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Abstract:  
MRI brain tissue classification is a difficult task because of the effects of noise 
and shading artifacts and relatively low contrast-to-noise ratio between white 
matter, gray matter and cerebrospinal fluid. Typical classification methods are 
based on pixel classification using statistical classifiers combined with Markov 
Random Field assumptions. Another application is the identification of Multiple 
Sclerosis lesions in the brain and quantifying the total lesion load. 
 
In this study we will validate our ITK implementation of an unsupervised 
clustering algorithm using an unsupervised (k-Means) and a supervised 
algorithm (a simple Gaussian classifier) as in the Classifier Framework. We will 
also combine the Markov Random Field (MRF) image filter with the classifier 
framework and characterize the performance of the various algorithms. The 
results of the classification are compared with published results and other 
sources of available ground truth. 



 

 

1. Introduction 
Volumetric analysis of the brain from MR images has emerged as an important 
biomedical research tool to study diseases such as Alzheimer’s disease, 
Huntington’s disease, and attention deficit disorder. Segmentation of the brain 
parenchyma and its constituent tissue types, the gray and white matter, is 
necessary for volumetric information in longitudinal and cross-sectional studies. 
On a similar note, management of diseases like the multiple sclerosis (MS) 
requires quantification of lesion load. 
 
Manual brain/lesion segmentation and registration is a tedious task that requires 
substantial time and effort by trained personnel and also suffers from large inter-
observer variability and poor reproducibility. 
 
In the literature, different classification techniques have been developed for brain 
tissue segmentation purposes. In this study, we have evaluated the classification 
of brain parenchyma tissue using an unsupervised and a supervised 
classification algorithm. We have tried to improve the results of the classification 
using Markov-random-fields based image filter. We have also applied the 
algorithms towards segmentation of MS lesions and evaluated its performance 
on a MS lesion-mimicking phantom with known lesion load.  
 

2. Algorithms 

2.1. Classification Framework 
Typically, a classification process can be characterized by  

(a) a function that defines the membership of an unclassified pixel to different 
tissue types,  

(b) a decision rule that categorizes each unclassified pixels by assigning it a 
label, and  

(c) a third component that precedes the membership function are the model 
estimators. These estimators populate the parameters of the membership 
functions based on the choice of model by the user.   

 
In ITK, this factorization is used to divide the code into the modular components. 
Components are implemented so that components in the same category have a 
consistent interface (or calling convention). This consistency allows components 
to be swapped thereby allowing rapid prototyping of new variants of the 
classification algorithms. 
 
In this validation study, we will test the combination of 

- Membership function (class MahalanobisDistanceMembershipFunction and

class DistanceToCentroidMembershipFucntion) 
- Decision rule (class MinimumDecisionRule) 
- Estimators (class ImageKmeansModelEstimator) 



 

 

We have also use class itkMRFImageFilter for removing noise from the 
segmented image and integrate spatial adjacency information in the 
segmentation process. 

 
Class ImageClassiferBase drives the classification process by connecting together 
the components, starting the calculation for the membership of each class to a 
corresponding tissue type and returning the final classification by using the 
decision rule chosen by the user.  

2.1.1. Membership Function  
The membership function classes operate on vector input (x), where x 
represents a pixel value. For a single channel image, x is a scalar value. 
However, in multichannel data x is a vector where the number of elements in the 
vector is equal to the number of channels in the input data. For instance, if we 
use a FLAIR (Fluid Attenuated Inversion Recovery) and a T2 series, as is the 
case for the MS lesion classification experiments, then each vector will have two 
elements. 
 
We have used two membership functions classes in our experiments 

(a) class DistanceToCentroidMembershipFunction: This class calculates the 
euclidean distance between two vectors. Each tissue type is represented 
by their class means (µµµµ) or the centroids of each cluster in a given data 
set. The result is a vector (d), where d = x – µµµµ. The dimension of the 
vector (d) is equal to the number of tissue types that are classified.  This 
function is used with the K-means classifier. 

 

(b) class MahalanobisDistanceMembershipFunction: This class calculates the 
Mahalanobis distance. When each tissue type is represented by their 
class means and covariance (µµµµ, ΣΣΣΣ), the result is a vector (d), where  

d = (x - µµµµ) ΣΣΣΣ−1 (x - µµµµ)T

. 

The dimension of the vector (d) is equal to the number of tissue types that 
are classified.  This function is used with the Gaussian classifier. This is 
particularly relevant in multi-channel MR data where the two or more 
channels are correlated and incorporation of the covariance matrix 
improves the classification results.  
 

The choice of the membership function is dependent on the speed vs. 
prformance issues. While DistanceToCentroidMembershipFunction is fast, the 
MahalanobisDistanceMembershipFunction performs better in the face of 
overlapping clusters. 

2.1.2. Decision Rule 
Once the memberships of a given pixel to the different tissue types have been 
evaluated the next step is to apply a decision rule to label each pixel with a tissue 
type. There can be many different decision rules such as one that assigns the 



 

 

tissue type to the pixel, which has the maximum probability of belonging to a 
particular class or as in our case the one that assigns the tissue tyoe to a pixel, 
which is closest to a tissue type cluster. 
 
This is achieved by a simple function integrated with the class 
MininumDecisionRule. For each vector (d), this function identifies the minimum 
distance to the membership function. The position of the minimum distance is 
assigned as the class label for the corresponding tissue type. For example, if 
there are 5 different tissue types, the vector (d) will have 5 entires. Say the 3rd 
entry is the one with the smallest distance. The resulting pixel is classified as 
belonging to the 3rd tissue type. The advantage of this method is its simplicity and 
speed. However, more complex techniques using fuzzy logic have been 
developed and the existing framework enables easy integration of these 
advanced techniques. 

2.1.3. Model or Membership Function Estimator 
This is an optional step and if used it usually precedes step 2.1.1 and 2.1.2. The 
base class functionality is defined in ImageModelEstimatorBase class. We have 
derived two classes from this base class: (1) ImageGaussianModelEstimator and (2) 
ImageKmeansModelEstimator. These classes are relevant when the user expects 
automatic generation of the membership function.  
 
The Gaussian model estimator is straightforward; it requires the user to provide 
some training data where the classifications into different tissue types are done a 
priori. The algorithm then calculates the means and the covariances for the 
different classes and creates the membership functions, which can then be 
plugged into the classifier framework. We have not used this estimator in our 
supervised classification validation study involving Gaussian model, instead we 
provide the model generated-apriori directly to the classification framework. 
 
The K-means model estimator is a simple algorithm in our case; there are more 
advanced algorithms in the code/Numerics/Statistics. Here we use the 
KmeansImageModelEstimator class for generation of the K-means [GER92]. This 
object performs partitioning of data sets into different clusters either using a user 
provided seed points as initial guess or generates the clusters using a recursive 
approach when the user provides the number of desired clusters. Each cluster is 
represented by its cluster center. The two algorithms used are the generalized 
Lloyd algorithm (GLA) and the Linde-Buzo-Gray algorithms. The cluster centers 
are also referred to as codewords and a table of cluster centers is referred as a 
codebook. 
 
As required by the GLA algorithm, the initial seed cluster should contain 
approximate centers of clusters.  The GLA algorithm generates an updated 
cluster centers that result in a lower distortion than the input seed cluster when 
the input vectors are classified / labeled using the given codebooks. 
 



 

 

If no codebook is provided, the Linde-Buzo-Gray algorithm is used. This 
algorithm uses the GLA algorithm at its core to generate the centroids of the 
input vectors (data). However, since there is no initial codebook, LBG first 
creates a one-word codebook (or centroid of one cluster comprising of all the 
input training vectors). The LBG uses codeword/or centroid splitting to create 
increasing number of clusters. Each new set of clusters is optimized using the 
GLA algorithm. The number of clusters increases as 2n where n= 0, 1, ... The 
codebook is a vnl matrix, where there are N rows with each row representing the 
cluster mean of a given cluster. The number of columns in a codebook is equal to 
the input image vector dimension. 
 
The threshold parameter controls the “optimality” of the returned codebook where 
optimality is related to the least possible mean-squared error distortion that can 
be found by the algorithm. For larger thresholds, the result will be less optimal.  
For smaller thresholds, the result will be more optimal.  If a more optimal result is 
desired, then the algorithm will take longer to complete. A reasonable threshold 
value is 0.01. If, during the operation of the algorithm, there are any unused 
clusters or cells, the OffsetAdd and OffsetMultiply parameters are used to split 
the cells with the highest distortion. This function attempts to fill empty cells up to 
10 times (unless the overall distortion is zero). If the GLA is unable to resolve the 
data into the desired number of clusters or cells, only the codewords are 
returned. In terms of clustering, codewords are cluster centers, and a codebook 
is a table containing all cluster centers.  The GLA produces results that are 
equivalent to the K-means clustering algorithm. 

2.1.4. Markov-Random Fields Post-filtering 
We have also used MRFImageFilter class to further refine the classification of 
both the single and multichannel validation studies. This algorithm uses the 
maximum a posteriori (MAP) estimates for modeling the MRF. The object 
traverses the data set and uses the model generated by a classifier to gets the 
distance between each pixel in the data set to a set of known classes, updates 
the distances by evaluating the influence of its neighboring pixels (based on a 
MRF model) and finally, classifies each pixel to the class, which has the 
minimum distance to that pixel (taking the neighborhood influence under 
consideration). The algorithm details has been published by Besag [BES86]. 

3. Validation 

3.1. Data 
For this validation study, we used images from two sources: 

(1) For the single channel classification, we used data from the “Internet Brain 
Segmentation Repository” (IBSR) website. This data set consists of 20 
normal T1-weighted volumes (1mm x 1mm pixels, 3mm slice thickness) 
with manually segmented brain volume. The images were obtained using 
different scanners and scanning parameters. 



 

 

(2) For the multichannel MS lesion segmentation study, Insightful has 
produced a phantom simulating the brain including structures of known 
volume that mimicked MS lesions. The phantom was scanned using the 
standard MR imaging protocol: FLAIR, T2-weighted, and PD-weighted 
images of the phantom were acquired. These images are used for multi-
channel tissue classification validation. We have used only FLAIR and T2-
weighted images, since in a previous in-house study we found this to be 
the optimal combination for detecting MS lesions using the Gaussian 
classifier. 

3.2. MS phantom 
An MR phantom was designed to mimic the MR properties of ventricles filled with 
CSF, white matter tissue and MS lesions. The phantom was constructed at the 
University of Washington using an in-house recipe of Jello, formaldehyde and 
bleach (as preservative), and Gadodiamide.  By controlling the concentrations of 
these ingredients, the T1 and T2 MR properties of the mixture could match those 
of various tissues.  Test tubes filled with distilled water were inserted to mimic the 
the CSF found in the brain ventricles.  Another mixture was made with MR 
properties similar to MS lesions.  After the “white matter” substrate had set, 29 cc 
of the “lesion” mixture was injected at multiple locations. The phantom was 
scanned on a 1.5 T MR unit (Signa Echo Speed, General Electric, Milwaukee, 
WI, USA).  Images were scanned in an axial plane using 3 mm interleaved slices, 
a 20 cm field of view (FOV) with pixel size being 0.78mm.  The pulse sequences 
used were as follows: FLAIR (TR 10000 ms; TE 120 ms; TI 1250 ms), and Dual-
echo, PD and T2 fast spin echo (FSE) (TR 4000 ms; TE 15/105 ms; Echo Train 
Length of 8).  

3.3. Procedure 
The complex nature of the ground truth segmentation of the brain tissue types 
made the validation study with the IBSR data extremely challenging. We 
developed an interface to read the images and the ground truth data. For the 
IBSR data, the segmented tissue image was compared with the ground truth 
(manual segmentations), the similarity index (SI, described later) and the total 
volume of each tissue type were written to a file. For the phantom data, the true 
lesion volume known a priori is used as the ground truth. 
 
Performance of our brain volume segmentation was assessed using the following 
similarity index between two sets A and B: 

( )BA
BA

+
∩2

, 

 
where ⋅  represents the size of the set, and ∩ represents the intersection of the 

two sets. This index ranges from 0 (no overlap) to 1 (perfect alignment). The 
numerator of this metric is a measure of the overlap between the two sets and 
the denominator is the mean volume of the two sets. This index takes into 



 

 

account both the size and location of the overlap. The sets A and B in our case 
are the sets of segmented voxels extracted by our atlas-based segmentation and 
manual outlining, respectively. 
 
We have not used the Hausdorff distance as a validation metric in this case since 
it measures the maximum deviation between the boundaries (or surfaces) 
between to segmented regions. This metric does not take into account the 
possibility of outliers existing in a data set and hence, in our experience during 
the validation were found to be inappropriate metric to evaluate the algorithms 
performance for the brain tissue classification with out applying any post-
processing filters such as connected component filters that remove the noise.  
 
For the MS lesion detection using multichannel classification study, the total 
lesion load was compared with the known lesion load in the phantom data. Our 
earlier plans for making available two patient datasets were obstructed due to 
unavailability of permission of the Instituitional Review Board. However, we have 
tested our algorithm on real patient images the University of Washington in-
house studies and have been found to reduce the delineation time significantly.  

3.4. Parameters 
The validation studies were performed using the IBSRClassificationApp files and 
the MSClassificationApp files, currently located in directories 
Examples\IBSRValidation\IBSRClassification and 
Examples\MultichannelTissueClassificationValidation, respectively.   
 
The two sub-validation studies have slightly different parameter files. The details 
of each of the syntax in which the parameters are passed are summarized in the 
Inputs\ReadMe.txt. Only the Gaussian classifier uses the parameter files where 
the mean and the covariance matrix are needed for the supervised classification. 
The Kmeans classification uses the ImageKmeansModelEstimator to generate the 
Kmeans from the data itself. No additional parameters were needed for the IBSR 
data set but for the MS lesion detection found that having a initial codebook 
affected the performance of the algorithm. To override the default (no initial 
codebook), an initial codebook was in-build within the application. This initial 
codebook is supposed to be insensitive towards the final Kmeans estimate and 
hence, has been made transparent to the user by embedding it inside the 
application. However, if at a later time the need for controlling the initial codebook 
is necessary, the classifier interface allows for appropriate changes.  
 
The general format for the Test*.txt files are slightly different for the single 
channel and multichannel experiments. For the IBSR classification (single 
channel classification) a validation study parameter file is assumed to contain 6 
or more lines with the following format: 

• Line 1 specifies the path to the “20Normal_T1” directory containing the 
images of the 20 normal subject dataset as provided by IBSR. 



 

 

• Line 2 specifies the path to the “20Normal_T1_brain” directory containing 
the manual brain segmentation mask for the 20 normal subject dataset as 
provided by IBSR. 

• Line 3 specifies path to the “20Normal_T1_seg” directory containing the 
manual brain segmentation for gray mater, white mater and cerebrospinal 
fluid (CSF) for the 20 normal subject dataset as provided by IBSR. 

• Line 4 specifies the output file where results of the validation are written. 
• Line 5 specifies the number of channels in the dataset. In this case it is set 

to 1 (for single channel dataset). 
• Line 6 and onwards specifies parameters for the specific data set. Each 

line should contain six strings:  
o The patient ID number,  
o The starting slice number of the brain images dataset,  
o The number of slices, 
o The starting slice for the segmented brain structure,  
o The number of segmented slices, 
o The path specifying the file location for the model parameters for 

the classifier. 
 
For the multichannel MS study a validation study parameter is assumed to 
contain 6 or more lines with the following format: 

• Line 1 specifies the path to the multichannel data. 
• Line 2 & 3 specifies the filename extensions one for each channel. The file 

name format of the data is similar to the IBSR, i.e., #patientID+  “_##.raw” 
Since we chose to use only 2 channels there are twp extensions “_fl.raw” 
and “_t2.raw.” 

• Line 4 specifies the output file where results of the validation are written. 
• Line 5 specifies the number of channels in the dataset. In this case it is set 

to 2 (for multichannel dataset). Note: the application is hardwired to handle 
2 channel data since current itkVector containers that hold the 
multichannel data needs to be fixed at compile time. 

• Line 6 and onwards specifies parameters for the specific data set. Each 
line should contain three strings:  

o The patient ID number,   
o The number of slices in the dataset,  
o The path specifying the file location for the model parameters for 

the classifier. 
 

3.5. Results and Discussions 
In this validation study, our goal was to characterize the performance of the 
classifier without any manual editing, which is often an integral part of a medical 
imaging procedure. The goal of the study was to determine if the classification 
framework in ITK could be applied to medical images for tissue classification. 
Furthermore, we did not apply any pre-processing such as in-homogeneity 



 

 

correction or post-processing such as connected component noise filtering. 
Hence, while the results we report here reasonable but a clinical application 
would require both pre- and post-processing with manual editing for arriving at a 
clinically acceptable delineation. 
 
Four algorithms were applied (1) Gaussian supervised classifier, (2) Kmeans 
unsupervised classifier, (3) Gaussian supervised classifier with MRF image filter, 
and (4) Kmeans unsupervised classifier with MRF image filter. These 4 
algorithms were applied to the IBSR data sets and the Multichannel MS lesion 
mimicking phantom.  
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Table 1: Summary of the gray and white mater segmentation on the IBSR 
data. 
Tissue Type Algorithm Mean SI 

± St.Dev 
SI Range 

    
Gray Mater    
 Gaussian classifier 0.78 ±  0.08 0.60-0.90 
 K-means classifier 0.75 ±  0.05 0.62-0.80 
 Gaussian classifier with MRF filtering 0.81 ±  0.07 0.62-0.89 
 K-means classifier with MRF filtering 0.76 ±  0.04 0.67-0.81 
White Mater    
 Gaussian classifier 0.82 ±  0.05 0.74-0.88 
 K-means classifier 0.83 ±  0.04 0.73-0.88 
 Gaussian classifier with MRF filtering 0.78 ±  0.04 0.69-0.83 
 K-means classifier with MRF filtering 0.83 ±  0.04 0.74-0.87 
n the IBSR data sets, there were a few sets with irregular intensity jumps 
etween slices and were treated as outliers. The result of the classification is 
ummarized in Table 1. The performances of the different segmentation 
lgorithms were comparable and the differences between them were statistically 

nsignificant. The similarity index measure for the gray and white matter 
lassification was approximately 0.8.  

he algorithm had a large number of false positives for the segmentation of the 
erebrospinal fluid (CSF). The mean similarity index with the Gaussian Classifier 
as only 0.2 which increased to 0.32 after applying a MRF image filter. The MRF 

ilter was able to reduce the false positives significantly. We believe using T1 
hannel for segmentation of the CSF is sub-optimal. Incorporating more channel 
f information in our experience would significantly improve the performance. 
lso, there are advanced model building methods in the toolkit such as ones 
ased on expectation maximization could potentially improve clustering 
apabilities. 



 

 

For the multichannel MS phantom classification, Fig. 1 shows a cross-sectional 
image of the MS phantom for the FLAIR, t2, pd-weighted images along with the 
segmenation of the lesions based on the classification algorithm. The ground 
truth is known a priori to be 29.5cc for this phantom. Table 2 summarizes the 
results of the classification. The best result was obtained using the Gaussian 
classifier with an error of only 0.3%. However adding a MRF filter resulted in an 
increase in the error. The large adjacent non-lesion pixels influence the 
classification and eliminated the true lesions. However, with the unsupervised K-
means algorithm adding the MRF filter reduced the error by a factor of 2. We 
have also experimented with adding a third channel of proton density (PD) 
weighted channel and also tried other possible combination s of FLAIR, T2 and 
PD images. In our experience, the FLAIR and T2 were found optimal for MS 
lesion quantification.  However, the algorithm needs to be validated on real 
patient MR images for identifying conclusive trends in future. 
 

Figu
PD-w
segm
the F
(a)

(c)

(b)

(d)

(a)(a)

(c)(c)

(b)(b)

(d)(d)  
re 1.  Sample slice from the MS Phantom MRI showing (a) FLAIR, (b) 

eighted, and (c) T2-weighted images and (d) the results of 
entation (using only the FLAIR and T2-weighted images) overlaid on 
LAIR image. 



 

 

 

4. Conclusions 
In this validation study, we evaluated the effectiveness of the ITK implementation 
of a supervised and an unsupervised classification of both single channel and 
multichannel MR data sets. In the single channel validation experiment, we found 
both the classification approaches to be suitable for gray and white matter 
classification. However, the discrimination of CSF was limited. We believe that 
adding additional channels of information could improve the results. In 
multichannel validation experiment, the Gaussian classifier performed the best. 
However, the true potential of the algorithms remain to be tested with real patient 
images. 
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Table 2: Summary of the lesion segmentation in the MS phantom where the 
know lesion volume was 29.5 cc. 
Algorithm Estimated Lesion 

volume (in cc) 
%error 

   
   
Gaussian classifier 29.6 0.3 
K-means classifier 34.7 17.6 
Gaussian classifier with MRF filtering 24.5 16.9 
K-means classifier with MRF filtering 26.9 8.8 
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