
MultiMarkdown v6 Development Notes
Fletcher T. Penney

2017-11-20

Introduction

This document includes some notes on the development of Multi-
Markdown (MMD) v6. Most of it will be interesting only to other
developers or those needing to choose the absolute “best” Markdown
(MD) implementation for their needs – it is not required reading to
understand how the software works.

Why a New Version?

MultiMarkdown version 5 was released in November of 2015, but
the codebase was essentially the same as that of v4 – and that was
released in beta in April of 2013. A few key things prompted work on
a new version:

• Accuracy – MMD v4 and v5 were the most accurate versions yet,
and a lot of effort went into finding and resolving various edge
cases. However, it began to feel like a game of whack-a-mole
where new bugs would creep in every time I fixed an old one.
The PEG began to feel rather convoluted in spots, even though it
did allow for a precise (if not always accurate) specification of the
grammar.

• Performance – “Back in the day” peg-markdown1 was one of the 1 https://github.com/jgm/peg-
markdownfastest Markdown parsers around. MMD v3 was based on peg-

markdown, and would leap- frog with it in terms of performance.
Then CommonMark2 was released, which was a bit faster. Then a 2 http://commonmark.org/

couple of years went by and CommonMark became much faster –
in one of my test suites, MMD v 5.4.0 takes about 25 times longer
to process a long document than CommonMark 0.27.0.

In the spring of 2016, I decided I wanted to rewrite MultiMark-
down from scratch, building the parser myself rather than relying
on a pre-rolled solution. (I had been using greg3 to compile the PEG 3 https://github.com/ooc-lang/greg

into parser code. It worked well overall, but lacked some features I
needed, requiring a lot of workarounds.)

First Attempt

My first attempt started by hand-crafting a parser that scanned
through the document a line at a time, deciding what to do with each

https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
https://github.com/jgm/peg-markdown
http://commonmark.org/
http://commonmark.org/
https://github.com/ooc-lang/greg
https://github.com/ooc-lang/greg

multimarkdown v6 development notes 2

line as it found them. I used regex parsers made with re2c4 to help 4 http://re2c.org/index.html

classify each line, and then a separate parser layer to process groups
of lines into blocks. Initially this approach worked well, and was re-
ally efficient. But I quickly began to code my way into a dead-end –
the strategy was not elegant enough to handle things like nested lists,
etc.

One thing that did turn out well from the first attempt, however,
was an approach for handling <emph> and parsing. I’ve
learned over the years that this can be one of the hardest parts of
coding accurately for Markdown. There are many examples that are
obvious to a person, but difficult to properly “explain” how to parse
to a computer.

No solution is perfect, but I developed an approach that seems to
accurately handle a wide range of situations without a great deal of
complexity:

1. Scan the documents for asterisks (*). Each one will be handled
one at a time.

2. Unlike brackets ([and]), an asterisk is “ambidextrous”, in that
it may be able to open a matched pair of asterisks, close a pair, or
both. For example, in foo *bar* foo:

(a) The first asterisk can open a pair, but not close one.

(b) The second asterisk can close a pair, but not open one.

3. So, once the asterisks have been identified, each has to be exam-
ined to determine whether it can open/close/both. The algorithm
is not that complex, but I’ll describe it in general terms. Check the
code for more specifics. This approach seems to work, but might
still need some slight tweaking. In the future, I’ll codify this better
in language rather than just in code.

(a) If there is whitespace to the left of an asterisk, it can’t close.

(b) If there is whitespace or punctuation to the right it can’t open.

(c) “Runs” of asterisks, e.g. **bar are treated as a unit in terms of
looking left/right.

(d) Asterisks inside a word are a bit trickier – we look at the num-
ber of asterisks before the word, the number in the current run,
and the number of asterisks after the word to determine which
combinations, if any, are permitted.

4. Once all asterisks have been tagged as able to open/close/both,
we proceed through them in order:

http://re2c.org/index.html
http://re2c.org/index.html

multimarkdown v6 development notes 3

(a) When we encounter a tag that can close, we look to see if there
is a previous opener that has not been paired off. If so, pair the
two and remove the opener from the list of available asterisks.

(b) When we encounter an opener, add it to the stack of available
openers.

(c) When encounter an asterisk that can do both, see if it can close
an existing opener. If not, then add it to the stack.

5. After all tokens in the block have been paired, then we look for
nesting pairs of asterisks in order to create <emph> and

sets. For example, assume we have six asterisks wrapped around
a word, three in front, and three after. The asterisks are indicated
with numbers: 123foo456. We proceed in the following manner:

(a) Based on the pairing algorithm above, these asterisks would
be paired as follows, with matching asterisks sharing numbers –
123foo321.

(b) Moving forwards, we come to asterisk “1”. It is followed
by an asterisk, so we check to see if they should be grouped
as a . Since the “1” asterisks are wrapped immedi-
ately outside the “2” asterisks, they are joined together. More
than two pairs can’t be joined, so we now get the following –
112foo211, where the “11” represents the opening and closing
of a , and the “2” represents a <emph>.

6. When matching a pair, any unclosed openers that are on the stack
are removed, preventing pairs from “crossing” or “intersecting”.
Pairs can wrap around each other, e.g. [(foo)], but not intersect
like [(foo]). In the second case, the brackets would close, remov-
ing the (from the stack.

7. This same approach is used in all tokens that are matched in
pairs– [foo], (foo), _foo_, etc. There’s slightly more to it, but
once you figure out how to assign opening/closing ability, the
rest is easy. By using a stack to track available openers, it can be
performed efficiently.

In my testing, this approach has worked quite well. It handles all
the basic scenarios I’ve thrown at it, and all of the “basic” and “de-
vious” edge cases I have thought of (some of these don’t necessarily
have a “right” answer – but v6 gives consistency answers that seem
as reasonable as any others to me). There are also three more edge
cases I’ve come up can still stump it, and ironically they are handled
correctly by most implementations. They just don’t follow the rules
above. I’ll continue to work on this.

multimarkdown v6 development notes 4

In the end, I scrapped this effort, but kept the lessons learned in
the token pairing algorithm.

Second Attempt

I tried again this past Fall. This time, I approached the problem with
lots of reading. Lots and lots of reading – tons of websites, computer
science journal articles, PhD theses, etc. Learned a lot about lexers,
and a lot about parsers, including hand-crafting vs using parser
generators. In brief:

1. I learned about the Aho–Corasick algorithm5, which is a great 5 https://en.wikipedia.org/wiki/Aho-
Corasick_algorithmway to efficiently search a string for multiple target strings at

once. I used this to create a custom lexer to identify tokens in a
MultiMarkdown text document (e.g. *, [, {++, etc.). I learned a lot,
and had a good time working out the implementation. This code
efficiently allowed me to break a string of text into the tokens that
mattered for Markdown parsing.

2. However, in a few instances I really needed some features of regu-
lar expressions to simplify more complex structures. After a quick
bit of testing, using re2c to create a tokenizer was just as efficient,
and allowed me to incorporate some regex functionality that sim-
plified later parsing. I’ll keep the Aho-Corasick stuff around, and
will probably experiment more with it later. But I didn’t need it
for MMD now. lexer.re contains the source for the tokenizer.

I looked long and hard for a way to simplify the parsing algorithm
to try and “touch” each token only once. Ideally, the program could
step through each token, and decide when to create a new block,
when to pair things together, etc. But I’m not convinced it’s possible.
Since Markdown’s grammar varies based on context, it seems to
work best when handled in distinct phases:

1. Tokenize the string to identify key sections of text. This includes
line breaks, allowing the text to be examined one line at time.

2. Join series of lines together into blocks, such as paragraphs, code
blocks, lists, etc.

3. The tokens inside each block can then be paired together to create
more complex syntax such as links, strong, emphasis, etc.

To handle the block parsing, I started off using the Aho-Corasick
code to handle my first attempt. I had actually implemented some
basic regex functionality, and used that to group lines together to
create blocks. But this quickly fell apart in the face of more complex

https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
https://en.wikipedia.org/wiki/Aho-Corasick_algorithm

multimarkdown v6 development notes 5

structures such as recursive lists. After a lot of searching, and tons
more reading, I ultimately decided to use a parser generator to han-
dle the task of group lines into blocks. parser.y has the source for
this, and it is processed by the lemon6 parser generator to create the 6 http://www.hwaci.com/sw/lemon/

actual code.
I chose to do this because hand-crafting the block parser would

be complex. The end result would likely be difficult to read and
understand, which would make it difficult to update later on. Using
the parser generator allows me to write things out in a way that
can more easily be understood by a person. In all likelihood, the
performance is probably as good as anything I could do anyway, if
not better.

Because lemon is a LALR(1) parser, it does require a bit of think-
ing ahead about how to create the grammar used. But so far, it has
been able to handle everything I have thrown at it.

Optimization

One of my goals for MMD 6 was performance. So I’ve paid attention
to speed along the way, and have tried to use a few tricks to keep
things fast. Here are some things I’ve learned along the way. In no
particular order:

Memory Allocation

When parsing a long document, a lot of token structures are created.
Each one requires a small bit of memory to be allocated. In aggre-
gate, that time added up and slowed down performance.

After reading for a bit, I ended up coming up with an approach
that uses larger chunks of memory. I allocate pools of of memory
in large slabs for smaller ”objects. For example, I allocate memory
for 1024 tokens at a single time, and then dole that memory out as
needed. When the slab is empty, a new one is allocated. This dramat-
ically improved performance.

When pairing tokens, I created a new stack for each block. I real-
ized that an empty stack didn’t have any “leftover” cruft to interfere
with re-use, so I just used one for the entire document. Again a size-
able improvement in performance from only allocating one object
instead of many. When recursing to a deeper level, the stack just gets
deeper, but earlier levels aren’t modified.

Speaking of tokens, I realized that the average document con-
tains a lot of single spaces (there’s one between every two words I
have written, for example.) The vast majority of the time, these sin-
gle spaces have no effect on the output of Markdown documents. I

http://www.hwaci.com/sw/lemon/
http://www.hwaci.com/sw/lemon/

multimarkdown v6 development notes 6

changed my whitespace token search to only flag runs of 2 or more
spaces, dramatically reducing the number of tokens. This gives the
benefit of needing fewer memory allocations, and also reduces the
number of tokens that need to be processed later on. The only down-
side is remember to check for a single space character in a few in-
stances where it matters.

Proper input buffering

When I first began last spring, I was amazed to see how much time
was being spent by MultiMarkdown simply reading the input file.
Then I discovered it was because I was reading it one character at a
time. I switched to using a buffered read approach and the time to
read the file went to almost nothing. I experimented with different
buffer sizes, but they did not seem to make a measurable difference.

Output Buffering

I experimented with different approaches to creating the output after
parsing. I tried printing directly to stdout, and even played with
different buffering settings. None of those seemed to work well, and
all were slower than using the d_string approach (formerly called
GString in MMD 5).

Fast Searches

After getting basic Markdown functionality complete, I discovered
during testing that the time required to parse a document grew expo-
nentially as the document grew longer. Performance was on par with
CommonMark for shorter documents, but fell increasingly behind
in larger tests. Time profiling found that the culprit was searching
for link definitions when they didn’t exist. My first approach was
to keep a stack of used link definitions, and to iterate through them
when necessary. In long documents, this performs very poorly. More
research and I ended up using uthash7. This allows me to search for 7 http://troydhanson.github.io/uthash/

a link (or footnote, etc.) by “name” rather than searching through an
array. This allowed me to get MMD’s performance back to O(n), tak-
ing roughly twice as much time to process a document that is twice
as long.

Efficient Utility Functions

It is frequently necessary when parsing Markdown to check what
sort of character we are dealing with at a certain position – a letter,
whitespace, punctuation, etc. I created a lookup table for this via

http://troydhanson.github.io/uthash/
http://troydhanson.github.io/uthash/

multimarkdown v6 development notes 7

char_lookup.c and hard-coded it in char.c. These routines allow
me to quickly, and consistently, classify any byte within a document.
This saved a lot of programming time, and saved time tracking down
bugs from handling things slightly differently under different circum-
stances. I also suspect it improved performance, but don’t have the
data to back it up.

Testing While Writing

I developed several chunks of code in parallel while creating MMD 6.
The vast majority of it was developed largely in a test-driven devel-
opment8 approach. The other code was largely created with extensive 8 https://en.wikipedia.org/wiki/Test-

driven_developmentunit testing to accomplish this.
MMD isn’t particularly amenable to this approach at the small

level, but instead I relied more on integration testing with an ever-
growing collection of text files and the corresponding HTML files in
the MMD 6 test suite. This allowed me to ensure new features work
properly and that old features aren’t broken. At this time, there are
29 text files in the test suite, and many more to come.

Other Lessons

Some things that didn’t do me any good. . . .
I considered differences between using malloc and calloc when

initializing tokens. The time saved by using malloc was basically
exactly offset by the initial time required to initialize the token to
default null values as compared to using calloc. When trying calloc

failed to help me out (thinking that clearing a single slab in the object
pool would be faster), I stuck with malloc as it makes more sense to
me in my workflow.

I read a bit about struct padding9 and reordered some of my 9 http://www.catb.org/esr/structure-
packing/structs. It was until later that I discovered the -Wpadded option,

and it’s not clear whether my changes modified anything. Since
the structs were being padded automatically, there was no noticeable
performance change, and I didn’t have the tools to measure whether
I could have improved memory usage at all. Not sure this would be
worth the effort – much lower hanging fruit available.

Performance

Basic tests show that currently MMD 6 takes about 20–25% longer
the CommonMark 0.27.0 to process long files (e.g. 0.2 MB). However,
it is around 5% faster than CommonMark when parsing a shorter
file (27 kB) (measured by parsing the same file 200 times over). This

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
http://www.catb.org/esr/structure-packing/
http://www.catb.org/esr/structure-packing/
http://www.catb.org/esr/structure-packing/

multimarkdown v6 development notes 8

test suite is performed by using the Markdown [syntax page], mod-
ified to avoid the use of the Setext header at the top. The longer
files tested are created by copying the same syntax page onto itself,
thereby doubling the length of the file with each iteration.

The largest file I test is approximately 108 MB (4096 copies of the
syntax page). On my machine (2012 Mac mini with 2.3 GHz Intel
Core i7, 16 GB RAM), it takes approximately 4.4 seconds to parse
with MMD 6 and 3.7 seconds with CommonMark. MMD 6 processes
approximately 25 MB/s on this test file. CommonMark 0.27.0 gets
about 29 MB/s on the same machine.

There are some slight variations with the smaller test files (8–32

copies), but overall the performance of both programs (MMD 6 and
CommonMark) are roughly linear as the test file gets bigger (double
the file size and it takes twice as long to parse, aka O(n)).

Out of curiosity, I ran the same tests on the original Markdown.pl
by Gruber (v 1.0.2b8). It took approximately 178 seconds to parse
128 copies of the file (3.4 MB) and was demonstrating quadratic
performance characteristics (double the file size and it takes 2

2 or
4 times longer to process, aka O(n2)). I didn’t bother running it on
larger versions of the test file. For comparison, MMD 6 can process
128 copies in approximately 140 msec.

Of note, the throughput speed drops when testing more com-
plicated files containing more advanced MultiMarkdown features,
though it still seems to maintain linear performance characteristics.
A second test file is created by concatenating all of the test suite files
(including the Markdown syntax file). In this case, MMD gets about
13 MB/s. CommonMark doesn’t support these additional features,
so testing it with that file is not relevant. I will work to see whether
there are certain features in particular that are more challenging and
see whether they can be reworked to improve performance.

As above, I have done some high level optimization of the parse
strategy, but I’m sure there’s still a lot of room for further improve-
ment to be made. Suggestions welcome!

Testing

Test Suite

The development of MMD v6 was heavily, but not absolutely, influ-
enced by the philosophy of test-driven development. While coding,
I made use of test suites to verify successful implementation of new
features, to avoid regression problems when adding new features,
and to identify known edge cases in need of proper handling.

The test suite (located in tests/MMD6Tests) is a “living” collection

multimarkdown v6 development notes 9

of documents that will continue to be updated as new bugs and edge
cases are identified. This helps make proper integration testing of the
entire application with every release.

Fuzz Testing

I was not familiar with the concept of Fuzz Testing10 until a user 10 https://en.wikipedia.org/wiki/
Fuzzingmentioned something about it to me a year or two ago. I had never

used it before, but it seemed like a good idea. I implemented it in
two ways.

The first is that I created a simplified version of the line parser
that simply accepts various combinations of line type identifiers to
see if they would successfully parse. The line parser is responsible
for taking a series of line types (e.g. plain text, indented line, etc.)
and determining what sort of block they should become. The file
test/parser_text.y is run through the lemon program, compiled
(with or without the -DNDEBUG flag) and then run. It sequentially
throws every combination of line types at the simplified line parser to
make sure that it doesn’t choke. When I first did this, I found several
combinations of lines that did not pass.

NOTE: This does not verify accurate parsing, simply that the
parser does not crash by an unacceptable combination of lines.

The second form of fuzz testing I started using later. This is us-
ing the American fuzzy lop11 program to try to find text input that 11 http://lcamtuf.coredump.cx/afl/

crashes MMD. This works by taking sample input (e.g. files from the
test suite), modifying them slightly, and trying the modified versions.
Do this over and over and over, and some interesting edge cases are
sometimes identified. I have found some interesting edge cases this
way. Definitely a useful tool!

Unit Testing

Some of the original development was done with unit testing in some
other tools I developed. This code formed the basis of a few parts of
MMD. Otherwise, it was hard to see how to really create very good
unit tests for the development of MMD. So there is really not much
unit testing built into the code or used during the development.

Dependencies/Libraries

MMD v6 has no external dependencies when compiling, aside from
the standard libraries for C development.

MMD can be compiled without any other tools beside the build
system (cmake).

https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Fuzzing
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

multimarkdown v6 development notes 10

If you want to edit the block parser, you need to modify the
parser.y file and process that using lemon12 in order to update the 12 http://www.hwaci.com/sw/lemon/

parser.c file. The lemon parser source is actually included in MMD
and needs to be compiled to be used.

If you want to update the lexer or scanner utility functions, then
you can modify lexer.re or scanners.re. These need to be pro-
cessed using re2c13, which has to be installed separately. 13 http://re2c.org/

MMD v6 makes use of several other projects to improve perfor-
mance and ease of use:

• uthash14 – provides support for hashes to quickly locate specific 14 https://troydhanson.github.io/
uthash/“objects” based on text keys. These are used for matching foot-

notes, links, images and the like when created with the reference
syntax. Much faster than searching through each one sequentially.

• miniz15 – provides zip archive support to enable creation of EPUB 15 https://github.com/richgel999/miniz

3 files, which are zip files with a specific file structure inside them.

• argtable3
16 – provides more advanced command-line argument 16 https://github.com/argtable/

argtable3processing in a more cross-platform approach than that used by
MMD v5.

• libCurl17 – allows for easily downloading image assets from web 17 https://curl.haxx.se/libcurl/

servers in order to embed them in packaged file formats, e.g.
EPUB 3, TextBundle/TextPack, OpenDocument, etc.

Changelog

• 2017–11–20 - v 6.2.3:

– CHANGED: Fix typos

– CHANGED: Update superscript/subscript algorithm to allow
leading instances

– FIXED: Fix bug with multiple footnotes in single paragraph
when exporting to LaTeX

– FIXED: Fix potential NULL pointer dereference

– FIXED: Fix potential bug

– FIXED: Prevent pointer overflow

– FIXED: Strip UTF-8 BOM from main files, not just transcluded
files

– UPDATED: Add HTML comment test cases to further demon-
strate

– UPDATED: Adjust libMultiMarkdown.h so it does not recur-
sively include other files

http://www.hwaci.com/sw/lemon/
http://www.hwaci.com/sw/lemon/
http://re2c.org/
http://re2c.org/
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/
https://github.com/richgel999/miniz
https://github.com/richgel999/miniz
https://github.com/argtable/argtable3
https://github.com/argtable/argtable3
https://github.com/argtable/argtable3
https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/

multimarkdown v6 development notes 11

– UPDATED: Fix issue with AStyle indent settings

– UPDATED: Refactor file utilities into file.c/h

– UPDATED: Silence Xcode static analyzer false positives

– UPDATED: Silence analyzer warnings

– UPDATED: Update function name in swift file

• 2017–10–13 - v 6.2.2.:

– ADDED: Add support for tables without header; test for table
with multiple header rows

– CHANGED: Remove dead line of code

– FIXED: Add NULL check on my strdup functions

– FIXED: Fix NULL dereference in abbreviation search

– FIXED: Fix issue with libCurl on some systems (Thanks, Brad!)

– FIXED: Fix math markers in code spans

– FIXED: Fix potential dereference in table handling

– FIXED: Fix use of uninitialized variable

– FIXED: Improve consistency of math token handling

– FIXED: Relax table separator line rules to allow missing final
pipe

– UPDATED: Add additional asset storage option

– UPDATED: Add note about tables in MMD-6 to Quick Start
Guide

– UPDATED: Fix readme

– UPDATED: Update QuickStart Guide

– UPDATED: Update readme

• 2017–09–04 - v 6.2.1:

– ADDED: Add Hebrew to command line help

– ADDED: Add function to extract transclusion manifest

– FIXED: Fix Windows issue (#80) - Thanks @f8ttyc8t

– FIXED: Fix error in CriticMarkup highlights when accepting/
rejecting (Thanks, Shahaf!)

– FIXED: Fix issue with metadata extraction

– FIXED: Fix issues with Windows compiling

– FIXED: Fix potential bug

– FIXED: Remove non-existent mmd2all.bat

multimarkdown v6 development notes 12

– FIXED: Store directories in zip file without compression to
avoid error

– UPDATED: Fix bug (I think) in Tufte LaTeX files

– UPDATED: Tidy up BibTeX example

– UPDATED: Update DevelopmentNotes

– UPDATED: Update Swedish/Dutch handling

– UPDATED: Update astyle

– UPDATED: update miniz to 2.0.6 beta

• 2017–08–15 - v 6.2.0:

– ADDED: Add Dutch and Swedish translations – thanks Sl!

– ADDED: Add Hebrew translation – thanks Sl!

– ADDED: Add functions to insert/replace metadata

– ADDED: Add stack_sort header

– ADDED: Add support for MMD Header and MMD Footer
metadata; FIXED: Fix transclusion to skip over metadata in
main document; FIXED: Fix metavalue_for_key with NULL
result

– ADDED: Add support for YAML metadata markers (—)

– CHANGED: Find single non-indenting space at beginning of
lines

– CHANGED: Migrate to Travis containers

– CHANGED: Preserve leading non-indent space in fenced code
blocks

– CHANGED: Reorder export format definitions

– CHANGED: Safety check to avoid potential crash

– CHANGED: Standardize process for FORMAT_MMD

– CHANGED: Verbose testing in Travis

– FIXED: Don’t strip leading indent in fenced code blocks

– FIXED: Fix CTest for spaces in directory path

– FIXED: Fix YAML metadata in transcluded files

– FIXED: Fix bug preventing matching of abbreviations and glos-
sary items inside tight list items

– FIXED: Fix bugs in d_string_replace_text_in_range()

– FIXED: Fix issue on Travis-CI Linux and file paths

– FIXED: Fix memory bug and silence warnings

– FIXED: Fix memory leak

multimarkdown v6 development notes 13

– FIXED: Fix potential crash

– FIXED: Fix table wrapping with default alignment

– FIXED: Improve abbreviation support

– FIXED: Improve file path resolution with transclude base ‘.’

– FIXED: Improve safety of realpath

– FIXED: Include version.h in public headers

– FIXED: Remove useless RTF scripts

– FIXED: Tweak makefile

– Merge branch ‘release/6.1.0’ into develop

– TESTING: Figure out why Travis linux fails

– TESTING: Working on Travis

– UPDATED: Add astyle configuration to tidy c source files

– UPDATED: Remove obsolete test

– UPDATED: Replace vasprintf for all build environments to
simplify things

– UPDATED: Test on linux and osx with travis

– UPDATED: Tidy up code

– UPDATED: Tweak astyle settings

– UPDATED: Tweaked astyle settings

– UPDATED: Update quick start guide

– UPDATED: Use astyle with header files as well

• 2017–07–06 - v 6.1.0:

– ADDED: Add ‘–nosmart’ option to disable smart typography

– ADDED: Add ‘notransclude’ option

– ADDED: Add Travis CI configuration

– ADDED: Add odt and fodt formats; disable odf format for
consistency

– ADDED: Add regular TextBundle format support

– ADDED: Add support for ‘latexauthor’ and ‘latextitle’ metadata
(Addresses #58)

– ADDED: Add syntax for raw source (Addresses #38)

– ADDED: Start working on textbundle output format

– ADDED: Store image assets in OpenDocument files

– ADDED: Use assets for reference image definitions in TextBun-
dle format

multimarkdown v6 development notes 14

– CHANGED: Disable ‘bundle’ format until it’s finished

– CHANGED: Make epub utility functions static

– CHANGED: Remove odf files; replace convenience scripts

– CHANGED: Use ‘markdown’ file extension

– FIXED: Add ODF to wilcard transcluding; Fix tufte to support
latex title

– FIXED: Avoid a few potential crashes

– FIXED: Don’t parse MMD inside math (fixes #69)

– FIXED: Fix asset path for CSS metadata

– FIXED: Fix issue where tight list items not properly processed
for smart typography

– FIXED: Fix issue with transclusion and relative paths

– FIXED: Fix regression and add newline at end of converted
strings

– FIXED: Fix two potential crashes

– FIXED: Improve apostrophe detection after punctuation mark

– FIXED: Improve handling of HTML entities (fixed #71)

– FIXED: Improve transclusion search folder resolution

– FIXED: PATH_MAX isn’t reliable

– FIXED: Refactor super/subscript parsing (fixes #70)

– FIXED: Silence a few warnings

– FIXED: Use .bat files for Windows installer (fixes #74)

– UPDATE: Use custom strdup() replacement

– UPDATED: Fix whitespace

– UPDATED: Include build status in README

– UPDATED: Include html version in Textbundle

– UPDATED: Update parser to track headers, even in compatibil-
ity mode

• 2017–05–24 - v 6.0.7:

– CHANGED: Add mmd_convert_to_data functions; Refactor
main.c so that EPUB and other formats use same workflow –
batch mode no longer required for EPUB format

• 2017–05–24 - v 6.0.6:

– ADDED: Add function for accessing library version

– ADDED: Restructure superscript

multimarkdown v6 development notes 15

– CHANGED: Continue to refactor core API routines for clarity
and flexibility

– CHANGED: Don’t strip list markers from nested list items

– CHANGED: Extended ASCII support interferes with UTF-8
support – disable it

– CHANGED: Fix style

– CHANGED: Preserve closing Heading markers

– CHANGED: Refactor CriticMarkup basic commands to be part
of libMultiMarkdown.h

– CHANGED: Refactor code for more consistent API naming in
libMultiMarkdown.h; Add functionality to list metadata keys
and extract specific metadata values

– CHANGED: Refactor transclude_source to be part of main
libMultiMarkdown.h

– CHANGED: Restructure strong/emph to a nested structure

– FIXED: Adjust CMake configuration for Linux to allow building
with libcurl

– FIXED: Fix regression in EPUB code refactoring

– FIXED: Need separate check for escaped characters in Critic-
Markup parsing

– FIXED: compiling with older gcc and used c standard

– Merge pull request #61 from silvio/gcc-build-fix

– Merge pull request #64 from jasedit/feat/add_version_function

– NOTE: Remove unnecessary includes

– UPDATED: Update libMultiMarkdown.h

– UPDATED: Update mmd.c

• 2017–05–02 - v 6.0.5:

– ADDED: Add back support for BibTeX bibliography entries
(address #56)

– CHANGED: Adjust > and < in LaTeX output – don’t wrap in
math

– CHANGED: Change HTML output for footnotes and citations

– CHANGED: Improve flexibility of HTML Comment parsing
(Addresses #25)

– CHANGED: Refactor mmd_engine cleanup

– CHANGED: Remove unnecessary variable

multimarkdown v6 development notes 16

– CHANGED: Rename criticmarkup functions

– CHANGED: Tweak Xcode configuration

– FIXED: Fix bug in mmd_tokenize_string()

– FIXED: Fix memory leak

– FIXED: Fix pointer bug

– FIXED: Fix underscore strong/emph around punctuation

– FIXED: Improve memory management

– FIXED: Reset stacks when parsing

• 2017–04–09 - v 6.0.4:

– ADDED: The ‘-l’ command line argument also sets language, if
not overridden by metadata

– FIXED: Fix regular expression to match table separator lines.
(Fixes #50)

– FIXED: Improve organization of fallback lines for fenced code
blocks and HTML blocks

• 2017–03–29 - v 6.0.3:

– ADDED: Script for updating re2c and lemon files

– CHANGED: Recompile lexer using -8 flag

– CHANGED: Recompile scanners using -8 flag

– FIXED: Don’t separate out ‘à’

• 2017–03–29 - v 6.0.2:

– CHANGED: Refactor code slightly

– CHANGED: Remove ASCII non-breaking space support from
lexer

– FIXED: Fix quote pairing in compatibility mode

• 2017–03–28 – v 6.0.1:

• CHANGED: Adjust LaTeX support files

• CHANGED: Fix potential bug in tokenize function

• FIXED: Fix bug between ASCII 160 (non-breaking space) and ‘à’
character

• FIXED: Improve transclude base overriding of search paths, and
explain change in QuickStart guide

• UPDATED: Update QuickStart to include more info about LaTeX

multimarkdown v6 development notes 17

• 2017–03–22 – v 6.0.0:

– Version bump

• 2017–03–21 – v 6.0.0-rc3:

– ADDED: Add command line support for nl/sv quotes; Improve
help screen organization

– CHANGED: Refactor enumerations

– FIXED: Fix potential bug in CriticMarkup handling

• 2017–03–19 – v 6.0.0-rc2:

– ADDED: Add debugging info

– ADDED: Add image assets when creating EPUB

– ADDED: Add mmd2epub convenience script

– ADDED: Add support for random footnote numbers

– ADDED: Include tables as targets for cross-reference links

– ADDED: Store css metadata as asset

– CHANGED: Table captions now bottom aligned in HTML

– CHANGED: Update license and development notes

– FIXED: Fix Fuzz LaTeX test

– FIXED: Fix bug in HR parsing

– FIXED: Fix bug in determining label for headers

– FIXED: Fix bug in printing NULL strings

– FIXED: Fix bug in transclusion code

– FIXED: Fix cmake to find on *nix systems libcurl

– FIXED: Fix crash in parsing URL destinations

– FIXED: Fix crash in reference definitions

– FIXED: Fix potential crash

– FIXED: Fix potential crash in definitions

– FIXED: Fix regression in transclusion

– FIXED: Free memory from asset hash

– FIXED: Improve Spanish translations

– FIXED: Improve token_split() algorithm and searching for ab-
breviations and glossary terms in text

– FIXED: Improve width/height attributes for HTML images

– FIXED: Update Spanish, update Spanish test suite, add lan-
guages to help screen

multimarkdown v6 development notes 18

– FIXED: Update table caption alignment for CSS instead of dep-
recated alignment

– UPDATE: Update documentation

– UPDATED: Add notes to main.swift

• 2017–03–15 – v 6.0.0-rc1:

– FIXED: Add missing CriticMarkup tokens to LaTeX

– FIXED: Don’t let labels end on ” that is escaping the closing ‘]’

– FIXED: Fix NULL pointer dereference

– FIXED: Fix bug in Aho-Corasick implementation

– FIXED: Fix bug with ATX Headers without newline

– FIXED: Fix bug with Setext header starting with ‘:’

– FIXED: Fix bug with leading spaces in abbreviation references

– FIXED: Fix crash with empty definition

– FIXED: Fix edge case with URL definitions

– FIXED: Fix edge case with superscripts

– FIXED: Fix null dereference error in CriticMarkup substitution

– FIXED: Fix potential bug in Aho-Corasick search:

– FIXED: Fix potential bug in storing items to hash

– FIXED: Fix potential bug with line->block parser

– FIXED: Fix potential crash in attribute parsing

– FIXED: Fix printing raw CriticMarkup tokens in LaTeX

– FIXED: Fix signedness bug in Aho-Corasick

– FIXED: Improve metadata edge cases; Fix NULL pointer deref-
erence

– FIXED: Include non-breaking space (ASCII 160) in re2c patterns

– FIXED: Keep ‘:’ in false positive definitions

– FIXED: Lex space followed by tab as space, not text

– FIXED: Limit lines treated as ATX headers

– FIXED: Update test code

• 2017–03–13 – v 6.0.0-b2:

– ADDED: Add CriticMarkup preprocessor that works across
empty lines when accepting/rejecting markup

– ADDED: Add back the mmd6 latex title file

– ADDED: Basic EPUB 3 support – uses ‘miniz’ library to zip
creation

multimarkdown v6 development notes 19

– ADDED: Update QuickStart and EPUB code

– CHANGED: Update QuickStart guide

– CHANGED: Update test suite

– FIXED: Don’t duplicate LaTeX glossary definitions

– FIXED: Fix abbreviations in ODF; Improve test suite

– FIXED: Improve glossaries and abbreviations; Update Quick-
Start

– FIXED: Tidy up some compiler warnings in code

– FIXED: Use custom UUID code to minimize external dependen-
cies

• 2017–03–09 – v 6.0.0-b1:

– ADDED: Add French translations; fix typo in German

– ADDED: Add Quick Start guide

– ADDED: Add functionality to automatically identify abbrevia-
tions and glossary terms in source

– ADDED: Improve LaTeX configuration files

– ADDED: Update German translations

– ADDED: Use native ODF table of contents instead of a manual
list

– ADDED: Use native command for table of contents in LaTeX

– CHANGED: Bring HTML and ODF into line with LaTeX as to
output of abbreviatinos on first and subsequent uses

– CHANGED: Slight performance tweak

– CHANGED: Update German test suite

– FIXED: Allow {{TOC}} in latex verbatim

– FIXED: Don’t free token_pool if never initialized

– FIXED: Fix German typo

– FIXED: Fix missing token type

– FIXED: Improve performance of checking document for meta-
data, which improves performance when checking for possible
transclusion

– FIXED: Update test suite for abbreviation changes

• 2017–03–05 – v 0.4.2-b:

– ADDED: Add and utility functions; fix memory leak

– ADDED: Initial abbreviation support

multimarkdown v6 development notes 20

– ADDED: Keep working on Abbreviations/Glossaries

– ADDED: Refactor abbreviation code; Add inline abbreviations;
Fix abbreviations in ODF

– ADDED: Update Inline Footnote test

– CHANGED: Add comments to i18n.h

– CHANGED: Finish refactoring note-related code

– CHANGED: Refactor footnotes

– CHANGED: Refactor glossary code

– CHANGED: Remove offset from html export functions

– FIXED: latex list items need to block optional argument to allow
‘[’ as first character

– Merge branch ‘release/0.4.1-b’ into develop

• 2017–03–04 – v 0.4.1-b:

– FIXED: Add glossary localization

• 2017–03–04 – v 0.4.0-b:

– ADDED: Add TOC support to ODF

– ADDED: Add glossary support to ODF

– ADDED: Add prelim code for handling abbreviations

– ADDED: Add support for Swift Package Maker; CHANGED:
Restructure source directory

– ADDED: Added LaTeX support for escaped characters, fenced
code blocks, images, links

– ADDED: Basic ODF Support

– ADDED: Better document strong/emph algorithm

– ADDED: Continue ODF progress

– ADDED: Continue to work on ODF export

– ADDED: Continue work on ODF

– ADDED: Finish ODF support for lists

– ADDED: Improve performance when exporting

– ADDED: Improve token_pool memory handling

– ADDED: Prototype support for Glossaries

– ADDED: Support ‘latexconfig’ metadata

– CHANGED: Use multiple cases in glossary tests

– FIXED: Don’t force glossary terms into lowercase

multimarkdown v6 development notes 21

– FIXED: Fix Makefile for new source file location

– FIXED: Fix algorithm for creating TOC to properly handle ‘in-
correct’ levels

– FIXED: Fix linebreaks in LaTeX; ADDED: Add Linebreaks test
file

– FIXED: Fix new_source script for new directory structure

– FIXED: Fix non-breaking space in ODF

– FIXED: Fix padding at end of document body in ODF

– FIXED: Fix underscores in raw latex

– FIXED: Potential bug

– NOTE: Add shared library build option

• 2017–02–17 – v 0.3.1.a:

– ADDED: ‘finalize’ beamer support

– ADDED: Add escaped newline as linebreak; start on beamer/
memoir support

– ADDED: CriticMarkup test for LaTeX

– ADDED: Custom LaTeX output for CriticMarkup comments

– ADDED: Support mmd export format

– ADDED: Work on cpack installer – change project name for
compatibility

– CHANGED: Adjust latex metadata configuration for consis-
tency

– CHANGED: Configure cmake to use C99

– FIXED: Add custom implementation for cross-platform support

– FIXED: Fix German HTML tests

– FIXED: Fix cpack destination directory issue

– FIXED: Fix memory leaks etc

– FIXED: Fix warning in custom vasprintf

– FIXED: Modify CMakeLists.txt to test for use of clang compiler

– FIXED: Work on memory leaks

– NOTE: Adjust license width to improve display on smaller
terminal windows

• 2017–02–14 – v 0.3.0a:

– ADDED: Add basic image support to LaTeX

– ADDED: Add file transclusion

multimarkdown v6 development notes 22

– ADDED: Add support for citation ‘locators’

– ADDED: Add support for manual labels on ATX Headers

– ADDED: Add support for manual labels on Setext Headers

– ADDED: Add support for tables in LaTeX

– ADDED: HTML Comments appear as raw LaTeX

– ADDED: Improved citation support in LaTeX

– ADDED: Support \autoref{} in LaTeX

– ADDED: Support combined options in LaTeX citations that use
the ‘][’ syntax

– ADDED: Support language specifier in fenced code blocks

– ADDED: Support metadata in LaTeX

– ADDED: Update Citations test suite

– FIXED: Escaped LaTeX characters

– FIXED: Fix bug in URL parsing

– FIXED: Fix bug in citation links

– FIXED: Fix bug when no closing divider or newline at end of
last table cell

– FIXED: Fix issue printing ‘-’

– FIXED: Fix scan_url test suite

– FIXED: Get Math working in LaTeX

– FIXED: Improve reliability or link scanner

– FIXED: Properly add id attribute to new instances of citation
only

– FIXED: Properly handle manual labels with TOC

– FIXED: Properly print hash characters in LaTeX

– FIXED: Separate LaTeX verbatim and texttt character handling

– FIXED: Update Escapes test LaTeX result

– FIXED: Work on escaping LaTeX characters

• 2017–02–08 – v 0.1.4a:

– ADDED: Add smart quote support for other languages (re-
solves #15)

• 2017–02–08 – v 0.1.3a:

– ADDED: Add support for reference image id attributes

– ADDED: Add support for table captions

multimarkdown v6 development notes 23

– ADDED: Metadata support for base header level

– ADDED: Support distinction between 3 and 5 backticks in
fenced code blocks

– ADDED: Support Setext headers

– FIXED: Fix issue with metadata disrupting smart quotes

• 2017–02–07 – v 0.1.2a:

– “pathologic” test suite – fix handling of nested brackets, e.g.
[[[[foo]]]] to avoid bogging down checking for reference
links that don’t exist.

– Table support – a single blank line separates sections of tables,
so at least two blank lines are needed between adjacent tables.

– Definition list support

– “fuzz testing” – stress test the parser for unexpected failures

– Table of Contents support

– Improved compatibility mode parsing

• 2017–01–28 – v 0.1.1a includes a few updates:

– Metadata support

– Metadata variables support

– Extended ASCII range character checking

– Rudimentary language translations, including German

– Improved performance

– Additional testing:

* CriticMarkup

* HTML Blokcs

* Metadata/Variables

* “pathologic” test cases from CommonMark

multimarkdown v6 development notes 24

Glossary

PEG Parsing Expression Grammar https://en.wikipedia.org/wiki/
Parsing_expression_grammar 1

Abbreviations

MD Markdown. 1

MMD MultiMarkdown. 1, 4–12, 14

https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar

	Introduction
	First Attempt
	Second Attempt
	Optimization
	Performance
	Testing
	Dependencies/Libraries
	Changelog
	Glossary
	Abbreviations

