

C        AND INITIALIZE THE STEP BOUND DELTA. LMDR2640

C                                                                       LMDR2650
DO 70 J = 1, N LMDR2660

WA3(J) = DIAG(J)*X(J) LMDR2670

70 CONTINUE LMDR2680

XNORM = ENORM(N,WA3) LMDR2690

DELTA = FACTOR*XNORM LMDR2700
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IF (DELTA .EQ. ZERO) DELTA = FACTOR LMDR2710
80 CONTINUE LMDR2720

C                                                                          LMDR2730
C        FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN LMDR2740
C QTF. LMDR2750
C                                                                       LMDR2760

DO 90 I = 1, M LMDR2770
WA4(I) = FVEC(I) LMDR2780

90 CONTINUE LMDR2790
DO 130 J = 1, N LMDR2800

IF (FJAC(J,J) .EQ. ZERO) GO TO 120 LMDR2810
SUM = ZERO LMDR2820
DO 100 I = J, M LMDR2830

SUM = SUM + FJAC·(I,J)*WA4(I) LMDR2840
100 CONTINUE LMDR2850

TEMP = -SIJM/F.TAC(.J,.J) LMDR2860
DO 110 I = J, M LMDR2870

WA4(I) = WA4(I) + FJAC(I,J)*TEMP LMDR2880
110 CONTINUE LMDR2890
120 CONTINUE LMDR2900

FJAC(J,J) = WAl(J) LMDR2910
QTF(J) = WA4(J) LMDR2920

130 CONTINUE LMDR2930
C                                                                       LMDR2940
C        COMPUTE THE NORM OF THE SCALED GRADIENT. LMDR2950
C                                                                          LMDR2960

GNORM = ZERO LMDR2970
IF (FNORM .EQ. ZERO) GO TO 170 LMDR2980
DO 160 J = 1, N LMDR2990

L = IPVT(J) LMDR3000
IF (WA2(L) .EQ. ZERO) GO TO 150 LMDR3010
SUM = ZERO LMDR3020
DO 140 I = 1, J LMDR3030

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM) LMDR3040
140 CONTINUE LMDR3050

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L))) LMDR3060
150 CONTINUE LMDR3070
160 CONTINUE LMDR3080
170 CONTINUE LMDR3090

C                                                                          LMDR3100
C        TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMDR3110
C                                                                       LMDR3120

IF (GNORM .LE. GTOL) INFO = 4 LMDR3130

IF (INFO .NE. 0) GO TO 300 LMDR3140
C                                                                       LMDR3150
C        RESCALE IF NECESSARY. LMDR3160
C                                                                          LMDR3170

IF (MODE .EQ. 2) GO TO 190 LMDR3180

DO 180 J = 1, N LMDR3190
DIAG(J) = DMAX1(DIAG(J),WA2(J)) LMDR3200

180 CONTINUE LMDR3210
190 CONTINUE LMDR3220

C                                                                          LMDR3230
C        BEGINNING OF THE INNER LOOP. LMDR3240
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C                                                                       LMDR3250
200 CONTINUE LMDR3260

C                                                                          LMDR3270
C           DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMDR3280
C                                                                          LMDR3290

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAl,WA2, LMDR3300
* WA3,WA4) LMDR3310

C                                                                          LMDR3320
C           STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMDR3330
C                                                                          LMDR3340

DO 210 J = 1, N LMDR3350
WAl(J) = -WAl(J) LMDR3360

WA2(J) = X(J) + WAl(J) LMDR3370

WA3(J) = DIAG(J)*WAl(J) LMDR3380
210 CONTINUE LMDR3390

PNORM = ENORM(N,WA3) LMDR3400
C                                                                          LMDR3410
C           ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMDR3420
C                                                                          LMDR3430

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMDR3440
C                                                                          LMDR3450
C           EVALUATE THE FUNCTION AT X+P AND CALCULATE ITS NORM. LMDR3460
C                                                                          LMDR3470

IFLAG = 1 LMDR3480
CALL FCN(M,N,WA2,WA4,FJAC,LDFJAC,IFLAG) LMDR3490
NFEV = NFEV + 1 LMDR3500

IF (IFLAG .LT. 0) GO TO 300 LMDR3510
FNORMl = ENORM(M,WA4) LMDR3520

C                                                                       LMDR3530
C           COMPUTE THE SCALED ACTUAL REDUCTION. LMDR3540
C LMDR3550

ACTRED = -ONE LMDR3560

IF (Pl*FNORMl .LT. FNORM) ACTRED = ONE - (FNORMl/FNORM)**2  LMDR3570
C                                                                          LMDR3580
C           COMPUTE THE SCALED PREDICTED REDUCTION AND LMDR3590
C           THE SCALED DIRECTIONAL DERIVATIVE. LMDR3600
C                                                                          LMDR3610

DO 230 J = 1, N LMDR3620

WA3(J) = ZERO LMDR3630
L = IPVT(J) LMDR3640
TEMP = WAl(L) LMDR3650
DO 220 I = 1, J LMDR3660

WA3(I) = WA3(I) + FJAC(I,J)*TEMP LMDR3670
220 CONTINUE                                                LMDR3680
230 CONTINUE LMDR3690

TEMPl = ENORM(N,WA3)/FNORM LMDR3700
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM LMDR3710
PRERED = TEMP1**2 + TEMP2**2/P5 LMDR3720
DIRDER = -(TEMP1**2 + TEMP2**2) LMDR3730

C                                                                          LMDR3740
C           COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED LMDR3750
C REDUCTION. LMDR3760
C                                                                          LMDR3770

RATIO = ZERO LMDR3780
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IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED                 LMDR3790
C LMDR3800
C           UPDATE THE STEP BOUND. LMDR3810
C                                                                       LMDR3820

IF (RATIO .GT. P25) GO TO 240 LMDR3830
IF (ACTRED .GE. ZERO) TEMP = P5 LMDR3840
IF (ACTRED .LT. ZERO) LMDR3850

*            TEMP = P5*DIRDER/(DIRDER + P5*ACTRED) LMDR3860
IF (Pl*FNORMl .GE. FNORM .OR. TEMP .LT. Pl) TEMP = Pl LMDR3870
DELTA = TEMP*DMIN1(DELTA,PNORM/Pl) LMDR3880
PAR = PAR/TEMP LMDR3890
GO TO 260 LMDR3900

240 CONTINUE LMDR3910
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250 LMDR3920
DELTA = PNORM/PS LMDR3930
FAR = PS*PAR LMDR3940

250 CONTINUE LMDR3950
260 CONTINUE LMDR3960

C                                                                       LMDR3970
C           TEST FOR SUCCESSFUL ITERATION. LMDR3980
C                                                                       LMDR3990

IF (RATIO .LT. P0001) GO TO 290 LMDR4000
C                                                                       LMDR4010
C           SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. LMDR4020
C                                                                       LMDR4030

DO 270 J = 1, N LMDR4040
X(J) = WA2(J) LMDR4050
WA2(J) = DIAG(J)*X(J) LMDR4060

270 CONTINUE LMDR4070
DO 280 I = 1, M LMDR4080

FVEC(I) = WA4(I) LMDR4090
280 CONTINUE LMDR4100

XNORM = ENORM(N,WA2) LMDR4110
FNORM = FNORMl LMDR4120
ITER = ITER + 1 LMDR4130

290 CONTINUE LMDR4140
C                                                                    LMDR4150
C           TESTS FOR CONVERGENCE. LMDR4160
C                                                                       LMDR4170

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDR4180
*

. AND.    PS*RATIO    . LE. ONE) INFO  = 1 LMDR4190
IF (DELTA .LE. XTOL*XNORM) INFO = 2 LMDR4200
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDR4210

*          .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3 LMDR4220
IF (INFO .NE. 0) GO TO 300 LMDR4230

C                                                                       LMDR4240
C           TESTS FOR TERMINATION AND STRINGENT TOLERANCES. LMDR4250
C                                                                       LMDR4260

IF (NFEV .GE. MAXFEV) INFO = 5 LMDR4270
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH LMDR4280

*          .AND. P5*RATIO .LE. ONE) INFO = 6 LMDR4290
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7 LMDR4300
IF (GNORM .LE. EPSMCH) INFO = 8 LMDR4310
IF (INFO .NE. 0) GO TO 300 LMDR4320
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C                                                                          LMDR4330
C           END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL. LMDR4340

C                                                                       LMDR4350
IF (RATIO .LT. P0001) GO TO 200 LMDR4360

C                                                                          LMDR4370

C        END OF THE OUTER LOOP. LMDR4380

C                                                                          LMDR4390

GO TO 30 LMDR4400

300 CONTINUE LMDR4410

C                                                                       LMDR4420

C     TERMINATION, EITHER NORMAL OR USER IMPOSED. LMDR4430

C                                                                          LMDR4440

IF (IFLAG .LT. 0) INFO = IFLAG LMDR4450

IFLAG = 0 LMDR4460

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR4470

RETURN LMDR4480

C                                                                       LMDR4490

C     LAST CARD OF SUBROUTINE LMDER. LMDR4500

C                                                                          LMDR4510

END LMDR4520
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SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA, LMR10010
* LWA) LMR10020

INTEGER M,N,LDFJAC,INFO,LWA LMR10030

INTEGER IPVT(N) LMR10040

DOUBLE PRECISION TOL LMR10050

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA) LMR10060

EXTERNAL FCN LMR10070

C ********** LMR10080

C                                                                      LMR10090
C     SUBROUTINE LMDERl LMR10100

C                                                                      LMR10110
C     THE PURPOSE OF LMDERl IS TO MINIMIZE THE SUM OF THE SQUARES OF LMR10120

C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE LMR10130

C     LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE LMR10140

C     GENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A LMR10150

C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. LMR10160

C                                                                      LMR10170

C     THE SUBROUTINE STATEMENT IS LMR10180

C                                                                         LMR10190

C       SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO, LMR10200

C IPVT,WA,LWA) LMR10210

C                                                                      LMR10220
C WHERE LMR10230

C                                                                      LMR10240

C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMR10250

C         CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST LMR10260

C     ·   BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER LMR10270

C         CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMR10280

C                                                                      LMR10290

C         SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMR10300

C         INTEGER M,N,LDFJAC,IFLAG LMR10310

C         DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N) LMR10320

C         ----------                                                      LMR10330

C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND LMR10340

C         RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. LMR10350

C         IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND LMR10360

C         RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. LMR10370

C         -   -                                                         LMR10380

C RETURN LMR10390

C END LMR10400

C                                                                      LMR10410
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMR10420

C         THE USER WANTS TO TERMINATE EXECUTION OF LMDERl. LMR10430

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMR10440

C                                                                         LMR10450

C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMR10460

C         OF FUNCTIONS. LMR10470

C LMR10480

C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMR10490

C         OF VARIABLES. N MUST NOT EXCEED M. LMR10500

C                                                                      LMR10510

C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMR10520

C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMR10530

C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMR10540
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C                                                                          LMR10550
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMR10560         
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMR10570
C                                                                          LMR10580
C       FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMR10590
C         OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMR10600
C         DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMR10610
C                                                                       LMR10620
C                T     T           T                                    LMR 10630
C               P *(JAC *JAC)*P = R *R, LMR10640
C                                                                       LMR10650
C         WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMR10660
C         CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMR10670
C         (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMR10680
C         PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMR10690
C         THE COMPUTATION OF R. LMR10700
C                                                                       LMR10710
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMR10720
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMR10730
C                                                                          LMR10740
C       TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMR10750
C         WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMR10760
C         ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMR10770
C         THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMR10780
C         MOST TOL. LMR10790
C                                                                          LMR10800
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMR10810
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMR10820
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMR10830
C         INFO IS SET AS FOLLOWS. LMR10840
C                                                                          LMR10850
C INFO 0  IMPROPER INPUT PARAMETERS. LMR10860
C                                                                          LMR10870
C INFO 1  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10880
C                   IN THE SUM OF SQUARES IS AT MOST TOL. LMR10890
C                                                                       LMR10900
C INFO 2  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10910
C                   BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMR10920
C                                                                       LMR10930
C INFO 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMR10940
C                                                                       LMR10950
C INFO 4  FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMR10960
C                   JACOBIAN TO MACHINE PRECISION. LMR10970
C                                                                       LMR10980
C INFO 5  NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMR10990
C                   REACHED 100*(N+1). LMR11000
C                                                                          LMR11010
C INFO 6  TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMR11020
C                   THE SUM OF SQUARES IS POSSIBLE. LMR11030
C                                                                       LMR11040
C INFO 7  TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMR11050
C                   THE APPROXIMATE SOLUTION X IS POSSIBLE. LMR11060
C                                                                       LMR11070
C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMR11080
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C         DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMR11090

C         WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMR11100

C         ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMR11110

C         WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMR11120

C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMR11130

C                                                                         LMR11140
C       WA IS A WORK ARRAY OF LENGTH LWA. LMR11150

C                                                                         LMR11160
C       LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M. LMR11170

C                                                                         LMR11180
C     SUBPROGRAMS CALLED LMR11190

C                                                                         LMR11200
C       USER-SUPPLIED ...... FCN LMR11210

C                                                                         LMR11220
C       MINPACK-SUPPLIED ... LMDER LMR11230

C                                                                      LMR11240
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMR11250

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMR11260

C                                                                         LMR11270
C ********** LMR11280

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT LMR11290

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO LMR11300

DATA FACTOR,ZERO /1.OD2,0.ODO/ LMR11310

INFO = 0 LMR11320

C                                                                         LMR11330
C     CHECK THE INPUT PARAMETERS FOR ERRORS. LMR11340

C                                                                         LMR11350
IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M .OR. TOL .LT. ZERO  LMR11360

*    .OR. LWA .LT. 5*N + M) GO TO 10 LMR11370

C                                                                      LMR11380
C     CALL LMDER. LMR11390

C                                                                         LMR11400
MAXFEV = 100*(N + 1) LMR11410

FTOL = TOL LMR11420

XTOL = TOL LMR11430

GTOL = ZERO LMR11440

MODE = 1 LMR11450

NPRINT = 0 LMR11460

CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, LMR11470

*           WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,WA(N+1),  LMR11480
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMR11490

IF (INFO .EQ. 8) INFO = 4 LMR11500

10 CONTINUE LMR11510

RETURN LMR11520

C                                                                         LMR11530
C     LAST CARD OF SUBROUTINE LMDERl. LMR11540

C                                                                         LMR11550
END LMR11560
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SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN, LMDF0010         i

1

* DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC, LMDF0020  '       4
* IPVT,QTF,WAl,WA2,WA3,WA4) LMDFO 0 3 0                                 .;9

...

INTEGER M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC LMDF0040
INTEGER IPVT(N) LMDF0050
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR LMDF0060
DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N), LMDF0070

* WAl(N),WA2(N),WA3(N),WA4(M) LMDF0080
EXTERNAL FCN LMDF0090

C ********** LMDF0100
C                                                                          LMDF0110
C     SUBROUTINE LMDIF LMDF0120

C                                                                       LMDF0130
C     THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF LMDF0140
C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF LMDF0150        4

C     THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A LMDF0160

C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS LMDF0170
C     THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. LMDF0180

C                                                                       LMDF0190
C     THE SUBROUTINE STATEMENT IS LMDF0200

C                                                                          LMDF0210
C       SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN, LMDF0220

C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC, LMDF0230
C LDFJAC,IPVT,QTF,WAl,WA2,WA3,WA4) LMDF0240

C                                                                       LMDF0250
C WHERE LMDF0260

C                                                                         LMDF0270
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMDF0280

C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED LMDF0290

C         IN AN EXTERNAL STATEMENT IN THE USER CALLING LMDF0300

C         PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMDF0310

C                                                                         LMDF0320
C         SUBROUTINE FCN(M,N,X,FVEC,IFLAG) LMDF0330

C         INTEGER M,N,IFLAG LMDF0340

C         DOUBLE PRECISION X(N),FVEC(M) LMDF0350

C                                                                         LMDF0360
C         CALCULATE THE FUNCTIONS AT X AND LMDF0370

C         RETURN THIS VECTOR IN FVEC. LMDF0380

C                                                                         LMDF0390
C RETURN LMDF0400

C END LMDF0410

C                                                                       LMDF0420
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMDF0430

C         THE USER WANTS TO TERMINATE EXECUTION OF LMDIF. LMDF0440

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMDF0450

C                                                                         LMDF0460
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDF0470

C         OF FUNCTIONS. LMDF0480

C                                                                         LMDF0490
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDF0500

C         OF VARIABLES. N MUST NOT EXCEED M. LMDF0510

C LMDF0520

C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMDF0530

C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMDF0540
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C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMDF0550        ,
C                                                                       LMDF0560
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMDF0570
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. · LMDF0580
C                                                                       LMDF0590
C       FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDF0600
C         OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE LMDF0610
C         REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDF0620
C         THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED LMDF0630
C         IN THE SUM OF SQUARES. LMDF0640
C                                                                       LMDF0650
C       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDF0660
C         OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE LMDF0670
C         ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE LMDF0680
C         RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION. LMDF0690
C                                                                       LMDF0700
C       GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDF0710
C OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND LMDF0720
C         ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE LMDF0730
C         VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY LMDF0740
C         DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS LMDF0750
C         OF THE JACOBIAN. LMDF0760
C                                                                       LMDF0770
C       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION LMDF0780
C         OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST LMDF0790
C         MAXFEV BY THE END OF AN ITERATION. LMDF0800
C                                                                       LMDF0810
C       EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE LMDF0820
C         STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS LMDF0830
C         APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE LMDF0840
C         FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS LMDF0850
C         THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE LMDF0860
C         ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE LMDF0870
C PRECISION. LMDF0880
C                                                                          LMDF0890
C       DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE LMDF0900
C         BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG LMDF0910
C         MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS LMDF0920
C         MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. LMDF0930
C                                                                          LMDF0940
C       MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE LMDF0950
C         VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, LMDF0960
C         THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER LMDF0970
C         VALUES OF MODE ARE EQUIVALENT TO MODE = 1. LMDF0980
C                                                                          LMDF0990
C       FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMDF1000
C         INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMDF1010
C         FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMDF1020
C         TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMDF1030
C         INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. LMDF1040
C                                                                       LMDF1050
C       NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMDF1060
C         PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMDF1070
C         FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMDF1080
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C         ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMDF1090

C         IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE LMDF1100

C         FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMDF1110
C         OF FCN WITH IFLAG = 0 ARE MADE. LMDF 1120

C                                                                       LMDF 1130
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMDF1140

C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMDF1150
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMDF116.0

C         INFO IS SET AS FOLLOWS. LMDF1170

C                                                                          LMDF1180
C         INFO = 0  IMPROPER INPUT PARAMETERS. LMDF1190
C                                                                       LMDF 1200
C         INFO = 1  BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMDF 1210

C                   IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDF 1220

C                                                                       LMDF1230
C         INFO = 2  RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMDF1240

C                   IS AT MOST XTOL. LMDF 1250

C                                                                       LMDF1260
C         INFO = 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMDF1270
C                                                                       LMDF 1280
C         INFO = 4  THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMDF1290

C                   COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMDF1300

C                   ABSOLUTE VALUE. LMDF 1310

C                                                                       LMDF1320
C         INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR LMDF1330

C                   EXCEEDED MAXFEV. T.MI)F 1340

C                                                                       LMDF1350
C         INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMDF 1360

C THE SUM OF SQUARES IS POSSIBLE. LMDF1370

C                                                                       LMDF 1380
C         INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMDF1390

C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMDF1400

C                                                                          LMDF 1410
C         INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMDF 1420

C                    COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMDF1430

C                                                                          LMDF1440
C       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDF1450

C         CALLS TO FCN. LMDF1460

C                                                                          LMDF 1470
C       FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMDF 1480

C         OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMDF1490

C         DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMDF1500

C                                                                          LMDF1510
C                T     T           T                                     LMDF1520
C               P *(JAC *JAC)*P = R *R, LMDF1530

C                                                                       LMDF1540
C         WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMDF 1550

C         CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMDF1560

C         (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMDF1570

C         PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMDF1580

C         THE COMPUTATION OF R. LMDF1590

C                                                                       LMDF1600
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMDF1610

C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMDF1620
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C                                                                       LMDF1630
C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDF1640
C         DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDF1650
C         WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDF1660
C         ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMDF1670
C         WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMDF1680
C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMDF1690
C                                                                       LMDF1700
C       QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMDF 1710

C         THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMDF1720
C                                                                       LMDF1730
C       WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMDF 1740
C                                                                       LMDF1750
C       WA4 IS A WORK ARRAY OF LENGTH M. LMDF1760
C                                                                       LMDF1770
C     SUBPROGRAMS CALLED LMDF1780
C                                                                       LMDF1790
C       USER-SUPPLIED ...... FCN LMDF1800
C                                                                       LMDF 1810
C       MINPACK-SUPPLIED ... DPMPAR,ENORM,FDJAC2,LMPAR,QRFAC LMDF 1820
C                                                                       LMDF]830
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,DSQRT,MOD LMDF 1840
C                                                                       LMDF1850
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMDF1860
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMDF1870
C                                                                       LMDF1880
C ********** LMDF1890

INTEGER I,IFLAG,ITER,J,L LMDF1900
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORMl,GNORM, LMDF1910

* ONE,PAR,PNORM,PRERED,Pl,P5,P25,P75,P0001,RATIO, LMDF1920
* SUM,TEMP,TEMPl,TEMP2,XNORM,ZERO LMDF1930
DOUBLE PRECISION DPMPAR,ENORM LMDF 1940
DATA ONE,Pl,PS,P25,P 75,POOOl,ZERO LMDF1950

+  /1.ODO,1.OD-1,3.OD-1,2.5D-1,7.56-:.1.OD-4. .ODO/ LMDF1960..

C                                                                       LMDF1970
C     EPSMCH IS THE MACHINE PRECISION. LMDF1980
C                                                                       LMDF1990

EPSMCH = DPMPAR(1) LMDF2000
C                                                                       LMDF2010

INFO = 0 LMDF2020
IFLAG = 0 LMDF2030
NFEV = 0 LMDF2040

C                                                                       LMDF2050
C     CHECK THE INPUT PARAMETERS FOR ERRORS. LMDF2060
C                                                                       LMDF2070

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M LMDF2080
*    .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMDF2090
*    .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300 LMDF2100
IF (MODE .NE. 2) GO TO 20 LMDF2110
DO 10 J = 1, N LMDF2120

IF (DIAG(J) .LE. ZERO) GO TO 300 LMDF2130
10 CONTINUE LMDF2140
20 CONTINUE LMDF2150

C                                                                       LMDF2160
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C     EVALUATE THE FUNCTION AT THE STARTING POINT LMDF2170

C     AND CALCULATE ITS NORM. LMDF2180

C                                                                       LMDF2190
IFLAG = 1 LMDF2200

CALL FCN(M,N,X,FVEC,IFLAG) LMDF2210

NFEV = 1 LMDF2220

IF (IFLAG .LT. 0) GO TO 300 LMDF2230

FNORM = ENORM(M,FVEC) LMDF2240

C                                                                          LMDF2250
C     INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER. LMDF2260

C                                                                          LMDF2270
PAR = ZERO LMDF2280

ITER = 1 LMDF2290

C                                                                          LMDF2300
C     BEGINNING OF THE OUTER LOOP. LMDF2310

C                                                                          LMDF2320
30 CONTINUE LMDF2330

C                                                                          LMDF2340
C        CALCULATE THE JACOBIAN MATRIX. LMDF2350

C                                                                       LMDF2360
IFLAG = 2 LMDF2370

CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA4) LMDF2380

NFEV = NFEV + N LMDF2390

IF (IFLAG .LT. 0) GO TO 300 LMDF2400

C                                                                          LMDF2410
C        IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. LMDF2420

C                                                                          LMDF2430
IF (NPRINT .LE. 0) GO TO 40 LMDF2440

.-          IFLAG = 0 LMDF2450

IF (MOD(ITER-l,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG) LMDF2460

IF (IFLAG·.LT. 0) GO TO 300 LMDF2470

40 CONTINUE LMDF2480

C                                                                          LMDF2490
C        COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. LMDF2500

C                                                                          LMDF2510
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WAl,WA2,WA3) LMDF2520

C                                                                       LMDF2530
C        ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING LMDF2540

C        TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. LMDF2550

C                                                                          LMDF2560
IF (ITER .NE. 1) GO TO 80 LMDF2570

IF (MODE .EQ. 2) GO TO 60 LMDF2580

DO 50 J = 1, N LMDF2590

DIAG(J) = WA2(J) LMDF2600

IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE LMDF2610

50 CONTINUE LMDF2620

60 CONTINUE LMDF2630

C                                                                       LMDF2640

C        ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X LMDF2650

C        AND INITIALIZE THE STEP BOUND DELTA. LMDF2660

C                                                                       LMDF2670

DO 70 J = 1, N LMDF2680

WA3(J) = DIAG(J)*X(J) LMDF2690

70 CONTINUE LMDF2700
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XNORM = ENORM(N,WA3) LMDF2710
DELTA = FACTOR*XNORM                                           LMDF2720
IF (DELTA .EQ. ZERO) DELTA = FACTOR LMDF2730

80 CONTINUE LMDF2740
C                                                                       LMDF2750
C        FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN LMDF2760
C QTF. LMDF2770
C                                                                          LMDF2780

DO 90 I = 1, M LMDF2790
WA4(I) = FVEC(I) LMDF2800

90 CONTINUE LMDF2810
DO 130 J = 1, N LMDF2820

IF (FJAC(J,J) .EQ. ZERO) GO TO 120 LMDF2830
SUM = ZERO LMDF2840
DO 100 I = J, M LMDF2850

SUM = SUM + FJAC(I,J)*WA4(I) LMDF2860
100 CONTINUE LMDF2870

TEMP = -SUM/FJAC(J,J) LMDF2880
DO 110 I = J, M LMDF2890

WA4(I) = WA4(I) + FJAC(I,J)*TEMP LMDF2900
110 CONTINUE LMDF2910
120 CONTINUE LMDF2920

FJAC(J,J) = WAl(J) LMDF2930
QTF(J) = WA4(J) LMDF2940

130 CONTINUE LMDF2950
C                                                                       LMDF2960
C        COMPUTE THE NORM OF THE SCALED GRADIENT. LMDF2970
C                                                                          LMDF2980

GNORM = ZERO LMDF2990
IF (FNORM .EQ. ZERO) GO TO 170                                 LMDF3000
DO 160 J = 1, N LMDF3010

L = IPVT(J) LMDF3020
IF (WA2(L) .EQ. ZERO) GO TO 150 LMDF3030
SUM = ZERO LMDF3040
DO 140 I = 1, J LMDF3050

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM) LMDF3060
140 CONTINUE LMDF3070

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L))) LMDF3080
150 CONTINUE LMDF3090
160 CONTINUE LMDF3100
170 CONTINUE LMDF3110

C                                                                       LMDF3120
C        TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMDF3130
C                                                                       LMDF3140

IF (GNORM .LE. GTOL) INFO = 4 LMDF3150
IF (INFO .NE. 0) GO TO 300 LMDF3160

C                                                                       LMDF3170
C        RESCALE IF NECESSARY. LMDF3180
C                                                                       LMDF3190

IF (MODE .EQ. 2) GO TO 190 LMDF3200
DO 180 J = 1, N LMDF3210

DIAG(J) = DMAX1(DIAG(J),WA2(J)) LMDF3220
180 CONTINUE LMDF3230
190 CONTINUE LMDF3240
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C                                                                          LMDF3250
C        BEGINNING OF THE INNER LOOP. LMDF3260
C                                                                          LMDF3270

200 CONTINUE                          -                            LMDF3280
C                                                                          LMDF3290
C           DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMDF3300
C                                                                          LMDF3310

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAl,WA2, LMDF3320
* WA3,WA4) LMDF3330

C                                                                          LMDF3340
C           STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMDF3350
C                                                                          LMDF3360

DO 210 J = 1, N LMDF3370

WAl(J) = -WAl(J) LMDF3380

WA2(J) = X(J) + WAl(J) LMDF3390

WA3(J) = DIAG(J)*WAl(J) LMDF3400
210 CONTINUE                                                   LMDF3410

PNORM = ENORM(N,WA3) LMDF3420
C                                                                          LMDF3430
C           ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMDF3440
C                                                                          LMDF3450

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMDF3460
C                                                                          LMDF3470
C           EVALUATE THE FUNCTION AT X+P AND CALCULATE ITS NORM. LMDF3480
C                                                                          LMDF3490

IFLAG = 1                                                   LMDF3500
CALL FCN(M,N,WA2,WA4,IFLAG)                                  LMDF3510
NFEV = NFEV + 1 LMDF3520

IF (IFLAG .LT. 0) GO TO 300 LMDF3530
FNORMl = ENORM(M,WA4) LMDF3540

C                                                                         LMDF3550
C           COMPUTE THE SCALED ACTUAL REDUCTION.'                       LMDF3560
C                                                                         LMDF3570

ACTRED = -ONE LMDF3580

IF (Pl*FNORMl .LT. FNORM) ACTRED = ONE - (FNORMl/FNORM)**2  LMDF3590
C                                                                         LMDF3600
C           COMPUTE THE SCALED PREDICTED REDUCTION AND LMDF3610
C           THE SCALED DIRECTIONAL DERIVATIVE. LMDF3620
C                                                                         LMDF3630

DO 230 J = 1, N LMDF3640

WA3(J) = ZERO LMDF3650
L = IPVT(J) LMDF3660
TEMP = WAl(L) LMDF3670

DO 220 I = 1, J LMDF3680

WA3(I) = WA3(I) + FJAC(I,J)*TEMP LMDF3690
220 CONTINUE LMDF3700
230 CONTINUE LMDF3710

TEMPl = ENORM(N,WA3)/FNORM LMDF3720
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM LMDF3730
PRERED = TEMP 1**2 + TEMP2**2/PS LMDF3740

DIRDER = -(TEMP 1**2 + TEMP2**2) LMDF3750
C LMDF3760
C           COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED LMDF3770
C REDUCTION. LMDF3780
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C                                                                          LMDF3790
RATIO = ZERO LMDF3800
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED LMDF3810

C                                                                       LMDF3820
C           UPDATE THE STEP BOUND. LMDF3830
C                                                                       LMDF3840

IF (RATIO .GT. P25) GO TO 240 LMDF3850
IF (ACTRED .GE. ZERO) TEMP = P5 LMDF3860
IF (ACTRED .LT. ZERO) LMDF3870

TEMP = P5*DIRDER/ (DIRDER + P5*ACTRED) LMDF3880„

IF (Pl*FNORMl .GE. FNORM .OR. TEMP .LT. Pl) TEMP = Pl LMDF3890
DELTA = TEMP*DMIN1(DELTA,PNORM/Pl) LMDF3900
PAR = PAR/TEMP LMDF3910
GO TO 260 LMDF3920

240 CONTINUE LMDF3930
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250 LMDF3940
DELTA = PNORM/PS LMDF3950
PAR = PS*PAR LMDF3960

250 CONTINUE LMDF3970
260 CONTINUE LMDF3980

C                                                                          LMDF3990
C           TEST FOR SUCCESSFUL ITERATION. LMDF4000
C                                                                       LMDF4010

IF (RATIO .LT. P0001) GO TO 290 LMDF4020
C                                                                       LMDF4030
C           SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. LMDF4040
C                                                                       LMDF4050

DO 270 J = 1, N LMDF4060
X(J) = WA2(J) LMDF4070
WA2(J) = DIAG(J)*X(J) LMDF4080

270 CONTINUE LMDF4090
DO 280 I= l, M, LMDF4100

7VEC(I) = WA4(I) LMDF4110
280 CONTINUE                                                 LMDF4120

XNORM = ENORM(N,WA2) LMDF4130
FNORM = FNORMl LMDF4140
ITER = ITER + 1 LMDF4150

290 CONTINUE LMDF4160
C                                                                       LMDF4170
C           TESTS FOR CONVERGENCE. LMDF4180
C                                                                       LMDF4190

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDF4200
*          .AND. P5*RATIO .LE. ONE) INFO = 1 LMDF4210

IF (DELTA .LE. XTOL*XNORM) INFO = 2 LMDF4220
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDF4230

*          .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3 LMDF4240
IF (INFO .NE. 0) GO TO 300 LMDF4250

C                                                                       LMDF4260
C           TESTS FOR TERMINATION AND STRINGENT TOLERANCES. LMDF4270
C                                                                          LMDF4280

IF (NFEV .GE. MAXFEV) INFO = 5 LMDF4290
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH LMDF4300

*          .AND. P5*RATIO .LE. ONE) INFO = 6 LMDF4310
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7 LMDF4320
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IF (GNORM .LE. EPSMCH) INFO = 8 LMDF4330

IF (INFO .NE. 0) GO TO 300 LMDF4340
C                                                                         LMDF4350
C           END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL. LMDF4360
C                                                                      LMDF4370

IF (RATIO .LT. P0001) GO TO 200                              LMDF4380
' C                                                                      LMDF4390

C        END OF THE OUTER LOOP. LMDF4400
C                                                                         LMDF4410

GO TO 30                                                         LMDF4420
300 CONTINUE LMDF4430

C                                                                         LMDF4440
C     TERMINATION, EITHER NORMAL OR USER IMPOSED. LMDF4450
C                                                                         LMDF4460

IF (IFLAG .LT. 0) INFO = IFLAG LMDF4470
IFLAG = 0 LMDF4480

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,IFLAG) LMDF4490
RETURN LMDF4500

C                                                                       LMDF4510
C     LAST CARD OF SUBROUTINE LMDIF. LMDF4520
C                                                                         LMDF4530

END                                                              LMDF4540
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SUBROUTINE LMDIF 1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA) LMF 10010

INTEGER M,N,INFO,LWA LMF 10020

INTEGER IWA(N) LMF10030
DOUBLE PRECISION TOL LMF 10040

DOUBLE PRECISION X(N),FVEC(M),WA(LWA) LMF 10050

EXTERNAL FCN LMF10060
C ********** LMF10070
C                                                                       LMF 10080
C     SUBROUTINE LMDIFl LMF10090
C LMF 10100

C     THE PURPOSE OF LMDIFl IS TO MINIMIZE THE SUM OF THE SQUARES OF LMF 10110

C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE LMF 10120

C     LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE LMF 10130

C     GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A LM710140
C     SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS LMF10150
C     THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. LMF 10160

C                                                                       LMF10170
C     THE SUBROUTINE STATEMENT IS                                       LMF 10180
C                                                                       LMF10190
C       SUBROUTINE LMDIF 1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA) LMF 10200

C                                                                       LMF 10210
C WHERE LMF10220
C                                                                       LMF10230
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMF 10240

C         CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED LMF10250
C         IN AN EXTERNAL STATEMENT IN THE USER CALLING LMF10260

C         PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMF10270
C                                                                       LMF 10280
C         SUBROUTINE FCN(M,N,X,FVEC,IFLAG) LMF10290
C         INTEGER M,N,IFLAG LMF10300
C         DOUBLE PRECISION X(N),FVEC(M) LMF 10310

C                                                                       LMF10320
C         CALCULATE THE FUNCTIONS AT X AND LMF10330
C         RETURN THIS VECTOR IN FVEC. LMF 10340

C                                                                       LMF10350
C RETURN LMF10360

C END LMF 10370

C                                                                       LMF 10380
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMF 10390

C THE USER WANTS TO TERMINATE EXECUTION OF LMDIFl. LMF 10400

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMF 10410

C                                                                       LMF 10420
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMF 10430

C         OF FUNCTIONS. LMF 10440

C                                                                       LMF 10450
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMF 10460

C         OF VARIABLES. N MUST NOT EXCEED M. LMF 10470

C                                                                       LMF 10480
C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMF 10490

C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMF10500

C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMF 10510

C                                                                       LMF10520
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMF10530

C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMF10540
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C                                                                       LMF10550
C       TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMF10560
C         WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMF10570
C         ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMF10580
C         THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMF10590
C         MOST TOL. LMF10600
C                                                                          LMF10610
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMF10620
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMF 10630
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMF 10640
C         INFO IS SET AS FOLLOWS. LMF10650
C                                                                       LMF10660
C         INFO = 0  IMPROPER INPUT PARAMETERS. LMF10670
C                                                                       LMF10680
C         INFO = 1  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMF10690
C                   IN THE SUM OF SQUARES IS AT MOST TOL. LMF10700
C                                                                          LMF10710
C         INFO = 2  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMF10720
C                    BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMF10730
C                                                                       LMF10740
C         INFO = 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMF10750
C                                                                       LMF10760
C         INFO = 4  FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMF10770
C                    JACOBIAN TO MACHINE PRECISION. LMF10780
C                                                                       LMF10790
C         INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR LMF 10800
C                    EXCEEDED 200*(N+1). LMF 10810
C                                                                       LMF10820
C         INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMF10830
C                   THE SUM OF SQUARES IS POSSIBLE. LMF 10840
C                                                                       LMF10850
C         INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMF10860
C                    THE APPROXIMATE SOLUTION X IS POSSIBLE. LMF10870
C                                                                          LMF10880
C       IWA IS AN INTEGER WORK ARRAY OF LENGTH N. LMF10890
C                                                                       LMF10900
C       WA IS A WORK ARRAY OF LENGTH LWA. LMF' 10910

C                                                                       LMF10920
C       LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN LMF10930
C M*N+5*N+M. LMF 10940
C                                                                       LMF10950
C     SUBPROGRAMS CALLED LMF10960
C                                                                       LMF10970
C       USER-SUPPLIED ...... FCN LMF10980
C                                                                       LMF10990
C       MINPACK-SUPPLIED ... LMDIF LMF 11000
C                                                                       LMF 11010
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMF11020
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMF 11030
C                                                                       LMF 11040
C ********** LMF 11050

INTEGER MAXFEV,MODE,MP5N,NFEV,NPRINT LMF11060
DOUBLE PRECISION EPSFCN,FACTOR,FTOL,GTOL,XTOL,ZERO LMF11070
DATA FACTOR,ZERO /1.OD2,0.ODO/ LMF11080
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INFO = 0 LMF11090

C                                                                       LMF 11100
C     CHECK THE INPUT PARAMETERS FOR ERRORS.                            LMF 11110
C                                                                       LMF11120

IF (N .LE. 0 .OR. M .LT. N .OR. TOL .LT. ZERO LMF11130

*    .OR. LWA .LT. M*N + 5*N + M) GO TO 10 LMF 11140

C                                                                       LMF11150
C     CALL LMDIF. LMF 11160

C                                                                       LMF11170
MAXFEV = 200*(N + 1) LMF11180

FTOL = TOL LMF11190

XTOL = TOL LMF 11200

GTOL = ZERO LMF 11210

EPSFCN = ZERO LMF11220

MODE = 1 LMF11230

NPRINT = 0 LMF11240

MP5N =M+ 5*N LMF 11250

CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1), LMF 11260
* MODE,FACTOR,NPRINT,INFO,NFEV,WA(MPSN+1),M,IWA, LMF11270
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMF11280

IF (INFO .EQ. 8) INFO = 4 LMF11290

16 CONTINUE LMF11300

RETURN LMF11310

C                                                                       LMF11320
C     LAST CARD OF SUBROUTINE LMDIFl. LMF11330

C                                                                       LMF11340
END LMF11350
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SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WAl, LMPRO010

* WA2) LMPR0020

INTEGER N,LDR LMPRO030

INTEGER IPVT(N) LMPR0040

 

DOUBLE PRECISION DELTA,PAR LMPR0050

DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WAl(N), LMPRO060

* WA2(N) LMPR0070

C
-1.It--6 -6.6.6.6 -6 -6 6 LMPR0080" '4 ,  " ,% ,% '4 '.., '.

C                                                                       LMPRO090

C     SUBROUTINE LMPAR LMPR0100
' C                                                                          LMPRO 110

C     GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL LMPR0120

C     MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, LMPRO 130

C     THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER LMPRO 140

C     PAR SUCH THAT IF X SOLVES THE SYSTEM LMPRO150

C                                                                         LMPRO 160

C             A*X =B, SQRT(PAR)*D*X =0, LMPRO170

C                                                                         LMPRO 180

C     IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN LMPRO190

C     NORM OF D*X, THEN EITHER PAR IS ZERO AND LMPRO200

C LMPRO210

C           (DXNORM-DELTA) .LE. 0.1*DELTA ,
LMPRO220

C                                                                         LMPRO230

C     OR PAR IS POSITIVE AND LMPRO240

C                                                                         LMPRO250

C           ABS(DXNORM-DELTA) .LE. 0.1*DELTA .
LMPR0260

C                                                                         LMPRO270

C     THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM LMPRO280

C     IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE LMPR0290

C     QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF LMPR0300

C     A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL LMPR0310

C     COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL LMPR0320

C     ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS LMPR0330

C     THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P, LMPR0340

C     AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT LMPRO350

C     LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT LMPR0360

C                                                                         LMPRO370

C            T   T                   T                                   LMPRO380

C           P *(A *A + PAR*D*D)*P = S *S .
LMPRO390

C                                                                         LMPRO400

C     S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST. LMPRO410

C                                                                         LMPRO420

C     ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE LMPRO430

C     OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS LMPR0440

C     IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST LMPRO450

C     VALUE OBTAINED SO FAR. LMPRO460

C                                                                         LMPRO470

C     THE SUBROUTINE STATEMENT IS LMPRO480

C                                                                         LMPRO490

C       SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG, LMPRO500

C WAl,WA2) LMPRO510

C                                                                         LMPRO520

C WHERE LMPRO530

C                                                                         LMPRO540
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C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. LMPR0550
C                                                                       LMPRO560
C       R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE LMPRO570
C         MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. LMPRO580
C         ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE LMPR0590
C         STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE LMPR0600
C         (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S. LMPR0610
C                                                                       LMPRO620
C       LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMPR0630
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R. LMPRO640
C                                                                          LMPRO650
C       IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE LMPR0660
C         PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P LMPR0670
C         IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMPR0680
C                                                                          LMPRO690
C       DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE LMPR0700
C         DIAGONAL ELEMENTS OF THE MATRIX D. . LMPR0710
C                                                                       LMPRO720
C       QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST  LMPRO730
C         N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. LMPRO 740
C                                                                       LMPRO750
C       DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER LMPR0760
C         BOUND ON THE EUCLIDEAN NORM OF D*X. LMPR0770
C                                                                       LMPRO780
C       PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN LMPR0790
C         INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER. LMPR0800         1
C         ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.

LMPRO810         C                                                                          LMPRO820
C       X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST

LMPR0830          C         SQUARES SOLUTION OF THE SYSTEM A*X = B, SQRT(PAR)*D*X = 0, LMPRO840
C         FOR THE OUTPUT PAR. LMPR0850
C                                                                          LMPRO860
C       SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LMPRO870
C         DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S. LMPR0880
C                                                                          LMPRO890
C       WAl AND WA2 ARE WORK ARRAYS OF LENGTH N. LMPR0900
C                                                                          LMPRO910
C     SUBPROGRAMS CALLED LMPR0920
C                                                                          LMPRO930
C       MINPACK-SUPPLIED ... DPMPAR,ENORM,QRSOLV LMPRO940
C                                                                       LMPRO950
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,DSQRT LMPR0960
C                                                                       LMPRO970
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMPR0980
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMPRO990
C                                                                          LMPR1000
C ********** LMPR1010

INTEGER I,ITER,J,JMl,JPl,K,L,NSING LMPR1020
DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,Pl,P001, LMPR1030

* SUM,TEMP,ZERO LMPR1040
DOUBLE PRECISION DPMPAR,ENORM LMPR1050
DATA Pl,POOl,ZERO /1.OD-1,1.OD-3,0.ODO/ LMPR1060

C                                                                       LMPR1070
C     DWARF IS THE SMALLEST POSITIVE MAGNITUDE. LMPR1080
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C                                                                         LMPR1090
DWARF = DPMPAR(2) LMPR1100

C                                                                       LMPR1110
C     COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE LMPR1120

C     JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION. LMPR1130
C                                                                         LMPR1140

NSING = N LMPR1150

DO 10 J = 1, N LMPR1160

WAl(J) = QTB(J) LMPR1170

IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N) NSING =J-1 LMPR1180

IF (NSING .LT. N) WAl(J) = ZERO LMPR1190
10 CONTINUE LMPR1200

IF (NSING .LT. 1) GO TO 50 LMPR 1210

DO 40 K = 1, NSING LMPR1220
J= NSING -K+1 LMPR1230

WAl(J) = WAl(J)/R(J,J) LMPR 1240

TEMP = WAl(J) LMPR1250
JM1 =J-1 LMPR1260

IF (JM1 .LT. 1) GO TO 30 LMPR1270

DO 20 I = 1, JM1 LMPR1280

WAl(I) = WAl(I) - R(I,J)*TEMP LMPR1290
20· CONTINUE LMPR1300
30 CONTINUE LMPR1310
40 CONTINUE LMPR1320
50 CONTINUE LMPR1330

DO 60 J = 1, N LMPR1340
L = IPVT(J) LMPR1350

X(L) = WAl(J) LMPR1360
60 CONTINUE LMPR1370

C LMPR1380
C INITIALIZE THE ITERATION COUNTER. LMPR1390

C     EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST LMPR1400
C     FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION. LMPR1410
C                                                                         LMPR1420

ITER = 0 LMPR1430

DO 70 J = 1, N LMPR1440

WA2(J) = DIAG(J)*X(J) LMPR1450
70 CONTINUE LMPR 1460

DXNORM = ENORM(N,WA2) LMPR1470
FP = DXNORM - DELTA LMPR1480

IF (FP .LE. Pl*DELTA) GO TO 220 LMPR1490
C                                                                         LMPR1500
C     IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON LMPR1510

C     STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF LMPR1520
C     THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO. LMPR1530
C                                                                      LMPR1540

PARL = ZERO LMPR1550

IF (NSING .LT. N) GO TO 120 LMPR1560

DO 80 J = 1, N                                                      LMPR1570
L = IPVT(J) LMPR1580

WAl(J) = DIAG(L)*(WA2(L)/DXNORM) LMPR1590
80 CONTINUE LMPR 1600

DO 110 J = 1, N LMPR 1610

SUM = ZERO LMPR1620
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JM1 =J-1 LMPR1630
IF (JM1 .LT. 1) GO TO 100 LMPR1640
DO 90 I = 1, JM1 LMPR1650

SUM = SUM + R(I,J)*WAl(I) LMPR1660
90 CONTINUE LMPR1670
100 CONTINUE LMPR 1680

WAl(J) = (WAl(J) - SUM)/R(J,J) LMPR1690
110 CONTINUE LMPR1700

TEMP = ENORM(N,WAl) LMPR1710
PARL = ((FP/DELTA)/TEMP)/TEMP LMPR1720

120 CONTINUE LMPR1730
C                                                                          LMPR1740
C     CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION. LMPR1750
C                                                                       LMPR1760

DO 140 J = 1, N LMPR1770
SUM = ZERO LMPR1780
DO 130 I = 1, J LMPR1790

SUM = SUM + R(I,J)*QTB(I) LMPR1800
130 CONTINUE LMPR 1810

L = IPVT(J) LMPR1820
WAl(J) = SUM/UlAG(L) LMPR1830

140 CONTINUE LMPR1840
GNORM = ENORM(N,WAl) LMPR 1850
PARU = GNORM/DELTA LMPR 1860

IF (PARU .EQ. ZERO) PARU = DWARF/DMIN 1(DELTA,Pl) LMPR1870
C                                                                       LMPR 1880
C     IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU), LMPR1890
C     SET PAR TO THE CLOSER ENDPOINT. LMPR1900
C                                                                       LMPR1910

PAR = DMAX1(PAR,PARL) LMPR1920
PAR = DMIN1(PAR,PARU) LMPR1930
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM LMPR1940

C                                                                          LMPR 1950
C     BEGINNING OF AN ITERATION. LMPR1960
C                                                                       LMPR1970

150 CONTINUE LMPR1980
ITER = ITER + 1 LMPR1990

C                                                                          LMPR2000
C        EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR. LMPR2010
C                                                                       LMPR2020

IF (PAR .EQ. ZERO) PAR = DMAX1(DWARF,P001*PARU) LMPR2030
TEMP = DSQRT(PAR) LMPR2040
DO 160 J = 1, N LMPR2050

WAl(J) = TEMP*DIAG(J) LMPR2060
160 CONTINUE LMPR2070

CALL QRSOLV(N,R,LDR,IPVT,WAl,QTB,X,SDIAG,WA2) LMPR2080
DO 170 J = 1, N LMPR2090

WA2(J) = DIAG(J)*X(J) LMPR2100
170 CONTINUE LMPR2110

DXNORM = ENORM(N,WA2) LMPR2120
TEMP = FP LMPR2130
FP = DXNORM - DELTA LMPR2140

C                                                                       LMPR2150    -
C        IF THE FUNCTION IS SMALL ENOUGH, ACCEPT THE CURRENT VALUE LMPR2160
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C        OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL LMPR2170

C        IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10. LMPR2180

C                                                                          LMPR2190
IF (DABS(FP) .LE. Pl*DELTA LMPR2200

*       .OR. PARL .EQ. ZERO .AND. FP .LE. TEMP LMPR2210

*            .AND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220 LMPR2220

C                                                                       LMPR2230
C        COMPUTE THE NEWTON CORRECTION. LMPR2240

C                                                                         LMPR2250
DO 180 J = 1, N                                               LMPR2260

L = IPVT(J) LMPR2270

WAl(J) = DIAG(L)*(WA2(L)/DXNORM) LMPR2280

180 CONTINUE LMPR2290

DO 210 J = 1, N LMPR2300

WAl(J) = WAl(J)/SDIAG(J) LMPR2310

TEMP = WAl(J) LMPR2320

JP 1 =J+1 LMPR2330

IF (N .LT. JP 1) GO TO 200 LMPR2340

DO 190 I = JP1, N LMPR2350

WAl(I) = WAl(I) - R(I,J)*TEMP LMPR2360

190 CONTINUE LMPR2370

200 CONTINUE                                                      LMPR2380

210 CONTINUE LMPR2390

TEMP = ENORM(N,WAl) LMPR2400

PARC = ((FP/DELTA)/TEMP)/TEMP LMPR2410

C                                                                         LMPR2420

C        DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU. LMPR2430

C                                                                       LMPR2440

IF (FP .GT. ZERO) PARL = DMAX1(PARL,PAR) LMPR2450

IF (FP .LT. ZERO) PARU = DMIN1(PARU,PAR) LMPR2460

C                                                                       LMPR2470

C        COMPUTE AN IMPROVED ESTIMATE FOR PAR. LMPR2480

C                                                                         LMPR2490

PAR = DMAX1(PARL,PAR+PARC) LMPR2500

C                                                                          LMPR2510

C        END OF AN ITERATION. LMPR2520

C                                                                          LMPR2530

GO TO 150 LMPR2540

220 CONTINUE LMPR2550

C                                                                         LMPR2560

C TERMINATION. LMPR2570

C                                                                         LMPR2580

IF (ITER .EQ. 0) PAR = ZERO· LMPR2590

RETURN LMPR2600

C LMPR2610

C     LAST CARD OF SUBROUTINE LMPAR. LMPR2620

C                                                                         LMPR2630

END LMPR2640



218

(-

THIS PAGE..
:     A   ..   ..  7. .    .2.,... )1. .   . . . .t '1...    . ' .

WAS INTEN#T.YONAI·LY
i ".'. Al. ... . X .,1: 1 ,!. ' :.·..5 . b : f ' '' ' ' , , ' Y

' 1     LEFT IBLANK-*
j.-t il'. i:  i.   .; 4 1*bilk,



219

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL, LMSR0010
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV, LMSR0020
* IPVT,QTF,WAl,WA2,WA3,WA4) LMSR0030

INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV LMSR0040

INTEGER IPVT(N) LMSR0050

LOGICAL SING                                                        LMSR0060
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR LMSR0070

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N), LMSR0080
* WAl(N),WA2(N),WA3(N),WA4(M) LMSR0090

C ********** LMSR0100

C                                                                          LMSR0110
C     SUBROUTINE LMSTR LMSR0120

C                                                                          LMSR0130
C     THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF LMSR0140

C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF LMSR0150

C     THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE. LMSR0160

C THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE LMSR0170

C     FUNCTIONS AND THE ROWS OF THE JACOBIAN. LMSR0180

C                                                                          LMSR0190
C     THE SUBROUTINE STATEMENT IS LMSR0200

C                                                                          LMSR0210
C. SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL, LMSR0220

C MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV, LMSR0230

C NJEV,IPVT,QTF,WAl,WA2,WA3,WA4) LMSR0240

C                                                                       LMSR0250
C WHERE LMSR0260

C                                                                          LMSR0270
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMSR0280

C         CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN. LMSR0290

C         FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE LMSR0300

C         USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMSR0310

C                                                                          LMSR0320
C         SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG) LMSR0330

C         INTEGER M,N,IFLAG LMSR0340

C         DOUBLE PRECISION X(N),FVEC(M),FJROW(N) LMSR0350

c ---------- LMSR0360

C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND LMSR0370

C         RETURN THIS VECTOR IN FVEC. LMSR0380

C IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE LMSR0390

C         JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW. LMSR0400

C                                                                          LMSR0410
C RETURN LMSR0420

C END LMSR0430

C                                                                          LMSR0440
C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMSR0450

C         THE USER WANTS TO TERMINATE EXECUTION OF LMSTR. LMSR0460

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMSR0470

C                                                                          LMSR0480
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMSR0490

C         OF FUNCTIONS. LMSR0500

C                                                                          LMSR0510
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMSR0520

C         OF VARIABLES. N MUST NOT EXCEED M. LMSR0530

C                                                                          LMSR0540
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C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMSR0550
C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMSR0560
C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMSR0570
C                                                                       LMSR0580
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMSR0590
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMSR0600
C                                                                       LMSR0610
C       FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC LMSR0620
C         CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT LMSR0630
C                                                                       LMSR0640
C                T     T           T                                    LMSR0650
C               P *(JAC *JAC)*P = R *R, LMSR0660
C                                                                       LMSR0670
C         WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMSR0680
C         CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMSR0690
C         (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR LMSR0700
C         PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMSR0710
C         THE COMPUTATION OF R. LMSR0720
C                                                                       LMSR0730
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMSR0740
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMSR0750
C                                                                       LMSR0760
C       FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMSR0770
C         OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE LMSR0780
C         REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. LMSR0790
C         THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED LMSR0800
C         IN THE SUM OF SQUARES.                                        LMSR0810
C                                                                       LMSR0820
C       XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMSR0830
C         OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE LMSR0840
C         ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE LMSR0850
C         RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION. LMSR0860
C                                                                       LMSR0870
C       GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMSR0880
C         OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND LMSR0890
C         ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE LMSR0900
C         VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY LMSR0910
C         DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS LMSR0920
C         OF THE JACOBIAN. LMSR0930
C                                                                       LMSR0940
C       MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION LMSR0950
C         OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 LMSR0960
C         HAS REACHED MAXFEV. LMSR0970
C                                                                       LMSR0980
C       DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE LMSR0990
C         BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG LMSR1000
C         MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS LMSR1010
C         MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. LMSR1020
C                                                                       LMSR1030
C       MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE LMSR1040
C         VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, LMSR1050
C         THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER LMSR1060
C         VALUES OF MODE ARE EQUIVALENT TO MODE = 1. LMSR1070
C                                                                       LMSR1080
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C       FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMSR1090
C         INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMSR 1100

C         FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMSR1110
C         TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMSR1120

C         INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. LMSR1130
C                                        -                                 LMSR1140
C       NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMSR1150
C         PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMSR1160

C         FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMSR1170

C         ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMSR1180

C         IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE LMSR1190

C         FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMSR1200

C         OF FCN WITH IFLAG = 0 ARE MADE. LMSR1210

C                                                                          LMSR1220
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMSR1230

C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMSR1240
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMSR1250

C         INFO IS SET AS FOLLOWS. LMSR1260
C                                                                          LMSR1270
C         INFO = 0  IMPROPER INPUT PARAMETERS. LMSR1280
C                                                                          LMSR1290
C         INFO = 1  BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMSR1300

C                   IN THE SUM OF SQUARES ARE AT MOST FTOL. LMSR1310

C                                                                          LMSR1320
C         INFO = 2  RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMSR1330
C                   IS AT MOST XTOL.                                    LMSR1340
C LMSR1350
C         INFO = 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMSR1360
C                                                                          LMSR1370
C         INFO = 4  THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMSR1380
C                   COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMSR1390
C                   ABSOLUTE VALUE.                                     LMSR1400
C                                                                          LMSR1410
C         INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMSR 1420

C                   REACHED MAXFEV. LMSR1430
C                                                                          LMSR1440
C         INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMSR1450

C                   THE SUM OF SQUARES IS POSSIBLE. LMSR1460
C                                                                          LMSR1470
C         INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMSR1480
C                   THE APPROXIMATE SOLUTION X IS POSSIBLE. LMSR1490
C                                                                          LMSR1500
C         INFO = 8  GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMSR1510
C                    COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMSR1520

C                                                                          LMSRI530
C       NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1540
C         CALLS TO FCN WITH IFLAG = 1. LMSR1550

C                                                                          LMSR1560
C       NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMSR1570

C         CALLS TO FCN WITH IFLAG = 2. LMSR1580

C                                                                          LMSR1590
C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMSR1600

C         DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMSR1610

C         WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMSR1620
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C         ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR. LMSR1630
C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMSR1640
C                                                                          LMSR1650
C       QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMSR1660
C         THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMSR1670
C                                                                       LMSR1680
C       WAl, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMSR1690
C                                          ·                            LMSR1700
C       WA4 IS A WORK ARRAY OF LENGTH M. LMSR 1710
C LMSR1720
C     SUBPROGRAMS CALLED LMSR1730
C                                                                       LMSR 1740
C       USER-SUPPLIED ...... FCN LMSR1750
C                                                                          LMSR1760
C       MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC,RWUPDT LMSR1770
C                                                                       LMSR1780
C       FORTRAN-SUPPLIED ... DABS,DMAXl,DMINl,DSQRT,MOD LMSR1790
C                                                                          LMSR1800
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMSR1810
C     BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, LMSR1820
C     JORGE J. MORE LMSR 1830
C                                                                       LMSR 1840
C ********** LMSR1850

INTEGER I,IFLAG,ITER,J,L LMSR1860
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORMl,GNORM, LMSR1870

* ONE,PAR,PNORM,PRERED,Pl,P5,P25,P75,P0001,RATIO, LMSR1880
+                 SUM,TEMP,TEMP 1, TEMP2,XNORM,ZERO LMSR1890„

DOUBLE PRECISION DPMPAR,ENORM LMSR1900
DATA ONE,Pl,PS,P25,P75,P0001,ZERO LMSR1910

* /1.ODO,1.OD-1,5.OD-1,2.5D-1,7.5D-1,1.OD-4,0.ODO/ LMSR1920
C                                                                       LMSR1930
C     EPSMCH IS THE MACHINE PRECISION. LMSR 1940
C                                                                       LMSR1950

EPSMCH = DPMPAR(1) LMSR1960
C                                                                       LMSR1970

INFO = 0 LMSR1980
IFLAG = 0 LMSR1990
NFEV = 0 LMSR2000
NJEV = 0 LMSR2010

C                                                                       LMSR2020
C     CHECK THE INPUT PARAMETERS FOR ERRORS. LMSR2030
C                                                                       LMSR2040

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N LMSR2050
*    .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMSR2060
*    .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 340 LMSR2070
IF (MODE .NE. 2) GO TO 20 LMSR2080
DO 10 J = 1, N LMSR2090

IF (DIAG(J) .LE. ZERO) GO TO 340 LMSR2100
10 CONTINUE LMSR2110
20 CONTINUE LMSR2120

C                                                                       LMSR2130
C     EVALUATE THE FUNCTION AT THE STARTING POINT LMSR2140
C     AND CALCULATE ITS NORM. LMSR2150
C                                                                       LMSR2160



223

IFLAG = 1 LMSR2170

CALL FCN(M,N,X,FVEC,WA3,IFLAG) LMSR2180

NFEV = 1 LMSR2190

IF (IFLAG .LT. 0) GO TO 340 LMSR2200

FNORM = ENORM(M,FVEC) LMSR2210

C                                                                          LMSR2220

C     INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER. LMSR2230

C                                                                       LMSR2240
PAR = ZERO LMSR2250

ITER = 1 LMSR2260

C                                                                          LMSR2270
C     BEGINNING OF THE OUTER LOOP. LMSR2280

C                                                                          LMSR2290
30 CONTINUE LMSR2300

C                                                                          LMSR2310
C        IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. LMSR2320

C                                                                          LMSR2330
IF (NPRINT .LE. 0) GO TO 40 LMSR2340

IFLAG = 0 LMSR2350

IF (MOD(ITER-l,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)  LMSR2360
IF (IFLAG .LT. 0) GO TO 340 LMSR2370

40 CONTINUE LMSR2380

C                                                                          LMSR2390
1 C        COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX LMSR2400

C        CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY LMSR2410

C        FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST LMSR2420

C        N COMPONENTS IN QTF. LMSR2430

C                                                                       LMSR2440
DO 60 J = 1, N LMSR2450

QTF(J) = ZERO LMSR2460

DO 50 I = 1, N LMSR2470

FJAC(I,J) = ZERO LMSR2480

50 CONTINUE LMSR2490

60 CONTINUE LMSR2500

IFLAG = 2 LMSR2510

DO 70 I = 1, M LMSR2520

CALL FCN(M,N,X,FVEC,WA3,IFLAG) LMSR2530

IF (IFLAG .LT. 0) GO TO 340 LMSR2540

TEMP = FVEC(I) LMSR2550

CALL RWUPDT(N,FJAC,LDFJAC,WA3,QTF,TEMP,WAl,WA2) LMSR2560

IFLAG = IFLAG + 1 LMSR2570

70 CONTINUE LMSR2580

NJEV = NJEV + 1 LMSR2590

C                                                                          LMSR2600
C        IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO LMSR2610

C        REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF. LMSR2620

C                                                                          LMSR2630
SING = .FALSE. LMSR2640

DO 80 J = 1, N LMSR2650

IF (FJAC(J,J) .EQ. ZERO) SING = .TRUE. LMSR2660

IPVT(J) = J LMSR2670

WA2(J) = ENORM(J,FJAC(l,J)) LMSR2680

80 CONTINUE LMSR2690

IF (.NOT.SING) GO TO 130 LMSR2700
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CALL .QRFAC(N,N,FJAC,LDFJAC, . TRUE., IPVT ,N,WAl,WA2, WA3) LMSR2710
DO 120 J = 1, N LMSR2720

IF (FJAC(J,J) .EQ. ZERO) GO TO 110 LMSR2730
SUM = ZERO LMSR2740
DO 90 I = J, N LMSR2750

SUM = SUM + FJAC(I,J)*QTF(I) LMSR2760
90 CONTINUE LMSR2770

TEMP = -SUM/FJAC(J,J) LMSR2780
DO 100 I = J, N                                             LMSR2790

QTF(I) = QTF(I) + FJAC(I,J)*TEMP LMSR2800
100 CONTINUE LMSR2810
110 CONTINUE LMSR2820

FJAC(J,J) = WAl(J) LMSR2830
120 CONTINUE LMSR2840
130 CONTINUE LMSR2850

C                                                                       LMSR2860
C        ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING LMSR2870
C        TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. LMSR2880
C                                                                       LMSR2890

IF (ITER .NE. 1) GO TO 170 LMSR2900
IF (MODE .EQ. 2) GO TO 150 LMSR2910
DO 140 J = 1, N LMSR2920

DIAG(J) = WA2(J) LMSR2930
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE LMSR2940

140 CONTINUE                                      '             LMSR2950
150 CONTINUE LMSR2960

C                                                                       LMSR2970
C        ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X LMSR2980
C        AND INITIALIZE THE STEP BOUND DELTA. LMSR2990
C                                                                       LMSR3000

DO 160 J = 1, N                                                LMSR3010
WA3(J) = DIAG(J)*X(J) LMSR3020

160 CONTINUE LMSR3030
XNORM = ENORM(N,WA3) LMSR3040
DELTA = FACTOR*XNORM LMSR3050
IF (DELTA .EQ. ZERO) DELTA = FACTOR LMSR3060

170 CONTINUE LMSR3070
C                                                        ·              LMSR3080
C        COMPUTE THE NORM OF THE SCALED GRADIENT. LMSR3090
C                                                                       LMSR3100

GNORM = ZERO LMSR3110
IF (FNORM .EQ. ZERO) GO TO 210 LMSR3120
DO 200 J = 1, N                                                LMSR3130

L = IPVT(J) LMSR3140
IF (WA2(L) .EQ. ZERO) GO TO 190 LMSR3150
SUM = ZERO LMSR3160
DO 180 I = 1, J LMSR3170

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM) LMSR3180
180 CONTINUE LMSR3190

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L))) LMSR3200
190 CONTINUE LMSR3210
200 CONTINUE LMSR3220
210 CONTINUE LMSR3230

C                                                                          LMSR3240
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C        TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMSR3250

C                                                                          LMSR3260

IF (GNORM .LE. GTOL) INFO =4        ·                           LMSR3270

IF (INFO .NE. 0) GO TO 340 LMSR3280

C                                                                          LMSR3290

C        RESCALE IF NECESSARY. LMSR3300

C                                                                          LMSR3310

IF (MODE .EQ. 2) GO TO 230 LMSR3320

DO 220 J = 1, N LMSR3330

DIAG(J) = DMAX 1(DIAG(J),WA2(J)) LMSR3340

220 CONTINUE LMSR3350

230 CONTINUE LMSR3360

C                                                                       LMSR3370

C        BEGINNING OF THE INNER LOOP. LMSR3380

C                                                                          LMSR3390

240 CONTINUE LMSR3400

C                                                                          LMSR3410

C           DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMSR3420

C                                                                          LMSR3430

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAl,WA2, LMSR3440
* WA3,WA4) LMSR3450

C                                                                          LMSR3460

C           STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMSR3470

C                                                                          LMSR3480

DO 250 J = 1, N LMSR3490

WAl(J) = -WAl(J) LMSR3500

WA2(J) = X(J) + WAl(J) LMSR3510

WA3(J) = DIAG(J)*WAl(J) LMSR3520

250 CONTINUE LMSR3530

PNORM = ENORM(N,WA3) LMSR3540

C                                                                          LMSR3550

C           ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMSR3560

C                                                                          LMSR3570

IF (ITER .EQ. 1) DELTA = DMIN 1(DELTA,PNORM) LMSR3580

C                                                                          LMSR3590

C           EVALUATE THE FUNCTION AT X+P AND CALCULATE ITS NORM. LMSR3600

C                                                                          LMSR3610

IFLAG = 1 LMSR3620

CALL FCN(M,N,WA2,WA4,WA3,IFLAG) LMSR3630

NFEV = NFEV + 1 LMSR3640

IF (IFLAG .LT. 0) GO TO 340 LMSR3650

FNORMl = ENORM(M,WA4) LMSR3660

C                                                                          LMSR3670

C           COMPUTE THE SCALED ACTUAL REDUCTION. LMSR3680

C                                                                          LMSR3690

ACTRED = -ONE LMSR3700

IF (Pl*FNORMl .LT. FNORM) ACTRED = ONE - (FNORMl/FNORM)**2  LMSR3710

C                                                                          LMSR3720

C           COMPUTE THE SCALED PREDICTED REDUCTION AND LMSR3730

C           THE SCALED DIRECTIONAL DERIVATIVE. LMSR3740

C                                                                       LMSR3750

DO 270 J = 1, N LMSR3760

WA3(J) = ZERO LMSR3770

L = IPVT(J) LMSR3780
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TEMP = WAl(L) LMSR3790
DO 260 I = 1, J LMSR3800

WA3(I) = WA3(I) + FJAC(I,J)*TEMP LMSR3810
260 CONTINUE LMSR3820
270 CONTINUE LMSR3830

TEMPl = ENORM(N,WA3)/FNORM LMSR3840
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM LMSR3850
PRERED = TEMP 1**2 + TEMP2**2/P5 LMSR3860
DIRDER = -(TEMP1**2 + TEMP2**2) LMSR3870

C                                                                       LMSR3880
C           COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED LMSR3890
C REDUCTION. LMSR3900
C                                                                       LMSR3910

RATIO = ZERO LMSR3920
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED LMSR3930

C                                                                       LMSR3940
C           UPDATE THE STEP BOUND. LMSR3950
C                                                                       LMSR3960

IF (RATIO .GT. P25) GO TO 280 LMSR3970
IF (ACTRED .GE. ZERO) TEMP = PS LMSR3980
IF (ACTRED .LT. ZERO) LMSR3990

*            TEMP = P5*DIRDER/(DIRDER + P5*ACTRED) LMSR4000
IF (Pl*FNORMl .GE. FNORM .OR. TEMP .LT. Pl) TEMP = Pl LMSR4010
DELTA = TEMP*DMIN1(DELTA,PNORM/Pl) LMSR4020
PAR = PAR/TEMP LMSR4030
GO TO 300 LMSR4040

280 CONTINUE LMSR4050
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 290 LMSR4060
DELTA = PNORM/P5 LMSR4070
PAR = P5*PAR LMSR4080

290 CONTINUE LMSR4090
300 CONTINUE LMSR4100

C                                                                          LMSR4110
C           TEST FOR SUCCESSFUL ITERATION. LMSR4120
C                                                                       LMSR4130

IF (RATIO .LT. P0001) GO TO 330 LMSR4140
C                                                                          LMSR4150
C           SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. LMSR4160
C                                                                          LMSR4170

DO 310 J = 1, N LMSR4180
X(J) = WA2(J) LMSR4190
WA2(J) = DIAG(J)*X(J) LMSR4200

310 CONTINUE LMSR4210
DO 320 I = 1, M LMSR4220

FVEC(I) = WA4fI) LMSR4230
320 CONTINUE LMSR4240

XNORM = ENORM(N,WA2) LMSR4250
FNORM = FNORMl LMSR4260
ITER = ITER + 1 LMSR4270

330 CONTINUE LMSR4280
C                                                                       LMSR4290
C           TESTS FOR CONVERGENCE. LMSR4300
C                                                                       LMSR4310

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMSR4320
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*          .AND. P5*RATIO .LE. ONE) INFO = 1 LMSR4330

IF (DELTA .LE. XTOL*XNORM) INFO = 2 LMSR4340

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMSR4350

*          .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3 LMSR4360

IF (INFO .NE. 0) GO TO 340 LMSR4370
C                                                                       LMSR4380
C           TESTS FOR TERMINATION AND STRINGENT TOLERANCES. LMSR4390
C                                                                          LMSR4400

IF (NFEV .GE. MAXFEV) INFO = 5 LMSR4410

IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH LMSR4420

*          .AND. P5*RATIO .LE. ONE) INFO = 6 LMSR4430

IF (DELTA .LE. EPSMCH*XNORM) INFO = 7 LMSR4440

IF (GNORM .LE. EPSMCH) INFO = 8 LMSR4450

IF (INFO .NE. 0) GO TO 340 LMSR4460

C                                                                          LMSR4470
C           END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL. LMSR4480

C                                                                          LMSR4490
IF (RATIO .LT. P0001) GO TO 240 LMSR4500

C                                                                          LMSR4510
C        END OF THE OUTER LOOP. LMSR4520
C                                                                       LMSR4530

GO TO 30 LMSR4540
340 CONTINUE LMSR4550

C LMSR4560

C     TERMINATION, EITHER NORMAL OR USER IMPOSED. LMSR4570

C                                                                       LMSR4580
IF (IFLAG .LT. 0) INFO = IFLAG LMSR4590
IFLAG = 0 LMSR4600

IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG) LMSR4610

RETURN LMSR4620

C                                                                          LMSR4630
C     LAST CARD OF SUBROUTINE LMSTR. LMSR4640

C                                                                       LMSR4650
END                                                                 LMSR4660



228

..V,1...•• 1             1                    .      .

r,('is':. C.   3-'1   A · *"·, 7-i·
A   &1.1 ..5   '1.'tl t., ./'

i 4&1 ,t ':21   O  LIAZ 'TiCid,D*Ai, i",i ir  ,·,  1.   1  -,\/
,  f  t...: LA. i  1.1 1.4471 1  .t,t<14&,li  ti'i.,1.A·.1.d  .6

WASUNKENTIDN<ALLY
LEFT BLANK



229

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA, LMS 10010

LWA) LMS 10020„

INTEGER M,N,LDFJAC,INFO,LWA LMS 10030

INTEGER IPVT(N) LMS 10040

DOUBLE PRECISION TOL LMS 10050

DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA) LMS 10060

EXTERNAL FCN LMS10070

C ********** LMS 10080

C                                                                          LMS 10090
C     SUBROUTINE LMSTRl LMS 10100

C                                                                          LMS 10110
C     THE PURPOSE OF LMSTRl IS TO MINIMIZE THE SUM OF THE SQUARES OF LMS 10120

C     M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF LMS 10130

C     THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE. LMS 10140

C     THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER LMS 10150

C     LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES LMS 10160

C                THE   FUNCTIONS   AND   THE.   ROWS   OF THE JACOB IAN. LMS10170

C                                                                          LMS 10180
C     THE SUBROUTINE STATEMENT IS LMS10190

C                                                                          LMS 10200

C. - SUBROUTINE LMSTR 1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO, LMS 10210

c
.- IPVT,WA,LWA) LMS 10220

C                                                                          LMS10230
C WHERE LMS 10240

C                                                                          LMS 10250
C       FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMS 10260

C         CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN. LMS 10270

C         FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE LMS 10280

C         USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMS 10290

C                                                                          LMS 10300
C         SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG) LMS10310

C         INTEGER M,N,IFLAG LMS 10320

C         DOUBLE PRECISION X(N),FVEC(M),FJROW(N) LMS 10330

C ·-- -------- LMS 10340

C         IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND LMS 10350

C         RETURN THIS VECTOR IN FVEC. LMS 10360

C         IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE LMS 10370

C         JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW. LMS 10380

C                                                                          LMS 10390

C RETURN LMS 10400

C END LMS 10410

C                                                                          LMS 10420

C         THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMS 10430

C         THE USER WANTS TO TERMINATE EXECUTION OF LMSTRl. LMS 10440

C         IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMS 10450

C                                                                          LMS 10460

C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMS 10470

C         OF FUNCTIONS. LMS 10480

C                                                                          LMS 10490

C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMS 10500

C         OF VARIABLES. N MUST NOT EXCEED M. LMS 10510

C                                                                          LMS 10520

C       X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMS 10530

C         AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMS 10540
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C         CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMS 10550
C                                                                       LMS 10560
C       FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMS10570
C         THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMS 10580
C                                                                       LMS10590
C       FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC LMS 10600
C         CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT LMS 10610
C                                                                       LMS 10620
C                T     T           T                                     LMS 10630
C               P *(JAC *JAC)*P = R *R, LMS 10640
C                                                                       LMS 10650
C         WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMS 10660
C         CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMS10670
C         (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR LMS 10680
C         PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMS 10690
C         THE COMPUTATION OF R. LMS10700
C                                                                          LMS10710
C       LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMS10720
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMS10730
C                                                                          LMS 10740
C       TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMS10750
C         WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMS10760
C         ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMS10770
C         THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMS10780
C         MOST TOL. LMS10790
C                                                                       LMS 10800
C       INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMS 10810
C         TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMS 10820
C         VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMS 10830
C         INFO IS SET AS FOLLOWS. LMS 10840
C                                                                       LMS 10850
C         INFO = 0  IMPROPER INPUT PARAMETERS. LMS 10860
C                                                                       LMS10870
C         INFO = 1  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR

. LMS 10880
C                   IN THE SUM OF SQUARES IS AT MOST TOL. LMS 10890
C                                                                       LMS10900
C         INFO = 2  ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMS 10910
C                   BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMS 10920
C                                                                       LMS 10930
C         INFO = 3  CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMS 10940
C                                                                       LMS10950
C         INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMS 10960
C                   JACOBIAN TO MACHINE PRECISION. LMS10970
C                                                                       LMS 10980
C         INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMS 10990
C                   REACHED 100*(N+1). LMS 11000
C                                                                       LMS 11010
C         INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMS 11020
C                   THE SUM OF SQUARES IS POSSIBLE. LMS 11030
C                                                                       LMS 11040
C         INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMS 11050
C                   THE APPROXIMATE SOLUTION X IS POSSIBLE. LMS 11060

C                                                                       LMS11070    
C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMS 11080
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C         DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMS 11090

C         WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMS 11100

C         ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR. LMS 11110

C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMS 11120

C                                                                          LMS 11130
C       WA IS A WORK ARRAY OF LENGTH LWA. LMS 11140

C                                                                          LMS11150
C       LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M. LMS11160

C                                                                          LMS11170
C     SUBPROGRAMS CALLED LMS 11180

C                                                                          LMS11190
C       USER-SUPPLIED ...... FCN LMS11200

C                                                                       LMS 11210
C       MINPACK-SUPPLIED ... LMSTR LMS 11220

C                                                                          LMS11230
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMS 11240

C     BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, LMS 11250

C     JORGE J. MORE LMS 11260

C LMS11270

C ********** LMS 11280

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT LMS 11290

DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO LMS 11300

DATA FACTOR,ZERO /1.OD2,0.ODO/ LMS 11310

INFO = 0 LMS 11320

C                                                                          LMS 11330
C     CHECK THE INPUT PARAMETERS FOR ERRORS. LMS 11340

C                                                                       LMS11350
IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO  LMS 11360

*    .OR. LWA .LT. 5*N + M) GO TO 10 LMS11370

C                                                                       LMS11380
C     CALL LMSTR. LMS 11390

C LMS 11400

MAXFEV = 100*(N + 1) LMS 11410

FTOL = TOL LMS 11420

XTOL = TOL LMS 11430

GTOL = ZERO LMS 11440

MODE = 1 LMS 11450

NPRINT = 0 LMS 11460

CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, LMS 11470

* WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,WA(N+1), LMS 11480

* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMS 11490

IF (INFO .EQ. 8) INFO = 4 LMS11500

10 CONTINUE LMS 11510

RETURN LMS 11520

C                                                                          LMS 11530
C     LAST CARD OF SUBROUTINE LMSTRl. LMS 11540

C                                                                       LMS11550
END LMS 11560
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' SUBROUTINE QFORM(M,N,Q,LDQ,WA) QFRM0010
INTEGER M,N,LDQ QFRM0020
DOUBLE PRECISION Q(LDQ,M),WA(M) QFRM0030

C ********** QFRM0040
C                                                                          QFRM0050
C     SUBROUTINE QFORM QFRM0060
C                                                                          QFRM0070
C     THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF QFRM0080
C     AN M BY N MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX QFRM0090

C     Q FROM ITS FACTORED FORM.                                         QFRM0100
C                                                                          QFRM0110
C     THE SUBROUTINE STATEMENT IS QFRM0120
C                                                                          QFRM0130
C       SUBROUTINE QFORM(M,N,Q,LDQ,WA) QFRM0140
C                                                                       QFRM0150
C WHERE QFRM0160
C                                                                       QFRM0170
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER QFRM0180
C         OF ROWS·OF A AND THE ORDER OF Q. QFRM0190
C QFRM0200
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER. QFRM0210
C         OF COLUMNS OF A. QFRM0220
C                                                                       QFRM0230
C       Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN QFRM0240
C         THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM. QFRM0250
C         ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX. QFRM0260
C                                                                          QFRM0270
C       LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M QFRM0280
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q. QFRM0290
C                                                                       QFRM0300
C       WA IS A WORK ARRAY OF LENGTH M. QFRM0310
C                                                                          QFRM0320
C     SUBPROGRAMS CALLED QFRM0330
C                                                                          QFRM0340
C       FORTRAN-SUPPLIED ... MINO QFRM0350
C                                                                          QFRM0360
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QFRM0370
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QFRM0380
C                                                                          QFRM0390
C ********** QFRM0400

INTEGER I,J,JMl,K,L,MINMN,NPl QFRM0410
DOUBLE PRECISION ONE,SUM,TEMP,ZERO QFRM0420

DATA ONE,ZERO /1.ODO,0.ODO/ QFRM0430
C                                                                          QFRM0440
C    .ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) COLUMNS. QFRM0450
C                                                                          QFRM0460

MINMN = MINO(M,N) QFRM0470

IF (MINMN .LT. 2) GO TO 30 QFRM0480

DO 20 J = 2, MINMN QFRM0490
JM1 =J-1 QFRM0500

DO 10 I = 1, JM1 QFRM0510

Q(I,J) = ZERO QFRM0520
10 CONTINUE QFRM0530
20 CONTINUE QFRM0540
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30 CONTINUE QFRM0550
C                                                                       QFRM0560

i C     INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX. QFRM0570
C                                                                          QFRM0580

NPl =N+1 QFRM0590
IF (M .LT. NPl) GO TO 60 QFRM0600
DO 50 J = NPl, M QFRM0610

DO 40 I = 1, M QFRM0620
Q(I,J) = ZERO QFRM0630

40 CONTINUE QFRM0640
Q(J,J) = ONE QFRM0650

50 CONTINUE QFRM0660
60 CONTINUE QFRM0670

C                                                                       QFRM0680
C     ACCUMULATE Q FROM ITS FACTORED FORM. QFRM0690
C                                                                       QFRM0700

DO 120 L = 1, MINMN QFRM0710
K= MINMN -L+1 QFRM0720
DO 70 I = K, M QFRM0730

WA(I) = Q(I,K) QFRM0740
Q(I,K) = ZERO QFRM0750

70 CONTINUE QFRM0760
Q(K,K) = ONE QFRM0770
IF (WA(K) .EQ. ZERO) GO TO 110 QFRM0780
DO 100 J = K, M QFRM0790

SUM = ZERO QFRM0800
DO 80 I = K, M QFRM0810

SUM = SUM + Q(I,J)*WA(I) QFRM0820
80 CONTINUE QFRM0830

TEMP = SUM/WA(K) QFRM0840
DO 90 I = K, M                                              QFRM0850

Q(I,J) = Q(I,J) - TEMP*WA(I) QFRM0860
90 CONTINUE QFRM0870

100 CONTINUE QFRM0880
110 CONTINUE QFRM0890
120 CONTINUE QFRM0900

RETURN QFRM0910
C                                                                       QFRM0920
C     LAST CARD OF SUBROUTINE QFORM. QFRM0930
C                                                                       QFRM0940

END QFRM0950
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SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) QRFA0010
INTEGER M,N,LDA,LIPVT QRFA0020
INTEGER IPVT(LIPVT) QRFA0030
LOGICAL PIVOT QRFA0040
DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N) QRFA0050

C          :'.:'::'::.:': -':**** QRFA0060
C                                                                       QRFA0070
C     SUBROUTINE QRFAC                                          ·         QRFA0080
C                                                                          QRFA0090
C     THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN QRFA0100

C     PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE QRFA0110

C     M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL QRFA0120

C     MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL QRFA0130
C     MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE, QRFA0140

C     SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR QRFA0150

C     COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM QRFA0160
C                                                                          QRFA0170
C                            T                                            QRFA0180
C           I - (1/U(K))*U*U QRFA0190
C                                                                          QRFA0200
C     WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF QRFA0210
C     THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST QRFA0220
C          APPEARED  IN. THE CORRESPONDING LINPACK SUBROUTINE. QRFA0230
C                                                                          QRFA0240
C     THE SUBROUTINE STATEMENT IS QRFA0250

C                                                                          QRFA0260
C       SUBROUTINE QRFACCM,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) QRFA0270

C                                                                          QRFA0280
C WHERE QRFA0290

C                                                                          QRFA0300
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER QRFA0310

C         OF ROWS OF A.                         ·                       QRFA0320
C                                                                       QRFA0330
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER QRFA0340
C         OF COLUMNS OF A. QRFA0350

C                                                                          QRFA0360
C       A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR QRFA0370

C         WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT QRFA0380

C         THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT QRFA0390
C         UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL QRFA0400

C         PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL QRFA0410
C         ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). QRFA0420
C                                                                          QRFA0430
C       LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M QRFA0440
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. QRFA0450
C                                                                       QRFA0460
C PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, QRFA0470

C         THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, QRFA0480

C         THEN NO COLUMN PIVOTING IS DONE. QRFA0490

C QRFA0500

C       IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT QRFA0510

C         DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R. QRFA0520

C         COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRFA0530

C         IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. QRFA0540
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C                                                                       QRFA0550
C       LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE,  QRFA0560
C         THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN QRFA0570
C         LIPVT MUST BE AT LEAST N. QRFA0580
C                                                                       QRFA0590
C       RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRFA0600
C         DIAGONAL ELEMENTS OF R. QRFA0610
C                                                                       QRFA0620
C       ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRFA0630
C         NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. QRFA0640
C         IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE QRFA0650
C         WITH RDIAG. QRFA0660
C                                                                       QRFA0670
C       WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA QRFA0680
C         CAN COINCIDE WITH RDIAG. QRFA0690
C                                                                       QRFA0700
C     SUBPROGRAMS CALLED QRFA0710
C                                                                       QRFA0720
C       MINPACK-SUPPLIED ... DPMPAR,ENORM QRFA0730
C                                                                       QRFA0740
C       FORTRAN-SUPPLIED ... DMAXl,DSQRT,MINO QRFA0750
C                                                                       QRFA0760
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRFA0770
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRFA0780
C                                                                       QRFA0790
C ********** QRFA0800

INTEGER I,J,JPl,K,KMAX,MINMN QRFA0810
DOUBLE PRECISION AJNORM,EPSMCH,ONE,POS,SUM,TEMP,ZERO QRFA0820
DOUBLE PRECISION DPMPAR,ENORM QRFA0830
DATA ONE,P05,ZERO /1.ODO,5.OD-2,0.ODO/ QRFA0840

C                                                                       QRFA0850
C     EPSMCH IS THE MACHINE PRECISION. QRFA0860
C                                                                       QRFA0870

EPSMCH = DPMPAR(1) QRFA0880
C                                                                       QRFA0890
C     COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. QRFA0900
C                                                                       QRFA0910

DO 10 J = 1, N QRFA0920
ACNORM(J) = ENORM(M,A(1 ,J)) QRFA0930
RDIAG(J) = ACNORM(J) QRFA0940
WA(J) = RDIAG(J) QRFA0950
IF (PIVOT) IPVT(J) = J QRFA0960

10 CONTINUE QRFA0970
C                                                                       QRFA0980
C     REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. QRFA0990
C                                                                       QRFA1000

MINMN = MINO(M,N) QRFA1010
DO 110 J = 1, MINMN QRFA1020

IF (.NOT.PIVOT) GO TO 40 QRFA1030
C                                                                       QRFA1040
C        BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. QRFA1050
C                                                                       QRFA1060

KMAX = J QRFA1070
DO 20 K = J, N QRFA1080



237

IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K QRFA1090
20 CONTINUE QRFA 1100

IF (KMAX .EQ. J) GO TO 40 QRFA 1110

DO 30 I = 1, M QRFA 1120
TEMP = A(I,J) QRFA1130

A(I,J) = A(I,KMAX) QRFA1140

A(I,KMAX) = TEMP QRFA1150
30 CONTINUE QRFA1160

RDIAG(KMAX) = RDIAG(J) QRFA1170

WA(KMAX) = WA(J) QRFA 1180

K = IPVT(J) QRFA1190
IPVT(J) = IPVT(KMAX) QRFA 1200

IPVT(KMAX) = K QRFA1210
40 CONTINUE QRFA1220

C                                                                          QRFA1230
C        COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE QRFA1240
C        J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR. QRFA1250
C                                                                          QRFA1260

AJNORM = ENORM(M-J+1,A(J,J)) QRFA1270
IF (AJNORM .EQ. ZERO) GO TO 100 QRFA1280
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM QRFA1290
DO 50 I = J, M QRFA1300

A(I,J) = A(I,J)/AJNORM QRFA1310
50 CONTINUE QRFA1320

A(J,J) = A(J,J) + ONE QRFA1330
C                                                                          QRFA1340
C        APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS QRFA1350
C AND UPDATE THE NORMS. QRFA1360
C                                                                       QRFA1370

JP 1 =J+1 QRFA1380
IF (N .LT. JP 1) GO TO 100 QRFA1390
DO 90 K = JP1, N QRFA1400

SUM = ZERO QRFA1410
DO 60 I = J, M QRFA1420

SUM = SUM + A(I,J)*A(I,K) QRFA1430
60 CONTINUE QRFA1440

TEMP = SUM/A(J,J) QRFA1450
DO 70 I = J, M QRFA1460

A(I,K) = A(I,K) - TEMP*A(I,J) QRFA1470
70 CONTINUE QRFA1480

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80 QRFA1490
TEMP = A(J,K)/RDIAG(K) QRFA1500

RDIAG(K) = RDIAG(K)*DSQRT(DMAX1(ZERO,ONE-TEMP**2)) QRFA1510

IF (P05*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80 QRFA1520
RDIAG(K) = ENORM(M-J,A(JPl,K)) QRFA1530

WA(K) = RDIAG(K) QRFA1540
80 CONTINUE QRFA1550
90 CONTINUE QRFA1560
100 CONTINUE QRFA1570

RDIAG(J) = -AJNORM QRFA1580
110 CONTINUE QRFA1590

RETURN QRFA1600
C                                                                          QRFA1610
C     LAST CARD OF SUBROUTINE QRFAC. QRFA1620
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SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA) QRSL0010
INTEGER N,LDR QRSL0020
INTEGER IPVT(N) QRSL0030
DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA(N) QRSL0040

C     **********                                                          QRSL0050
C QRSL0060
C     SUBROUTINE QRSOLV QRSL0070
C                                                                       QRSL0080
C     GIVEN AN M. BY N MATRIX A, AN N BY N DIAGONAL MATRIX D, QRSL0090
C     AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X WHICH QRSL0100
C     SOLVES THE SYSTEM QRSL0110
C                                                                          QRSL0120
C           A*X =B, D*X =0, QRSL0130
C                                                                          QRSL0140
C     IN THE LEAST SQUARES SENSE. QRSL0150
C                                                                       QRSL0160
C     THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM QRSL0170
C     IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE QRSL0180
C     QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF QRSL0190
C     A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL QRSL0200
C     COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL QRSL0210
C     ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS QRSL0220
C     THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P, QRSL0230
C     AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM QRSL0240
C     A*X = B, D*X = 0, IS THEN EQUIVALENT TO QRSL0250
C                                                                          QRSL0260
C                   T       T                                             QRSL0270
C           R*Z = Q *11

„ ,  P *D*P*Z =0,                                 QRSL0280
C                                                                          QRSL0290
C     WHERE X = P*Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK, QRSL0300
C     THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV QRSL0310
C   · ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT QRSL0320
C                                                                          QRSL0330
C            T   T               T                                      QRSL0340
C           P *(A *A + D*D)*P = S *S . QRSL0350
C                                                                       QRSL0360
C     S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST. QRSL0370
C                                                                       QRSL0380
C     THE SUBROUTINE STATEMENT IS QRSL0390
C                                                                       QRSL0400
C       SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA) QRSL0410
C                                                                          QRSL0420
C WHERE QRSL0430
C                                                                          QRSL0440
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. QRSL0450
C                                                                          QRSL0460
C       R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE QRSL0470
C         MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. QRSL0480
C         ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE QRSL0490
C         STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE QRSL0500
C         (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S. QRSL0510
C                                                                          QRSL0520
C       LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N QRSL0530
C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R. QRSL0540
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C                                                                       QRSL0550
C       IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE QRSL0560
C         PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P QRSL0570
C         IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRSL0580
C                                                                       QRSL0590
C       DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE QRSL0600
C         DIAGONAL ELEMENTS OF THE MATRIX D. QRSL0610
C                                                                       QRSL0620
C       QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST  QRSL0630
C         N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. QRSL0640
C                                                                       QRSL0650
C       X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST QRSL0660
C         SQUARES SOLUTION OF THE SYSTEM A*X = B, D*X = 0. QRSL0670
C                                                                       QRSL0680
C       SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRSL0690
C         DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S. QRSL0700
C                                                                       QRSL0710
C       WA IS A WORK ARRAY OF LENGTH N. QRSL0720
C                                                                       QRSL0730
C     SUBPROGRAMS CALLED QRSL0740
C                                                                       QRSL0750
C       FORTRAN-SUPPLIED ... DABS,DSQRT QRSL0760
C                                                                       QRSL0770
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRSL0780
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRSL0790
C                                                                       QRSL0800
C ********** QRSL0810

INTEGER I,J,JPl,K,KPl,L,NSING QRSL0820
DOUBLE PRECISION COS,COTAN,PS,P25,QTBPJ,SIN,SUM,TAN,TEMP,ZERO QRSL0830
DATA P5,P25,ZERO /5.OD-1,2.5D-1,0.ODO/                             QRSL0840

C                                                                          QRSL0850
C     COPY R AND (Q TRANSPOSE)*B TO PRESERVE INPUT AND. INITIALIZE S. QRSL0860
C     IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X. QRSL0870
C                                                                          QRSL0880

DO 20 J = 1, N QRSL0890
DO 10 I = J, N QRSL0900

R(I,J) = R(J,I) QRSL0910
10       CONTINUE                                                      QRSL0920

X(J) = R(J,J) QRSL0930
WA(J) = QTB(J) QRSL0940

20 CONTINUE QRSL0950
C                                                                          QRSL0960
C     ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION. QRSL0970
C                                                                       QRSL0980

DO 100 J = 1, N QRSL0990
C                                                                       QPSL1000
C        PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE QRSL1010
C        DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION. QRSL1020
C                                                                       QRSL1030

L = IPVT(J) QRSL1040
IF (DIAG(L) .EQ. ZERO) GO TO 90 QRSL1050
DO 30 K = J, N QRSL1060

SDIAG(K) = ZERO QRSL1070
30 CONTINUE QRSL1080
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SDIAG(J) = DIAG(L) QRSL1090

C                                                                         
 QRSL1100

C        THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D QRSL1110

C        MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B QRSL1120

C        BEYOND THE FIRST N, WHICH IS INITIALLY
ZERO. QRSL1130

C                                                                         
 QRSL1140

QTBPJ = ZERO QRSL1150

DO 80 K = J, N QRSI.1160

C                    ·                                                 
    QRSL1170

C           DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE QRSL1180

C           APPROPRIATE ELEMENT IN THE CURRENT ROW OF D. QRSL1190

C                                                                      
 QRSL1200

IF (SDIAG(K) .EQ. ZERO) GO TO 70 QRSL1210

IF (DABS(R(K,K)) .GE. DABS(SDIAG(K))) GO TO 40 QRSL1220

COTAN = R(K,K)/SDIAG(K) QRSL1230

SIN = P5/DSQRT(P25+P25*COTAN**2) QRSL1240

COS = SIN*COTAN QRSL1250

GO TO 50 QRSL1260

40 CONTINUE QRSL1270

TAN = SDIAG(K)/R(K,K) QRSL1280

COS = PS/DSQRT(P25+P25*TAN**2) QRSL1290

SIN = COS*TAN QRSL1300

50 CONTINUE QRSL1310

C                                                                   
       QRSL1320

C COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND QRSL1330

C           THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,0). QRSL1340

C                                                                      
    QRSL1350

R(K,K) = COS*R(K,K) + SIN*SDIAG(K) QRSL1360

TEMP = COS*WA(K) + SIN*QTBPJ QRSL1370

QTBPJ = -SIN*WA(K) + COS*QTBPJ QRSL1380

WA(K) = TEMP QRSL1390

C                                                                 
         QRSL1400

C           ACCUMULATE THE TRANFORMATION IN THE ROW OF S. QRSL1410

C                                                                 
         QRSL1420

KP 1 =K+1 QRSL1430

IF (N .LT. KP1) GO TO 70 QRSL1440

DO 60 I = KP 1, N QRSL1450

TEMP = COS*R(I,K) + SIN*SDIAG(I) QRSL1460

SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I) QRSL1470

R(I,K) = TEMP QRSL1480

60 CONTINUE QRSL1490

70 CONTINUE QRSL1500

80 CONTINUE QRSL1510

90 CONTINUE QRSL1520

C                                                               
           QRSL1530

C        STORE THE DIAGONAL ELEMENT OF S AND RESTORE QRSL1540

C        THE CORRESPONDING DIAGONAL ELEMENT OF R. QRSL1550

C                                                               
           QRSL1560

SDIAG(J) = R(J,J) QRSL1570

R(J,J) = X(J) QRSL1580

100 CONTINUE                                                       
  QRSL1590

C                                                               
           QRSL1600

C     SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS QRSL1610

C     SINGULAR, THEN OBTAIN A LEAST SQUARES
SOLUTION. QRSL1620
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C                                                                       QRSL1630NSING = N
QRSL1640

DO 110 J = 1, N QRSL1650
IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING =J-1 QRSL1660
IF (NSING .LT. N) WA(J) = ZERO QRSL1670

110 CONTINUE
QRSL1680

IF (NSING .LT. 1) GO TO 150 QRSL1690
DO 140 K = 1, NSING QRSL1700J= NSING -K+1 QRSL1710

SUM = ZERO QRSL1720
JP1 =J+1 QRSL1730
IF (NSING .LT. JP1) GO TO 130 QRSL1740
DO 120 I = JP1, NSING QRSL1750

SUM = SUM + R(I,J)*WA(I) QRSL1760
120 CONTINUE QRSL1770130 CONTINUE QRSL1780

WA(J) = (WA(J) - SUM)/SDIAG(J) QRSL1790140 CONTINUE QRSL1800150 CONTINUE QRSL1810
C                                                                       QRSL1820
C     PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X. QRSL1830
C                                                                       QRSL1840

DO 160 J = 1, N QRSL1850
L = IPVT(J) QRSL1860
X(L) = WA(J) QRSL1870160 CONTINUE                                                       QRSL1880RETURN

QRSL1890
C                                                                       QRSL1900C     LAST CARD OF SUBROUTINE QRSOLV. QRSL19fOC

QRSL1920END
QRSL1930



243

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN) RWUP0010

INTEGER N,LDR RWUP0020

DOUBLE PRECISION ALPHA RWUP0030

DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N) RWUP0040

C ********** RWUP0050

C                                                                       RWUP0060
C     SUBROUTINE RWUPDT RWUP0070

C                                                                       RWUP0080
C     GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE RWUP0090

C     COMPUTES THE QR DECOMPOSITION OF THE MATRIX FORMED WHEN A ROW RWUP0100

C     IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN RWUP0110

C     RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE RWUP0120

C     N+1 BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED RWUP0130

C     BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL. RWUP0140

C     THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS RWUP0150

C                                                                          RWUP0160
C           GCN)*G(N-1)* ... *G(1) RWUP0170

C                                                                       RWUP0180
C     WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH RWUP0190

C     ELIMINATES ELEMENTS IN THE (N+1)-ST PLANE. RWUPDT ALSO RWUP0200

C     COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE RWUP0210

C     (N+1)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER RWUP0220

C     THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED. RWUP0230

C                                                                          RWUP0240
C     THE SUBROUTINE STATEMENT IS RWUP0250

C                                                                       RWUP0260
C       SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN) RWUP0270

C                                                                          RWUP0280
C WHERE RWUP0290

C                                                                          RWUP0300
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. RWUP0310

C                                                                          RWUP0320
C       R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF RWUP0330

C         R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R RWUP0340

C         CONTAINS THE UPDATED TRIANGULAR MATRIX. RWUP0350

C                                                                          RWUP0360
C       LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N RWUP0370

C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R. RWUP0380

C                                                                       RWUP0390
C       W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW RWUP0400

C         VECTOR TO BE ADDED TO R. RWUP0410

C                                                                       RWUP0420
C       B IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE RWUP0430

C         FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS RWUP0440

C         THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*C. RWUP0450

C                                                                          RWUP0460
C       ALPHA IS A VARIABLE. ON INPUT ALPHA MUST CONTAIN THE RWUP0470

C         (N+1)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS RWUP0480

C·        THE (N+1)-ST ELEMENT OF THE VECTOR (Q TRANSPOSE)*C. RWUP0490

C                                                                       RWUP0500
C       COS IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE RWUP0510

C         COSINES OF THE TRANSFORMING GIVENS ROTATIONS. RWUP0520

C                                                                          RWUP0530
C     ·  · SIN IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE RWUP0540
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C         SINES OF THE TRANSFORMING GIVENS ROTATIONS. RWUP0550
C                                                                       RWUP0560
C     SUBPROGRAMS CALLED RWUP0570
C                                                                       RWUP0580
C       FORTRAN-SUPPLIED ... DABS,DSQRT RWUP0590
C                                                                       RWUP0600
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. RWUP0610
C     BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, RWUP0620
C     JORGE J. MORE RWUP0630
C                                                                       RWUP0640
C ********** RWUP0650

INTEGER I,J,JM1 RWUP0660
DOUBLE PRECISION COTAN,ONE,PS,P25,ROWJ,TAN,TEMP,ZERO RWUP0670
DATA ONE,P5,P25,ZERO /1.ODO,5.OD-1,2.5D-1,0.ODO/ RWUP0680

C                                                                       RWUP0690
DO 60 J   1, N RWUP0700

ROWJ = W(J) RWUP0710
JM1 =J-1 RWUP0720

C                                                                       RWUP0730
C        APPLY THE PREVIOUS TRANSFORMATIONS TO                          RWUP0740
C        R(I,J), I=1,2,. .., J-1, AND TO W(J). RWUP0750
C                                                                       RWUP0760

IF (JM1 .LT. 1) GO TO 20 RWUP0770
DO 10 I = 1, JM1 RWUP0780

TEMP = COS(I)*R(I,J) + SIN(I)*ROWJ RWUP0790
ROWJ = -SIN(I)*R(I,J) + COS(I)*ROWJ RWUP0800
R(I,J) = TEMP RWUP0810

10 CONTINUE RWUP0820
20 CONTINUE RWUP0830

C                                                                       RWUP0840
C        DETERMINE A GIVENS ROTATION WHICH ELIMINATES W(J). RWUP0850
C                                                                       RWUP0860

COS(J) = ONE RWUP0870
SIN(J) = ZERO RWUP0880
IF (ROWJ .EQ. ZERO) GO TO 50 RWUP0890
IF (DABS(R(J,J)) .GE. DABS(ROWJ)) GO TO 30 RWUP0900

COTAN = R(J,J)/ROWJ RWUP0910
SIN(J) = P5/DSQRT(P25+P25*COTAN**2) RWUP0920
COS(J) = SIN(J)*COTAN RWUP0930
GO TO 40 RWUP0940

30 CONTINUE RWUP0950
TAN = ROWJ/R(J,J) RWUP0960
COS(J) = PS/DSQRT(P25+P25*TAN**2) RWUP0970
SIN(J) = COS(J)*TAN RWUP0980

40 CONTINUE RWUP0990
C                                                                       RWUP 1000
C APPLY THE CURRENT TRANSFORMATION TO R(J,J), B(J), AND ALPHA. RWUP 1010
C                                                                       RWUP 1020

R(J,J) = COS(J)*R(J,J) + SIN(J)*ROWJ RWUP 1030
TEMP = COS(J)*B(J) + SIN(J)*ALPHA RWUP 1040
ALPHA = -SIN(J)*B(J) + COS(J)*ALPHA RWUP 1050
B(J) = TEMP RWUP 1060

50 CONTINUE RWUP1070
60 CONTINUE RWUP 1080
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RETURN RWUP1090

C                                                                          RW
UP1100

C     LAST CARD OF SUBROUTINE RWUPDT. RWUP 1110

C                                                                          RW
UP1120

END RWUP1130



246

'
£7  4     r r; '2   .   A .'.       L        ••..   1     ·i

 

. . .         '   '            '.3,'. 1,:$4.2,·r.    j.... 6,:, )i:'1. '2.i.':  ...    '

1 1,·'ti:iS liT,HES!>PAGE,AI.t.'1
i WASPINTENTIONALLY

LEFT BLANK

C. T



247

SUBROUTINE RlMPYQ(M,N,A,LDA,V,W) RlMQ0010
INTEGER M,N,LDA RlMQ0020

DOUBLE PRECISION A(LDA,N),V(N),W(N) RlMQ0030

C ********** RlMQ0040

C                                                                          RiMQ0050
C     SUBROUTINE RlMPYQ RlMQ0060

C                                                                          RlMQ0070
C     GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE RlMQOOSO

C     Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS         ·            RlMQ0090
C                                                                       RlMQ0100
C GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) RlMQ0110

C                                                                          RlMQ0120
C     AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH RlMQ0130

C     ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. RlMQ0140

C     Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE RlMQ0150

C     GV, GW ROTATIONS IS SUPPLIED. RlMQ0160

C                                                                          RlMQ0170
C     THE SUBROUTINE STATEMENT IS RlMQ0180

C                                                                          RlMQ0190
C       SUBROUTINE RlMPYQ(M,N,A,LDA,V,W) RlMQ0200

C                                                                          RlMQ0210
C WHERE RlMQ0220

C                                                                          RlMQ0230
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER RlMQ0240

C         OF ROWS OF A. RlMQ0250

C                                                                          RlMQ0260
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER RlMQ0270

C         OF COLUMNS OF A. RlMQ0280

C                                                                          RlMQ0290
C       A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX RlMQ0300

C         TO BE POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q RlMQ0310

C DESCRIBED ABOVE. ON OUTPUT A*Q HAS REPLACED A. RlMQ0320

C                                                                          RlMQ0330
C       LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M RlMQ0340

C         WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. RlMQ0350

C                                                                          RlMQ0360
C       V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE RlMQ0370

C         INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) RlMQ0380

C         DESCRIBED ABOVE. RlMQ0390

C                                                                          RlMQ0400
C       W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE RlMQ0410

C         INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) RlMQ0420

C         DESCRIBED ABOVE. RlMQ0430

C                                                                          RlMQ0440
C     SUBROUTINES CALLED RlMQ0450

C                                                                          RlMQ0460
C       FORTRAN-SUPPLIED ... DABS,DSQRT RlMQ0470

C                                                                          RlMQ0480

C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. RlMQ0490

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE RlMQ0500

C                                                                          RlMQ0510
C ********** RlMQ0520

INTEGER I,J,NMJ,NM1 RlMQ0530

DOUBLE PRECISION COS,ONE,SIN,TEMP RlMQ0540
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DATA ONE /1.ODO/ RlMQ0550
C                                                                       RlMQ0560
C     APPLY THE FIRST SET OF GIVENS ROTATIONS TO A. RlMQ0570
C                                                                          RlMQ0580

NM 1 =N-1 RlMQ0590
IF (NM1 .LT. 1) GO TO 50 RlMQ0600
DO 20 NMJ = 1, NM1 RlMQ0610
J=N- NMJ RlMQ0620
IF (DABS(V(J)) .GT. ONE) COS = ONE/V(J) RlMQ0630
IF (DABS(V(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2) RlMQ0640
IF (DABS(V(J)) .LE. ONE) SIN = V(J) RlMQ0650
IF (DABS(V(J)) .LE. ONE) COS = DSQRT(ONE-SIN**2) RlMQ0660
DO 10 I = 1, M RlMQ0670

TEMP = COS*A(I,J) - SIN*A(I,N) RlMQ0680
A(I,N) = SIN*A(I,J) + COS*A(I,N) RlMQ0690
A(I,J) = TEMP RlMQ0700

10 CONTINUE RlMQ0710
20 CONTINUE RlMQ0720

C                                                                          RlMQ0730
C     APPLY THE SECOND SET OF GIVENS ROTATIONS TO A. RlMQ0740
C                                                                          RlMQ0750

DO 40 J = 1, NM1 RlMQ0760
IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J) RlMQ0770
IF (DABS(W(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2) RlMQ0780
IF (DABS(W(J)) .LE. ONE) SIN = W(J) RlMQ0790
IF (DABS(W(J)) .LE. ONE) COS = DSQRT(ONE-SIN**2) RlMQ0800
DO 30 I = 1, M RlMQ0810

TEMP = COS*A(I,J) + SIN*A(I,N) RlMQ0820
A(I,N) = -SIN*A(I,J) + COS*A(I,N) RlMQ0830
A(I,J) = TEMP RlMQ0840

30 CONTINUE RlMQ0850
40 CONTINUE RlMQ0860
50 CONTINUE RlMQ0870

RETURN RlMQ0880
C                                                                       RlMQ0890
C     LAST CARD OF SUBROUTINE RlMPYQ. RlMQ0900
C                                                                          RlMQ0910

END RlMQ0920
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SUBROUTINE RlUPDT(M,N,S,LS,U,V,W,SING) RlUP0010

INTEGER M,N,LS RlUP0020

LOGICAL SING RlUP0030

DOUBLE PRECISION S(LS),U(M),V(N),W(M) RlUP0040

C ********** RlUP0050

C                                                                          RlUP0060
C     SUBROUTINE RlUPDT RlUP0070

C                                                                         RlUP0080

C    .LIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U, RlUP0090

C.    AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN RlUP0100

C     ORTHOGONAL MATRIX Q SUCH THAT RlUP0110

C                                                                          RlUP0120
C                    T                                                     RlUP0130
C            (S + U*V )*Q RlUP0140

C                                                                          RlUP0150
C     IS AGAIN LOWER TRAPEZOIDAL. RlUP0160

C                                                                          RlUP0170
C     THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1) RlUP0180

C TRANSFORMATIONS RlUP0190

C                                                                          RlUP0200
6 GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) RlUP0210

C                                                                          RlUP0220
C WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE RlUP0230

C     WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RlUP0240

C     RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE RlUP0250

C     INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED. RlUP0260

C                                                                          RlUP0270
C     THE SUBROUTINE STATEMENT IS RlUP0280

C                                                                          RlUP0290
C       SUBROUTINE RlUPDT(M,N,S,LS,U,V,W,SING) RlUP0300

C                                                                          RlUP0310
C WHERE RlUP0320

C                                                                          RlUP0330
C       M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER RlUP0340

C         OF ROWS OF S. RlUP0350

C                                                                          RlUP0360
C       N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER RlUP0370

C         OF COLUMNS OF S. N MUST NOT EXCEED M. RlUP0380

C                                                                          RlUP0390
C       S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER RlUP0400

C         TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS RlUP0410

C         THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE. RlUP0420

C                                                                          RlUP0430
C       LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN RlUP0440

C (N*(2*M-N+1))/2. RlUP0450

C                                                                          RlUP0460
C       U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE RlUP0470

C         VECTOR U. RlUP0480

C                                                                          RlUP0490
C       V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR RlUP0500

C         V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO RlUP0510

C         RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE. RlUP0520

C                                                                          RlUP0530

C       W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION RlUP0540
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C         NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED RlUP0550
C ABOVE. RlUP0560
C                                                                       RlUP0570
C       SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY RlUP0580
C         OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE  RlUP0590
C         SING IS SET FALSE. RlUP0600
C                                                                       RlUP0610
C     SUBPROGRAMS CALLED RlUP0620
C                                                                       RlUP0630
C       MINPACK-SUPPLIED ... DPMPAR RlUP0640
C                                                                          RlUP0650
C       FORTRAN-SUPPLIED ... DABS,DSQRT RlUP0660
C                                                                       RlUP0670
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. RlUP0680
C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, RlUP0690
C     JOHN L. NAZARETH RlUP0700
C                                                                       RlUP0710
C ********** RlUP0720

INTEGER I,J,JJ,L,NMJ,NM1 RlUP0730
DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP, RlUP0740

* ZERO RlUP0750
DOUBLE PRECISION DPMPAR RlUP0760
DATA ONE,P5,P25,ZERO /1.ODO,5.OD-1,2.5D-1,0.ODO/ RlUP0770

C                                                                       RlUP0780
C     GIANT IS THE LARGEST MAGNITUDE. RlUP0790
C                                                                       RlUP0800

GIANT = DPMPAR(3) RlUP0810
C                                                                          RlUP0820
C     INITIALIZE THE DIAGONAL ELEMENT POINTER. RlUP0830
C                                                                       RlUP0840

JJ = (N*(2*M -N+ 1))/2 - (M-N) RlUP0850
C                                                                          RlUP0860
C     MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. R]IJP0870
C                                                                       RlUP0880

L = JJ RlUP0890
DO 10 I = N, M                                                    RlUP0900

W(I) = S(L) RlUP0910
L=L+1 RlUP0920

10 CONTINUE RlUP0930
C                                                                       RlUP0940
C     ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR RlUP0950
C     IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. RlUP0960
C                                                                       RlUP0970

NM1 =N-1 RlUP0980
IF (NM1 .LT. 1) GO TO 70 RlUP0990
DO 60 NMJ = 1, NM1 RlUP 1000
J=N- NMJ RlUP 1010
J J=J J- (M-J+1) RlUP1020
W(J) = ZERO RlUP1030
IF (V(J) .EQ. ZERO) GO TO 50 RlUP 1040

C                                                                       RlUP 1050
C        DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE RlUP 1060
C        J-TH ELEMENT OF V. RlUP1070
C                                                                       RlUP1080
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IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20 RlUP1090

COTAN = V(N)/V(J) RlUP 1100

SIN = P5/DSQRT(P25+P25*COTAN**2) RlUP 1110

COS = SIN*COTAN RlUP 1120

TAU = ONE RlUP 1130

IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS RlUP 1140

GO TO 30 RlUP1150

20 CONTINUE RlUP 1160

TAN = V(J)/V(N) RlUP1170

COS = PS/DSQRT(P25+P25*TAN**2) RlUP 1180

SIN = COS*TAN RlUP1190

TAU = SIN RlUP 1200

30 CONTINUE RlUP 1210

C                                                                          RlUP 1220
C        APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION RlUP 1230

C        NECESSARY TO RECOVER THE GIVENS ROTATION. RlUP 1240

C                                                                          RlUP1250
V(N) = SIN*V(J) + COS*V(N) RlUP1260

V(J) = TAU RlUP1270

C                                                                          RlUP 1280
C        APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. RlUP1290

C                                                                          RlUP1300
L = JJ RlUP1310

DO 40 I = J, M RlUP1320

TEMP = COS*S(L) - SIN*W(I) RlUP 1330

W(I) = SIN*S(L) + COS*W(I) RlUP 1340

S(L) = TEMP RlUP1350

L=L+1 RlUP1360

40 CONTINUE RlUP1370

50 CONTINUE RlUP 1380

60 CONTINUE RlUP1390

70 CONTINUE RlUP 1400

C                                                                          RlUP1410
C     ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. RlUP 1420

C                                                                          RlUP 1430
DO 80 I= 1, M RlUP 1440

W(I) = W(I) + V(N)*U(I) RlUP1450

80 CONTINUE RlUP 1460

C                                                                          RlUP1470
C     ELIMINATE THE SPIKE. RlUP 1480

C                                                                          RlUP1490
SING = .FALSE. RlUP1500

IF (NM1 .LT. 1) GO TO 140 RlUP1510

DO 130 J = 1, NM1 RlUP1520

IF (W(J) .EQ. ZERO) GO TO 120 RlUP1530

C                                                                          RlUP 1540
C        DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE RlUP1550

C        J-TH ELEMENT OF THE SPIKE. RlUP 1560

C                                                                          RlUP1570
IF (DABS(S(JJ)) .GE. DABS(W(J))) GO TO 90 RTUP1580

COTAN = S(JJ)/W(J) RlUP1590

SIN = P5/DSQRT(P25+P25*COTAN**2) RlUP 1600

COS = SIN*COTAN RlUP1610

TAU = ONE RlUP1620
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IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS RlUP1630
GO TO 100 RlUP 1640

90    CONTINUE                                                       RlUP 1650
TAN = W(J)/S(JJ) RlUP 1660
COS = P5/DSQRT(P25+P25*TAN**2) RlUP1670
SIN = COS*TAN RlUP1680
TAU = SIN RlUP1690

100 CONTINUE RlUP1700
C                                                                       RlUP 1710
C        APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. RlUP1720
C                                                                       RlUP1730

L = JJ                                                         RlUP 1740
DO 110 I = J, M RlUP1750

TEMP = COS*S(L) + SIN*W(I) RlUP1760
W(I) = -SIN*S(L) + COS*W(I) RlUP1770
S(L) = TEMP RlUP1780
L=L+1 RlUP1790

110 CONTINUE RlUP 1800
C                                                                          RlUP 1810
C        STORE THE INFORMATION NECESSARY TO RECOVER THE RlUP1820
C        GIVENS ROTATION. RlUP1830
C                                                                       RlUP 1840

W(J) = TAU RlUP1850
120 CONTINUE RlUP1860

C                                                                       RlUP1870
C        TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. RlUP1880
C                                                                       RlUP1890

IF (S(JJ) .EQ. ZERO) SING = .TRUE. RlUP1900
J J=J J+ (M-J+1) RlUP 1910

130 CONTINUE RlUP1920
140 CONTINUE RlUP1930

C                                                                          RlUP 1940
C     MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. RlUP1950
C                                                                          RlUP1960

L = JJ RlUP1970
DO 150 I = N, M                                                     RlUP1980

S(L) = W(I) RlUP1990
L=L+1 RlUP2000

150 CONTINUE RlUP2010
IF (S(JJ) .EQ. ZERO) SING = .TRUE. RlUP2020
RETURN RlUP2030

C                                                                       RlUP2040
C     LAST CARD OF SUBROUTINE RlUPDT. RlUP2050
C                                                                       RlUP2060

END RlUP2070
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REAL FUNCTION SPMPAR(I) SPPRO010

INTEGER I                                                           SPPRO020
C ********** SPPRO030

C                                                                          SPPRO040
C     FUNCTION SPMPAR SPPRO050

C                                                                          SPPRO060
C     THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS SPPRO070

C     WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY SPPRO080

C     REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE SPPRO090

C     RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED SPPRO 100

C     FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION. SPPR0110

C                                                                          SPPRO 120
C     THE FUNCTION STATEMENT IS SPPRO 130

C                                                                          SPPRO 140
C       REAL FUNCTION SPMPAR(I) SPPRO150

C                                                                          SPPRO 160
C WHERE SPPRO170

C                                                                          SPPRO 180
C       I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH SPPRO190

C         SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS SPPRO200

C         T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE SPPRO210

C         EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE SPPR0220

C                                                                          SPPRO230
C         SPMPAR(1) = B**(1 - T), THE MACHINE PRECISION, SPPR0240

C                                                                          SPPRO250

C         SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE, SPPR0260

C                                                                          SPPRO270
C         SPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE. SPPRO280

C                                                                          SPPR0290
C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. SPPRO300

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE SPPRO310

C                                                                          SPPRO320
C ********** SPPRO330

INTEGER MCHEPS(2) SPPRO340

INTEGER MINMAG(2) SPPRO350

INTEGER MAXMAG(2) SPPR0360

REAL RMACH(3) SPPR0370

EQUIVALENCE (RMACH(1),MCHEPS(1)) SPPRO380

EQUIVALENCE (RMACH(2),MINMAG(1)) SPPRO390

EQUIVALENCE (RMACH(3),MAXMAG(1)) SPPR0400

C                                                                          SPPRO410
C     MACHINE CONSTANTS FOR THE IBM 360/370 SERIES, SPPR0420

C     THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6, SPPR0430

C     THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86. SPPR0440

C                                                                          SPPRO450
DATA RMACH(1) / Z3C 100000 / SPPR0460

DATA RMACH(2) / Z00100000 / SPPRO470

DATA RMACH(3) / Z7FFFFFFF / SPPR0480

C                                                                          SPPRO490
C     MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES. SPPRO500

C                                                                          SPPRO510
C     DATA RMACH(1) / 0716400000000 / SPPRO520

C     DATA RMACH(2) / 0402400000000 / SPPRO530

C     DATA RMACH(3) / 0376777777777 / SPPR0540
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C                                                                       SPPRO550
C     MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES. SPPR0560
C                                                                          SPPRO570
C     DATA RMACH(1) / 1641400000000000000OB / SPPRO580
C     DATA RMACH(2) / 0001400000000000000OB / SPPRO590
C     DATA RMACH(3) / 37767777777777777777B / SPPR0600
C                                                                          SPPRO610
C     MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR). SPPR0620
C                                                                       SPPRO630
C DATA RMACH(1) / "147400000000 / SPPR0640
C DATA RMACH(2) / "000400000000 / SPPR0650
C DATA RMACH(3) / "377777777777 / SPPR0660
C                                                                       SPPRO670
C     MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING SPPR0680
C     32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). SPPR0690
C                                                                          SPPRO700
C     DATA MCHEPS(1) / 889192448 / SPPRO 710

C     DATA MINMAG(1) / 8388608 /                                      SPPRO720
C     DATA MAXMAG(1) / 2147483647 / SPPR0730.
C                                                                          SPPRO 740
C     DATA RMACH(1) / 006500000000 / SPPRO750
C     DATA RMACH(2) / 000040000000 / SPPR0760
C     DATA RMACH(3) / 017777777777 / SPPRO770
C                                                                          SPPRO780
C     MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING SPPRO790
C     16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). SPPR0800
C                                                                       SPPRO810
C     DATA MCHEPS(1),MCHEPS(2) / 13568, 0/ SPPRO820
C     DATA MINMAG(1),MINMAG(2) / 128, 0/ SPPRO830
C     DATA MAXMAG(1),MAXMAG(2) / 32767, -1 / SPPR0840
C                                                                          SPPRO850
C     DATA MCHEPS(1),MCHEPS(2) / 0032400, 0000000 / SPPRO860
C     DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 / SPPRO870
C     DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 / SPPR0880
C                                                                          SPPRO890
C     MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS. SPPR0900
C                                                                          SPPRO910
C     DATA RMACH(1) / 01301000000000000 / SPPR0920
C     DATA RMACH(2) / 01771000000000000 / SPPRO930
C     DATA RMACH(3) / 00777777777777777 / SPPR0940
C                                                                          SPPRO950
C     MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. SPPR0960
C                                                                       SPPRO970
C     DATA RMACH(1) / Z4EA800000 / SPPRO980
C     DATA RMACH(2) / Z400800000 / SPPRO990
C     DATA RMACH(3) / ZSFFFFFFFF /                                       SPPR1000
C                                                                          SPPR1010
C     MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.                      SPPR1020
C                                                                          SPPR1030
C     DATA RMACH(1) / 0147400000000 / SPPR1040
C     DATA RMACH(2) / 0000400000000 / SPPR1050
C     DATA RMACH(3) / 0377777777777 / SPPR1060
C                                                                          SPPR1070
C     MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200. SPPR1080
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C                                                                          SPPR1090

C     NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD
- SPPR1100

C     STATIC RMACH(3)
SPPR1110

C                                                                          SPPR1120

C     DATA MINMAG/2OK,0/,MAXMAG/77777K,177777K/ SPPR1130

C     DATA MCHEPS/3602OK,0/ SPPR1140

C                                                                          SPPR1150

C     MACHINE CONSTANTS FOR THE HARRIS 220. SPPR1160

C                                                                          SPPR1170

C     DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000353 / SPPR1180

C     DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 / SPPR1190

C     DATA MAXMAG(1),MAXMAG(2) / '37777777, '00000177 / SPPR1200

C                                                                          SPPR1210

C     MACHINE CONSTANTS FOR THE CRAY-1. SPPR1220

C                                                                          SPPR1230

C     DATA RMACH(1) / 037722400000000000000OB / SPPR1240

C     DATA RMACH(2) / 020003400000000000000OB / SPPR1250

C     DATA RMACH(3) / 0577777777777777777776B / SPPR1260

C                                                                          SPPR1270

C     MACHINE CONSTANTS FOR THE PRIME 400. SPPR1280

C                                                                          SPPR1290

C     DATA MCHEPS(1) / :10000000153 /
SPPR1300

C     DATA MINMAG(1) / :10000000000 / SPPR1310

C     DATA MAXMAG(1) / :17777777777 /
SPPR1320

C                         ·                                                SPPR1330

SPMPAR = RMACH(I)
SPPR1340

RETURN SPPR1350

C                                                                          SPPR1360

C     LAST CARD OF FUNCTION SPMPAR. SPPR1370

C                                                                          SPPR1380

END SPPR1390
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DOUBLE PRECISION FUNCTION DPMPAR(I) DPPRO010

INTEGER I DPPRO020

C ********** DPPRO030

C                                                                          DPPRO040

C     FUNCTION DPMPAR DPPRO050

C                                                                          DPPRO060

C     THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS DPPR0070

C     WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY DPPRO080

C     REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE DPPRO090

C     RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED DPPRO 100

C     FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION. DPPR0110

C                                                                          DPPRO 120

C     THE FUNCTION STATEMENT IS DPPR0130

C                                                                          DPPRO 140

C       DOUBLE PRECISION FUNCTION DPMPAR(I) DPPR0150

C                                                                          DPPRO 160

C WHERE DPPR0170

C                                                                          DPPRO 180

C       I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH DPPRO190

C         SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS DPPRO200

C         T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE DPPR0210

C         EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS
ARE DPPR0220

C                                                                       DPPRO230

C         DPMPAR(1) = B**(1 - T), THE MACHINE PRECISION, DPPR0240

C                                                                          DPPRO250

C         DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE, DPPR0260

C                                                                          DPPRO270

C         DPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE. DPPRO280

C                                                                          DPPRO290

C     ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. DPPRO300

C     BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE DPPRO310

C                                                                          DPPRO320

C ********** DPPRO330

INTEGER MCHEPS(4) DPPR0340

INTEGER MINMAG(4)
DPPR0350

INTEGER MAXMAG(4) DPPRO360

DOUBLE PRECISION DMACH(3) DPPRO370

EQUIVALENCE (DMACH(1),MCHEPS(1)) DPPRO380

EQUIVALENCE (DMACH(2),MINMAG(1)) DPPRO390

EQUIVALENCE (DMACH(3),MAXMAG(1)) DPPR0400

C                                                                          DPPRO410

C MACHINE CONSTANTS  FOR  THE 7IBM 360/370 SERIES, DPPRO420

C     THE AMDAHL 470/V6, THE I L 2900, THE ITEL AS/6, DPPR0430

C     THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86. DPPRO440

C                                                                          DPPRO450

DATA MCHEPS(1),MCHEPS(2) / Z34100000, Z00000000 / DPPR0460

DATA MINMAG(1),MINMAG(2) / Z00100000, Z00000000 / DPPR0470

DATA MAXMAG(1),MAXMAG(2) /,Z7FFFPFFF, ZFFFFPFFF / DPPR0480

C                                                                          DPPRO
490

C     MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES. DPPR05O0

C                                                                          DPPRO510

C     DATA MCHEPS(1),MCHEPS(2) / 0606400000000, 0000000000000 / DPPRO520

C     DATA MINMAG(1),MINMAG(2) / 0402400000000, 0000000000000 / DPPR0530

C     DATA MAXMAG(1),MAXMAG(2) / 0376777777777, 0777777777777 / DPPR0540
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C                                                                       DPPRO550
C     MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES. DPPRO560
C                                                                       DPPRO570
C     DATA MCHEPS(1) / 1561400000000000000OB / DPPR0580
C     DATA MCHEPS(2) / 1501000000000000000OB / DPPR0590
C                                                                          DPPRO600
C     DATA MINMAG(1) / 0060400000000000000OB / DPPR0610
C     DATA MINMAG(2) / 0000000000000000000OB /                           DPPR0620
C                                                                       DPPRO630
C     DATA MAXMAG(1) / 37767777777777777777B / DPPR0640
C     DATA MAXMAG(2) / 37167777777777777777B / DPPR0650
C                                                                       DPPRO660
C     MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR). DPPR0670
C                                                                       DPPRO680
C     DATA MCHEPS(1),MCHEPS(2) / "114400000000, "000000000000 / DPPR0690
C DATA MINMAG(1) ,MINMAG(2) / "033400000000, "000000000000 / DPPRO700
C DATA MAXMAG(1),MAXMAG(2) / "377777777777, "344777777777 / DPPRO 710
C                                                                       DPPRO720
C     MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR). DPPR0730
C                                                                       DPPRO740
C     DATA MCHEPS(1),MCHEPS(2) / "104400000000, "000000000000 / DPPRO750
C DATA MINMAG(1) ,MINMAG(2) / "000400000000, "000000000000 / DPPR0760
C DATA MAXMAG(1),MAXMAG(2) / "377777777777, "377777777777 / DPPR0770
C                                                                       DPPRO780
C     MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING DPPRO790
C     32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). DPPRO800
C                                                                       DPPRO810
C     DATA MCHEPS(1),MCHEPS(2) / 620756992, 0/ DPPR0820
C     DATA MINMAG(1),MINMAG(2) / 8388608, .0/ DPPRO830
C     DATA MAXMAG(1),MAXMAG(2) / 2147483647, -1 / DPPR0840
C                                                                       DPPRO850
C     DATA MCHEPS(1),MCHEPS(2) / 004500000000, 000000000000 / DPPR0860
C DATA MINMAG(1),MINMAG(2) ·/ 000040000000, 000000000000 / DPPR0870
C     DATA MAXMAG(1),MAXMAG(2) / 017777777777, 037777777777 / DPPRO880
C                                                                       DPPRO890
C     MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING DPPRO900
C     16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). DPPR0910
C                                                                       DPPRO920
C     DATA MCHEPS(1),MCHEPS(2) / 9472, 0/ DPPRO930
C     DATA MCHEPS(3),MCHEPS(4) /      0,      0 / DPPR0940
C                                                                       DPPRO950
C     DATA MINMAG(1),MINMAG(2) / 128, 0/ DPPR0960
C     DATA MINMAG(3),MINMAG(4) /      0,      0 / DPPR0970
C                                                                       DPPRO980
C     DATA MAXMAG(1),MAXMAG(2) / 32767, -1 / DPPR0990
C     DATA MAXMAG(3),MAXMAG(4) / -1, -1 / DPPR1000
C                                                                          DPPR1010
C     DATA MCHEPS(1),MCHEPS(2) / 0022400, 0000000 / DPPR1020
C     DATA MCHEPS(3),MCHEPS(4) / 0000000, 0000000 / DPPR1030
C                                                                       DPPR1040
C     DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 / DPPR1050
C     DATA MINMAG(3),MINMAG(4) / 0000000, 0000000 / DPPR1060
C                                                                       DPPR1070
C     DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 / DPPR1080
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C     DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 / DPPR1090
C                                                                          DPPR1100
C     MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS. DPPR1110

C                                                                       DPPR1120
C     DATA MCHEPS(1) / 01451000000000000 / DPPR1130

C     DATA MCHEPS(2) / 00000000000000000 / DPPR1140

C                                                                       DPPR1150
C     DATA MINMAG(1) / 01771000000000000 / DPPR1160

C     DATA MINMAG(2) / 07770000000000000 / DPPR1170

C                                                                          DPPR1180
C     DATA MAXMAG(1) / 00777777777777777 / DPPR1190

C     DATA MAXMAG(2) / 07777777777777777 / DPPR1200

C                                                                       DPPR 1210
C     MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM. DPPR1220

C                                                                       DPPR1230
C     DATA MCHEPS(1) / 01451000000000000 / DPPR1240

C     DATA MCHEPS(2) / 00000000000000000 / DPPR1250

C                                                                          DPPR1260
C     DATA MINMAG(1) / 01771000000000000 / DPPR1270

C     DATA MINMAG(2) / 00000000000000000 / DPPR1280

C                                                                          DPPR1290
:.      C     DATA MAXMAG(1) / 00777777777777777 / DPPR1300
..

C     DATA MAXMAG(2) / 00007777777777777 / DPPR1310

C                                                                       DPPR1320
C     MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. DPPR1330

C                                                                       DPPR1340
C     DATA MCHEPS(1) / ZCC6800000 / DPPR1350

C     DATA MCHEPS(2) / Z000000000 / DPPR1360

C                                                                       DPPR1370
C     DATA MINMAG(1) / ZC00800000 / DPPR1380

1 C     DATA MINMAG(2) / ZOO0000000 / DPPR1390

C                                                                          DPPR1400
9 C     DATA MAXMAG(1) / ZDFFFFFFFF / DPPR1410

C     DATA MAXMAG(2) / ZFFFFFFFFF / DPPR1420

C                                                                          DPPR1430
C     MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES. DPPR1440

C                                                                          DPPR1450
C     DATA MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000 / DPPR1460

C     DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 / DPPR1470

C     DATA MAXMAG(1),MAXMAG(2) / 0377777777777, 0777777777777 / DPPR1480

C                                                                          DPPR1490
C     MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200. DPPR1500

C                                                                       DPPR1510
C     NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD - DPPR1520

C     STATIC DMACH(3) DPPR1530

C                                                                          DPPR1540
C     DATA MINMAG/2OK,3*0/,MAXMAG/77777K,3*177777K/ DPPR1550

C     DATA MCHEPS/3202OK,3*0/ DPPR1560

C                                                                       DPPR1570
C     MACHINE CONSTANTS FOR THE HARRIS 220. DPPR1580

C                                                                          DPPR1590
C     DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000334 / DPPR1600

C     DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 / DPPR1610

C     DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 / DPPR1620
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C                                                                       DPPR1630
C     MACHINE CONSTANTS FOR THE CRAY-1. DPPR1640
C                                                                       DPPR1650
C     DATA MCHEPS(1) / 037642400000000000000OB / DPPR1660
C     DATA MCHEPS(2) / 000000000000000000000OB / DPPR1670
C                                                                       DPPR1680
C     DATA MINMAG(1) / 020003400000000000000OB / DPPR1690
C     DATA MINMAG(2) / 000000000000000000000OB / DPPR1700
C                                                                       DPPR1710
C     DATA MAXMAG(1) / 0577777777777777777777B / DPPR1720
C     DATA MAXMAG(2) / 0000007777777777777776B / DPPR1730
C                                                                       DPPR1740
C     MACHINE CONSTANTS FOR THE PRIME 400. DPPR1750
C                                                                       DPPR1760
C     DATA MCHEPS(1),MCHEPS(2) / :10000000000, :00000000123 / DPPR1770
C     DATA MINMAG(1),MINMAG(2) / :10000000000, :00000100000 / DPPR1780
C     DATA-MAXMAG(1),MAXMAG(2) / :17777777777, :37777677776 / DPPR1790
C                                                                       DPPR1800

DPMPAR = DMACH(I) DPPR1810
RETURN DPPR1820

C                                                                       DPPR1830
C     LAST CARD OF FUNCTION DPMPAR. DPPR 1840
C                                                                       DPPR1850

END DPPR1860
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