
Reducing Nondeterminism in

the Calculus of Structures

Ozan Kahramanoğulları

ozank@doc.ic.ac.uk

Department of Computing, Imperial College London, UK

Abstract. The calculus of structures is a proof theoretical formalism
which generalizes the sequent calculus with the feature of deep infer-
ence: In contrast to the sequent calculus, inference rules can be applied
at any depth inside a formula, bringing shorter proofs than any other
formalisms supporting analytical proofs. However, deep applicability of
the inference rules causes greater nondeterminism than in the sequent
calculus regarding proof search. In this paper, we introduce a new tech-
nique which reduces nondeterminism without breaking proof theoretical
properties and provides a more immediate access to shorter proofs. We
present this technique on system BV, the smallest technically non-trivial
system in the calculus of structures, extending multiplicative linear logic
with the rules mix, nullary mix, and a self-dual non-commutative log-
ical operator. Because our technique exploits a scheme common to all
the systems in the calculus of structures, we argue that it generalizes to
these systems for classical logic, linear logic, and modal logics.

1 Introduction

Developing new representations of logics, which address properties that are cen-
tral to computer science applications, has been one of the challenging goals of
proof theory. In this regard, a proof theoretical formalism must be able to pro-
vide a rich combinatorial analysis of proofs while being able to address properties
such as modularity and locality that are important for applications.

The calculus of structures [6, 8] is a proof theoretical formalism, like natural
deduction, the sequent calculus and proof nets, for specifying logical systems
while keeping the above mentioned computational aspects in focus (see, e.g.,
[3, 19]). The calculus of structures is a generalization of the sequent calculus.
Structures are expressions intermediate between formulae and sequents which
unify these two latter entities. This way, they provide a greater control over the
mutual dependencies of logical relations. The main feature that distinguishes
this formalism is deep inference: In contrast to the sequent calculus, the calculus
of structures does not rely on the notion of main connective and permits the
application of the inference rules at any depth inside a structure. Derivations
are not trees like in the sequent calculus, but chains of inferences.

The calculus of structures was originally conceived to introduce the logical
system BV which admits a self-dual non-commutative logical operator resem-
bling sequential composition in process algebras: System BV is an extension of

multiplicative linear logic with the rules mix, nullary mix, and a self-dual non-
commutative logical operator. Bruscoli showed in [4] that this operator captures
precisely the sequential composition of the process algebra CCS. System BV can-
not be designed in any standard sequent calculus, as it was shown by Tiu in [23],
because deep inference is crucial for deriving the provable structures of system
BV. System BV is NP-complete [13].

The calculus of structures also provides systems which bring new insights to
proof theory of other logics: In [2], Brünnler presents systems in the calculus of
structures for classical logic; in [20], Straßburger presents systems for different
fragments of linear logic. In [18], Stewart and Stouppa give systems for a class of
modal logics. Tiu presents, in [22], a local system for intuitionistic logic. All these
systems follow a scheme in which two of the three rules of system BV, namely
atomic interaction and switch rule (i.e., rules ai↓ and s in Figure 2), are common
to all these systems. For instance, these two rules give the multiplicative linear
logic, whereas a system for classical logic is obtained by adding the contraction
and weakening rules to these two rules (see Definition 9). Furthermore, the third
rule in system BV (i.e., rule q↓ in Figure 2), which is responsible for the non-
commutative context management, is also common to the Turing-complete [21]
extension of system BV, presented in [9].

Availability of deep inference does not only provide a richer combinatorial
analysis of the logic being studied, but also provides shorter proofs than in the
sequent calculus [7]: Applicability of the inference rules at any depth inside a
structure makes it possible to start the construction of a proof by manipulating
and annihilating substructures. This provides many more different proofs of a
structure, some of which are shorter than in the sequent calculus. However, deep
inference causes a greater nondeterminism: Because the inference rules can be
applied at many more positions than in the sequent calculus, the breadth of the
search space increases rather quickly.

Reducing nondeterminism in proof search without losing the completeness
of the subject system requires combinatorial techniques which work in harmony
with the proof theoretical formalism. Because the rules of the sequent calculus
act on the main connective and the notion of main connective resolves in the
systems with deep inference, it is not possible to use the techniques of the sequent
calculus, e.g., focusing [1] (see Section 7), in the systems with deep inference.

In this paper, we introduce a new technique in the calculus of structures
that reduces nondeterminism in proof search and makes the shorter proofs more
immediately accessible. For this purpose, we employ system BV that exposes the
core of our problem, and argue that these ideas generalize to other systems in the
calculus of structures. By exploiting an interaction schema on the structures, we
redesign the inference rules by means of restrictions such that the inference rules
act on the structures only in those ways which promote the interactions between
dual atoms and reduce the interaction between atoms which are not duals of
each other. These restrictions on the inference rules reduce the breadth of the
search space drastically while preserving the shorter proofs, that are available
due to deep inference.

Although this technique is quite intuitive, the completeness argument turned
out to be difficult. In order to prove the completeness of these systems, we exploit
the strong relation between cut elimination and completeness: We resort to a
technique, called splitting, introduced in [6] for proving cut elimination for system
BV. This technique was used also in [20] and [2] for proving cut elimination for
linear logic and classical logic, respectively. Because splitting is closely related
with cut elimination, it also justifies the cleanness of our technique. Because our
technique exploits a scheme which is common to all the systems in the calculus
of structures, we argue that it generalizes to other systems for other logics such
as classical logic and linear logic. As evidence, we demonstrate this technique on
system KSg, a system for classical logic in the calculus of structures.

The present paper extends our previous work in [13], where we have shown
that system BV is NP-complete, and in [10, 14], where we have have presented
implementations of system BV. We applied the technique presented in this paper
to these implementations, and observed a performance improvement in various
amounts depending on the structure being proved.

The rest of the paper is organized as follows: In Section 2, we re-collect the
notions and notations of the calculus of structures and system BV. Then in the
sections 3, 4, and 5 we introduce our technique for reducing nondeterminism
at different levels and provide experimental results. In Section 6, we show this
technique on a calculus of structures system for classical logic, i.e., system KSg.
Section 7 concludes the paper. Space restrictions did not allow us to give the
complete proofs of the results. We refer to technical report [12].

2 The Calculus of Structures and System BV

In this section, we collect some notions and definitions of the calculus of struc-
tures and system BV, following [6].

In the language of BV atoms are denoted by a, b, c, . . . Structures are denoted
by R, S, T, . . . and generated by

S ::= ◦ | a | 〈S; . . . ; S
︸ ︷︷ ︸

>0

〉 | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S ,

where ◦, the unit, is not an atom. 〈S; . . . ; S〉 is called a seq structure, [S, . . . , S] is
called a par structure, and (S, . . . , S) is called a copar structure, S is the negation
of the structure S. A structure R is called a proper par structure if R = [R1, R2]
where R1 6= ◦ and R2 6= ◦. Structures are considered equivalent modulo the
relation ≈, which is the smallest congruence relation induced by the equations
shown in Figure 1. A structure context, denoted as in S{ }, is a structure with
a hole that does not appear in the scope of negation. The structure R is a
substructure of S{R} and S{ } is its context. Context braces are omitted if no
ambiguity is possible: For instance S [R, T] stands for S{[R, T]}. A structure,
or a structure context, is in normal form when the only negated structures
appearing in it are atoms and no unit ◦ appears in it. The BV structures whose
normal forms do not contain seq structures are called flat.

Associativity

〈〈R; T 〉; U〉 ≈ 〈R; 〈T ; U〉〉

[[R, T], U] ≈ [R, [T, U]]

((R, T), U) ≈ (R, (T, U))

Context Closure

if R ≈ T then S{R} ≈ S{T}

and R̄ ≈ T̄

Commutativity

[R, T] ≈ [T, R]

(R, T) ≈ (T, R)

Units

〈◦; R〉 ≈ 〈R; ◦〉 ≈ 〈R〉

[◦, R] ≈ [R]

(◦, R) ≈ (R)

Negation

◦ ≈ ◦

〈R; T 〉 ≈ 〈R; T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Fig. 1. Equivalence relations underlying BV.

In the calculus of structures, an inference rule is a scheme of the kind
S{T }

ρ
S{R}

where ρ is the name of the rule, S{T } is its premise and S{R} is its conclusion.
Such an inference rules specifies the implication T ⇒ R inside a generic context
S{ }, which is the implication being modeled in the system. An inference rule
is called an axiom if its premise is empty. Rules with empty contexts correspond
to the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation ∆ in a certain
formal system is a finite chain of instances of inference rules in the system. A
derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation ∆ whose premise is T , conclusion

is R, and inference rules are in S will be written as
T

R

S∆ . Similarly,
R

SΠ

will denote a proof Π which is a finite derivation whose topmost inference rule
is an axiom. The length of a derivation (proof) is the number of instances of
inference rules appearing in it.

We say that two systems S and S ′ are strongly equivalent if for every

derivation
T

R

S∆ there exists a derivation
T

R

S
′∆ and vice versa. Two systems

S and S ′ are (weakly) equivalent if for every proof of a structure T in system
S , there exists a proof of T in system S

′ and vice versa.
The system {◦↓, ai↓, s, q↓}, shown in Figure 2, is denoted by BV, and called

basic system V. The rules of the system are called unit (◦↓), atomic interaction
(ai↓), switch (s), and seq (q↓). The system {◦↓, ai↓, s} is called flat system BV,
and denoted by FBV.

Guglielmi proves the following result in [6].

Proposition 1. System BV is a conservative extension of system FBV, that is,
if a flat structure R is provable in BV, then it is also provable in FBV.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, T], U)
s

S [(R, U), T]

S〈[R, U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Fig. 2. System BV

There is a straightforward correspondence between flat BV structures and
formulae of multiplicative linear logic (MLL) which do not contain the units
1 and ⊥. For example [(a, b), c̄, d̄] corresponds to ((a � b) O c⊥ O d⊥), and
vice versa. Units 1 and ⊥ are mapped into ◦, since 1 ≡ ⊥, when the rules mix

and mix0 are added to MLL (see, e.g., [6]). In fact, system FBV proves those
structures, which are syntactic variations of the formulae that are provable in
MLL+mix+mix0. However, as Tiu showed in [23], system BV cannot be designed
in a standard sequent calculus, because a notion of deep rewriting is necessary
in order to derive all the provable structures of system BV. For a more detailed
discussion on the proof theory of BV and the precise relation between BV and
MLL, the reader is referred to [6].

3 The Switch Rule

In this section, we redesign the switch rule such that this rule can be applied only
in those ways which promote a specific mutual relation between dual atoms in
the structure to which it is applied.1 Below definition puts this mutual relation
between atoms formally.

Definition 1. Given a structure S, the notation atS indicates the set of all the
atoms appearing in S. We talk about atom occurrences when considering all the
atoms appearing in S as distinct (for example, by indexing them so that two
atoms which are equal get different indices). The notation occ S indicates the set
of all the atom occurrences appearing in S. The size of S is the cardinality of the
set occS. Given a structure S in normal form, we define the structural relation
↓⊆ (occ S)2 as follows: for every S′{ }, U , and V and for every a in U and
b in V , if S = S′ [U, V] then a ↓S b. To a structure that is not in normal form
we associate the structural relation obtained from any of its normal forms, since
they yield the same relation ↓S.

In order to see the above definition at work, consider the following structure:
S = [a, b, (b̄, [〈ā; c〉, c̄])]. We have atS = occS = {a, ā, b, b̄, c, c̄}. Then, we have
a ↓ b, a ↓ b̄, a ↓ ā, a ↓ c, a ↓ c̄, b ↓ b̄, b ↓ ā, b ↓ c, b ↓ c̄, ā ↓ c̄, c ↓ c̄ (we omit the
symmetric relations, e.g., b ↓ a).

1 These relations emerge from a graphic representation of structures, called relation
webs, justified by the equivalence relations in Figure 1. However, in this paper we
give a partial exposure to relation webs, referring the reader to [6].

Intuitively, one can consider the relation ↓S as a notion of interaction: The
atoms which are related by ↓S are interacting atoms, whereas others are non-
interacting. Proofs are constructed by isolating the atoms, by breaking the inter-
action between some atoms, and this way promoting the interaction between dual
atoms, till dual atoms establish a closer interaction in which they can annihilate
each other at an application of the atomic interaction rule. During a bottom-up
proof search episode, while acting on structures, inference rules perform such
an isolation of atoms: In an instance of an inference rule with the conclusion S,
a subset of ↓S holds in the premise. For example, consider the following three
instances of the switch rule with the same structure at the conclusion:

([ā, a, b], b̄)
(i.) s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
(ii.) s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
(iii.) s

[(ā, b̄), a, b]

While going up, from conclusion to premise, in (i.) a ↓ b and b ↓ b̄; in (ii.) b ↓ b̄;
in (iii.) a ↓ ā and a ↓ b̄ cease to hold. However, none of these derivations can
lead to a proof. Following proposition expresses the intuition behind this.

Proposition 2. If a structure R has a proof in BV then, for all the atoms a

that appear in R, there is an atom ā in R such that a ↓R ā.

Often, inference rules can be applied to a structure in many different ways,
however only few of these applications can lead to a proof. For example, to the
structure [(ā, b̄), a, b] switch rule can be applied bottom-up in twelve different
ways, three of them which are given above, but only two of these twelve instances
can lead to a proof. With the below definition, we will redesign the switch rule
such that only these applications will be possible.

Definition 2. Let interaction switch be the rule

S([R, W], T)
is

S [(R, T), W]
,

where at W ∩ at R 6= ∅.

Definition 3. Let system BV with interaction switch, or system BVs be the
system {◦↓ , ai↓ , is , q↓}. Let system BV with lazy interaction switch, or system
BVsl be the system resulting from replacing the rule is in BVs with its instance,
called lazy interaction switch, or lis, where the structure W is not a proper par
structure.

The switch rule can be safely replaced with the lazy interaction switch rule
in system BV without losing completeness. In the following, we will collect some
definitions and lemmas which are necessary to prove this result.

Definition 4. Let R, T be BV structures such that R 6= ◦ 6= T . R and T are
independent iff, for S ∈ {BV, BVs, BVsl},

[R, T]

S

implies
R

S and
T

S
.

Otherwise, they are dependent.

Proposition 3. For any BV structures R and T , if at R̄ ∩ at T = ∅ then R

and T are independent.

Lemma 1. For any BV structures R, P , and U ,

if
[P, U]

BVslΠ
then there is a derivation

R

[(R, P), U]

BVsl .

Sketch of Proof: If U is not a proper par structure Lemma is proved. Otherwise,
by consequent application of the rule lis bring the partition of the structure U

which is dependent with P into the same par context as P . �

Proposition 4. In BV (BVs, BVsl), 〈R; T 〉 is provable if and only if R and T

are provable and (R, T) is provable if and only if R and T are provable.

The following theorem is a specialization of the shallow splitting theorem
which was introduced in [6] for proving cut elimination for system BV. Exploit-
ing the fact that systems in the calculus of structures follow a scheme, in which
the rules atomic interaction and switch are common to all these systems, this
technique was used also to prove cut elimination for classical logic [2], linear
logic [20], and system NEL [9, 21] (Turing-complete extension of BV with the
exponentials of linear logic). As the name suggests, this theorem splits the con-
text of a structure so that the proof of the structure can be partitioned into
smaller pieces in a systematic way. Below we show that splitting theorem can be
specialized to system BVsl where the switch rule in system BV is replaced with
the lazy interaction switch rule.

Theorem 1. (Shallow Splitting for BVsl) For all structures R, T and P :

1. if [〈R; T 〉, P] is provable in BVsl then there exists P1, P2 and
〈P1; P2〉

P
BVsl∆ such

that [R, P1] and [T, P2] are provable in BVsl.

2. if [(R, T), P] is provable in BVsl then there exists P1, P2 and
[P1, P2]

P

BVsl∆ such

that [R, P1] and [T, P2] are provable in BVsl.

Sketch of Proof: Proof by induction, with Lemma 1, similar to the proof of
shallow splitting for system BV in [6]: Single out the bottom-most rule instance
ρ in the given proof, and do case analysis on ρ. �

Because inference rules can be applied at any depth inside a structure, we
need the following theorem for accessing the deeper structures.

Theorem 2. (Context Reduction for BVsl) For all structures R and for all
contexts S{ } such that S{R} is provable in BVsl, there exists a structure U

such that for all structures X there exist derivations:

[X, U]

S{X}
BVsl and

[R, U]

BVsl

.

Sketch of Proof: Proof by induction, with Proposition 4 and Lemma 1, similar
to the proof of context reduction for system BV in [6]: Do case analysis on the
context S{ }. �

We can now prove the following two results:

Theorem 3. Systems BV, BVsl, and BVs are equivalent.

Sketch of Proof: Observe that every proof in BVsl is also a proof in BVs and every
proof in BVs is a proof in BV. For the other direction, single out the upper-most
instance of the switch rule in the BV proof which is not an instance of the lazy
interaction switch rule. Apply Theorem 2 to reduce the context of the premise.
Construct a proof in BVsl with Lemma 1 by partitioning the resulting proof by
Theorem 1. Repeat the above procedure inductively until all the instances of the
switch rule that are not instances of lazy interaction switch rule are removed. �

Let us now consider the rule lis on some examples: In the proof search space
of [(ā, b̄), a, b] there are 12 instances of the switch rule. In system FBV, these
instances result in 358 different derivations. However, only 6 of these derivations
are proofs. Let FBVi denote the system obtained from system FBV by replacing
the switch rule with the rule lis. In system FBVi, we observe that we have only
the following instances, which lead to 6 proofs mentioned above.

[([ā, a], b̄), b]
lis

[(ā, b̄), a, b]

[([b̄, b], ā), a]
lis

[(ā, b̄), a, b]

When we consider deeply nested structures, we observe that the switch rule
can be applied in many more ways due to the deep inference feature. For in-
stance, consider the structure [([ā1, (ā2, b̄2), a2, b2], b̄1), a1, b1] which is obtained
by nesting the structure [(ā, b̄), a, b] in itself. To this structure switch rule can
be applied in 51 different ways, but only 4 of these instances provide a proof.
These 4 instances are the only possible instances of the rule lis. In particular,
the deeper instances of the rule lis (marked above) provide shorter proofs which
are not possible in the sequent calculus.

We have implemented the systems above in Maude [5] as described in [10,
11]. In these implementations, inference rules are expressed as (conditional) term
rewriting rules. For proof search, we use the built-in breadth-first search func-
tion. Some representative examples of our experiments for comparing the per-
formance of systems FBV and FBVi are as follows: (All the experiments below
are performed on an Intel Core Duo 1.83 GHz processor.)

1. [a, b, (ā, c̄), (b̄, c)] 2. [a, b, (ā, b̄, [a, b, (ā, b̄)])]

3. [a, b, (ā, b̄, [c, d, (c̄, d̄)])] 4. [a, b, (ā, b̄, [c, d, (c̄, d̄, [e, f, (ē, f̄)])])]

Query System# states
explored

finds a proof
in # ms (cpu)

1. FBV 342 60

FBVi 34 10

3. FBV 1671 310

FBVi 140 0

Query System# states
explored

finds a proof
in # ms (cpu)

2. FBV 1041 100

FBVi 264 0

4. FBV (∗)

FBVi 6595 1370

(∗) On this query, search halted by running out of memory after having spent
approximately 3GB memory and 80 minutes (cpu).

4 The Seq Rule

At a first glance, the rules switch and seq appear to be different in nature due
to the different logical operators they work on. However, at a closer inspection
of these rules, one can observe that both of these rules manage the context of
the structures they are applied at: While the switch rule reduces the interaction
in the structures involving a copar structure in a bottom-up application, the seq
rule does the same with the structures involving seq structures. In this section,
exploiting this observation, we will carry the ideas from the previous section to
the seq rule.

Definition 5. Let the system consisting of the rules

S〈[R, T]; [U, V]〉
q1↓

S [〈R; U〉, 〈T ; V 〉]

S〈R; T 〉
q2↓

S [R, T]

S〈[R, W]; T 〉
lq3↓

S [W, 〈R; T 〉]

S〈R; [T, W]〉
lq4↓

S [W, 〈R; T 〉]

where W is not a proper par structure, and none of the structures R, T , U , V ,
W is the unit ◦, be the lazy seq system V, or QVl.

In the above definition, we partition the seq rule, making its instances with
respect to the unit specific. This way, one can also observe the similarity between
the switch rule and seq rule, in particular the rules lq3↓ and lq4↓. In fact, Retoré
gives similar rules for Pomset Logic in [17], which is conjectured to be equivalent
to BV in [6]. However he does not provide a cut-elimination proof. The following
proposition, that we proved in [11], shows that in any system the seq rule can
be safely replaced with the system QVl.

Proposition 5. System QVl and system {q↓} are strongly equivalent.

Proposition 6. Let S ∈ {BV, BVs, BVsl}. The system resulting from replacing
the rule q↓ in S with system QVl and system BV are equivalent.

Below, we will carry the ideas of the previous section to the seq rule.

Definition 6. The following rules are called interaction seq rule 1, lazy inter-
action seq rule 3, and lazy interaction seq rule 4, respectively,

S〈[R, T]; [U, V]〉
iq1↓

S [〈R; U〉, 〈T ; V 〉]

S〈[R, W]; T 〉
liq3↓

S [W, 〈R; T 〉]

S〈T ; [R, W]〉
liq4↓

S [W, 〈T ; R〉]

where in iq1↓ we have atR ∩ at T 6= ∅ and at U ∩ atV 6= ∅; in liq3↓ and in
liq4↓ we have at R ∩ at W 6= ∅ and W is not a proper par structure. The system
resulting from replacing the seq rule in system BVsl with the rules iq

1
↓, q2↓,

liq3↓, and liq4↓ is called interaction system BV, or BVi.

Definition 7. The following rules are called non-interaction seq rule 1, non-
interaction seq rule 3 and non-interaction seq rule 4, respectively,

S〈[R, T]; [U, V]〉
niq1↓

S [〈R; U〉, 〈T ; V 〉]

S〈[R, W]; T 〉
niq3↓

S [W, 〈R; T 〉]

S〈T ; [R, W]〉
niq4↓

S [W, 〈T ; R〉]

where in niq
1
↓ we have atR ∩ atT = ∅ or at U ∩ at V = ∅; in niq

3
↓ and in niq

4
↓

we have at R ∩ at W = ∅.

Remark 1. Every instance of the rule q↓ is an instance of one of the rules iq1↓,
niq

1
↓, q2↓, liq

3
↓, niq

3
↓, liq

4
↓, niq

4
↓.

Below, we will see that system BV and BVi are equivalent. However, using
the splitting technique, in the form it was used in the previous section, will not
be possible for proving this argument. In order to see the reason for this consider
the structure [〈[a, b, c]; [d, e]〉, ā, 〈b̄; d̄〉, 〈c̄; ē〉] which is provable in BVsl (and also
in system BVi). By applying Theorem 1, we can obtain the derivation

〈[ā, b̄, c̄]; [d̄, ē]〉
q3↓

[ā, 〈[b̄, c̄]; [d̄, ē]〉]
q1↓

[ā, 〈b̄; d̄〉, 〈c̄; ē〉]

such that
[ā, b̄, c̄, a, b, c]

BVslΠ
and

[d̄, ē, d, e]

BVslΠ
.

However, the derivation on the left-hand side above is not possible in system
BVi. For this reason, in the following, we will introduce a generalization of the
splitting Theorem for system BVi.

Theorem 4. (Shallow Splitting for BVi) For all structures R, T , and P : if
the structure [〈L; R〉, U] or the structure [(L, R), U] has a proof Π in BVsl,
then there are structures L1,. . . ,Lm, P1,1, . . . , Ps,2, R1, . . . , Rn and there exist a
derivation

[L1, . . . , Lm, 〈P1,1; P1,2〉, . . . , 〈Ps,1; Ps,2〉, R1, . . . , Rn]

U
BVi

and proofs

[L, L1, . . . , Lm, P1,1, . . . , Ps,1]

BVi

and
[R, P1,2, . . . , Ps,2, R1, . . . , Rn]

BVi

.

Sketch of Proof: Proof by induction: Apply Theorem 1 to the proof Π . This
delivers a derivation ∆ and two proofs Π1 and Π2 in BVsl. Take the derivation
∆ and permute down all the instances of niq1↓, niq3↓, and niq4↓ in ∆ and apply
the induction hypothesis to the proofs Π1 and Π2. �

Corollary 1. Systems BV and BVi are equivalent.

Sketch of Proof: Observe that every proof in BVi is also a proof in BV. For the
other direction, first construct proof in BVsl by Theorem 3, and then construct
a proof in BVi by Theorem 4. �

Let us now consider system BV and BVi with respect to our Maude im-
plementations. Some representative examples for comparing the performance of
systems BV and BVi are as follows:

1. [〈a; [b, c]〉, 〈[ā, b̄]; c̄〉] 2. [〈([d, d̄], 〈a; b〉); c〉, 〈ā; (〈b̄; c̄〉, [e, ē])〉]

3. [〈(b, c); [d, e]〉, 〈[b̄, c̄]; (d̄, ē)〉] 4 [ā, (a, 〈d; b̄〉), (b, c), 〈d̄; c̄〉]

Query System# states
explored

finds a proof
in # millisec.

1. BV 1263 630

BVi 995 480

3. BV 11191 1740

BVi 3696 560

Query System# states
explored

finds a proof
in # millisec.

2. BV 8069 890

BVi 2138 620

4. BV 123154 5010

BVi 20371 1050

The restrictions that are imposed on the inference rules of system BVi succeed
in eliminating unsuccessful branches in the proof search space of BV structures.
However, the rule q2↓ causes still a huge amount of redundant nondeterminism
in proof search: For instance, consider the BV structure [a, ā, b, b̄] which can
be trivially proved by applying the rule ai↓ twice. To this structure, the rule
q2↓ can be applied in 50 different ways, but removing this rule from system
BVi results in an incomplete system, because some provable BV structures, e.g.,
[〈a; [b, c]〉, 〈[ā, b̄]; c̄〉], are not provable without this rule.

5 Cautious Rules

In a bottom-up application of the rules switch and seq in proof construction, be-
sides promoting interactions between some atoms, the interaction between some
atoms are broken (for instance, consider the example derivations (i.), (ii.), and
(iii.) in Section 3.). However, if the structure being proved consists of pairwise
distinct atoms, breaking the interaction between dual atoms, in a bottom-up
inference step delivers a structure which cannot be proved. The following defini-
tion introduces a further restriction on these inference rules, which exploits this
observation and allows only cautious instances of the inference rules which do
not break the interaction between dual atoms.

Definition 8. Let pruned switch be the rule ps below where atT ∩at W = ∅, and
let pruned seq be the rule pq↓ below where at T ∩ at U = ∅ and atR ∩ atV = ∅:

S([R, W], T)
ps

S [(R, T), W]

S〈[R, T]; [U, V]〉
pq↓

S [〈R; U〉, 〈T ; V 〉]
,

Let pruned system BV, or system BVp be the system {◦↓ , ai↓ , ps , pq↓}.

Proposition 7. Let P be a BV structure that consists of pairwise distinct atoms
and Π be a proof of P in BV (BVs, BVsl, respectively). In Π, all the instances of
the rule s (is, lis, respectively) are instances of the rule ps; and all the instances
of the rule q↓ are instances of the rule pq↓.

Sketch of Proof: It suffices to show that, by Proposition 2, a bottom-up appli-
cation of the inference rules without respecting the above restrictions result in
a structure which is not provable in BV. �

Proposition 8. Let P be a BV structure that consists of pairwise distinct atoms
and Π be a proof of P in BVi. In Π, all the instances of the rule s are instances
of the rule ps; and all the instances of the rule iq1↓,q2↓, liq3↓, and liq4↓ are
instances of the rule pq↓.

Sketch of Proof: Follows immediately from Remark 1 and Proposition 7. �

6 Nondeterminism in Classical Logic

Systems in the calculus of structures follow a common scheme where the context
management of the commutative operators is performed by the switch rule.
System KSg for classical logic [2] is no exception to this. In this section, we
will see that, similar to system BV, the switch rule of system KSg can be safely
replaced with the lazy interaction switch rule in order to reduce nondeterminism
in proof search.

Definition 9. The system KSg is the system consisting of the rules

tt↓ ,
tt

S{tt}
ai↓ ,

S [a, ā]

S([R, U], T)
s ,
S [(R, T), U]

S{ff}
w↓ , and

S{R}

S [R, R]
c↓ .

S{R}

The rules of the system KSg are called axiom, atomic interaction, switch,
weakening, and contratction, respectively. KSg structures are defined as FBV

structures with the difference that ff is the unit for the disjunction [,] and tt

is the unit for the conjunction (,) and we also impose the equalities [tt, tt] ≈ tt

and (ff, ff) ≈ ff. The system KSgi is the system obtained from system KSg by
replacing the rule s with the rule lis.

Theorem 5. A structure R has a proof in KSg if and only if there is a structure

R′ and there is a proof of the form R′

{ s,ai↓}

R

{w↓,c↓}
.

Sketch of Proof: If R is provable in KSg, then we can construct the conjunctive
normal form of R while going up in the derivation by first applying only the
rule c↓ and then only the rule s. Then a proof of conjunctive normal form of R

can be constructed by applying first only the rule w↓ and then the rule ai↓. By
permuting all the instances of w↓ under the instances of s, we get the desired
proof. �

The reader might realize that there is a significant similarity between the
systems {ai↓, lis} and the system FBVi (FBV) (the system for multiplicative linear
logic extended by the rules mix and nullary mix). Indeed, these two systems are
the same up to the inference rules. However, the treatment of the units in these
systems is quite different: In system FBV there is a single unit, which is shared
by all the connectives. On the other hand, in system {ai↓, lis}, there are two
different units, tt and ff, which are units for different operators. We can now
state the main result of this section:

Theorem 6. System KSg and KSgi are equivalent.

Sketch of Proof: Observe that every proof in KSgi is a proof in system KSg. For
the other direction, replace the proof Π in {s, ai↓}, delivered from Theorem 5
with a proof Π ′ in {lis, ai↓} similar to the proof of Theorem 3. �

7 Discussion

We presented a novel technique for reducing nondeterminism in proof search
by restricting the application of the inference rules. This resulted in a class of
equivalent systems to system BV where nondeterminism is reduced at different
levels. We have also seen that this technique generalizes to system KSg for clas-
sical logic. In these systems, inference rules can be applied only in certain ways
that promote the interaction, in the sense of a specific mutual relation, between
dual atoms. Because of the splitting argument that we use in our completeness
proof, which is strongly related to cut elimination, our rules remain clean from
a proof theoretic point of view. Because proofs are constructed by annihilating
dual atoms, these restrictions reduce the breadth of the search space drastically
and preserve the shorter proofs that are available due to deep inference.

We have implemented the proof search for the systems BV and BVi in the
lines of [10]. These implementations makes use of the simple high level language,
the term rewriting features, and the built-in breadth-first function of the lan-
guage Maude [5]. In [14], we have presented another implementation of system
BV in Java, where different search strategies can be easily employed. This im-
plementation uses the pattern matching preprocessor TOM [16] that makes it
possible to integrate term rewriting features into Java. The Maude modules2

together with representative proof search queries, the source code of the Java
implementation3, and a proof search applet4 are available online.

2 http://www.iccl.tu-dresden.de/~ozan/maude cos.html
3 http://tom.loria.fr
4 http://tom.loria.fr/examples/structures/BV.html

In our approach, in order to prove the completeness of the restricted systems,
we use the splitting technique which was introduced and used by Guglielmi
in [6] for proving cut elimination in system BV. In [20], Straßburger used the
splitting technique to prove cut elimination in the calculus of structures systems
for different fragments of linear logic. All the systems in the calculus of structures
follow a scheme where the context management is performed by the switch rule.
Because splitting technique is common to these other systems, our technique
should generalize to other systems for linear logic. In Section 6, we have seen
that for the case of classical logic, switch rule can be replaced with the lazy
interaction switch rule in system KSg. In the light of this result, we conjecture
that this technique generalizes to the calculus of structures systems for a class
of modal logics [18] that extend system KSg with the modal rules.

Although our technique attacks the same problem as Miller’s Forum [15]
where Andreoli’s focusing technique [1] is used for reducing nondeterminism in
linear logic proofs, our approach is different, in essence, than uniform proofs:
Focusing technique is based on permuting different phases of a proof by distin-
guishing between asynchronous (deterministic) and synchronous (nondetermin-
istic) parts of a proof. This approach depends on the fact that in the sequent
calculus asynchronous connectives, e.g., par, and synchronous connectives, e.g.,
copar, can be treated in isolation. However, in the calculus of structures con-
nectives are never in isolation: Asynchronous connectives are always matched
to a synchronous connective at each inference step. Furthermore, asynchronous
parts of a proof normally spread the object level, given by the logical operators,
onto the meta-level. For instance, par operators are mapped to commas. In the
systems with deep inference, because what is meta-level in the sequent calculus
is brought to the object level, thus there is no meta-level, this is a superfluous
operation.

Acknowledgements: The author would like to thank Alessio Guglielmi, Lutz
Straßburger, Kai Brünnler, Alwen Tiu, and the anonymous referees for valu-
able remarks and improvements. This work has been supported by the DFG
Graduiertenkolleg 446 at the University of Leipzig, and accomplished during
author’s stay at the ICCL–TU Dresden as a visiting researcher.

References

1. J.-M. Andreoli. Logic programming with focussing proofs in linear logic. Journal
of Logic and Compututation, 2(3):297–347, 1992.

2. K. Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis, TU
Dresden, 2003.

3. K. Brünnler and A. F. Tiu. A local system for classical logic. In R. Nieuwenhuis and
A. Voronkov, editors, LPAR 2001, volume 2250 of LNAI, pages 347–361. Springer,
2001.

4. P. Bruscoli. A purely logical account of sequentiality in proof search. In P. J.
Stuckey, editor, Logic Prog., 18th Int. Conf., volume 2401 of LNCS, pages 302–
316. Springer, 2002.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Robert Nieuwenhuis, editor, Rewriting Techniques
and Applications, Proc. of the 14th Int. Conf., volume 2706. Springer, 2003.

6. A. Guglielmi. A system of interaction and structure. Technical Report WV-02-10,
TU Dresden, 2002. Accepted by ACM Transactions on Computational Logic.

7. A. Guglielmi. Polynomial size deep-inference proofs instead of ex-
ponential size shallow-inference proofs. Available on the web at
http://cs.bath.ac.uk/ag/p/AG12.pdf, 2004.

8. A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calculus of
structures. In L. Fribourg, editor, CSL 2001, volume 2142 of LNCS, pages 54–68.
Springer, 2001.

9. A. Guglielmi and L. Straßburger. A non-commutative extension of MELL. In
M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of LNAI, pages 231–
246. Springer, 2002.

10. O. Kahramanoğulları. Implementing system BV of the calculus of structures in
Maude. In L. Alonso i Alemany and P. Égré, editors, Proc. of the ESSLLI-2004
Student Session, pages 117–127, Université Henri Poincaré, Nancy, France, 2004.

11. O. Kahramanoğulları. System BV without the equalities for unit. In C. Aykanat,
T. Dayar, and I. Körpeoğlu, editors, Proc. of the 19th Int. Symp. on Comp. and
Inform. Sciences, ISCIS’04, volume 3280 of LNCS. Springer, 2004.

12. O. Kahramanoğulları. Reducing nondeterminism in the calculus of structures.
Technical Report WV-06-01, TU Dresden, 2006. Available at http://www.ki.inf.tu-
dresden.de/˜ozan/redNondet.pdf.

13. O. Kahramanoğulları. System BV is NP-complete. In R. de Queiroz, A. Macintyre,
and G. Bittencourt, editors, WoLLIC 2005, volume 143 of ENTCS, pages 87–99,
Florianapolis, Brazil, 2006. Elsevier.

14. O. Kahramanoğulları, P.-E. Moreau, and A. Reilles. Implementing deep inference
in TOM. In P. Bruscoli, F. Lamarche, and C. Stewart, editors, Structures and
Deduction’05 (ICALP’05 Workshop), pages 158–172, Lisbon, Portugal, 2005.

15. D. Miller. Forum: A multiple-conclusion specification logic. Theoretical Computer
Science, 165:201–232, 1996.

16. P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for
multiple target languages. In G. Hedin, editor, 12th Conference on Compiler Con-
struction, Warsaw, volume 2622 of LNCS, pages 61–76. Springer, 2003.

17. C. Retoré. Pomset logic: A non-commutative extension of classical linear logic. In
Ph. de Groote and J. R. Hindley, editors, Typed Lambda Calculus and Applications,
TLCA’97, volume 1210 of LNCS, pages 300–318. Springer, 1997.

18. C. Stewart and P. Stouppa. A systematic proof theory for several modal logics. In
R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances
in Modal Logic, volume 5 of King’s College Publications, pages 309 – 333, 2005.

19. L. Straßburger. A local system for linear logic. In M. Baaz and A. Voronkov,
editors, LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer, 2002.

20. L. Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures.
PhD thesis, TU Dresden, 2003.

21. L. Straßburger. System NEL is undecidable. In R. de Queiroz, E. Pimentel, and
L. Figueiredo, editors, WoLLIC 2003, volume 84 of ENTCS. Elsevier, 2003.

22. A. F. Tiu. A local system for intuitionistic logic. Accepted at LPAR 2006.
23. A. F. Tiu. A system of interaction and structure II: The need for deep inference.

to appear on Logical Methods in Computer Science, 2005.

