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Abstract

The brms package allows R users to easily specify a wide range of Bayesian single-level
and multilevel models, which are fitted with the probabilistic programming language Stan
behind the scenes. Several response distributions are supported, of which all parameters
(e.g., location, scale, and shape) can be predicted at the same time thus allowing for distri-
butional regression. Non-linear relationships may be specified using non-linear predictor
terms or semi-parametric approaches such as splines or Gaussian processes. Multivariate
models, in which each response variable can be predicted using the above mentioned op-
tions, can be fitted as well. To make all of these modeling options possible in a multilevel
framework, brms provides an intuitive and powerful formula syntax, which extends the
well known formula syntax of lme4. The purpose of the present paper is to introduce this
syntax in detail and to demonstrate its usefulness with four examples, each showing other
relevant aspects of the syntax. If you use brms, please cite this article as published in the
R Journal (Bürkner 2018).
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1. Introduction

Multilevel models (MLMs) offer great flexibility for researchers across sciences (Brown and
Prescott 2015; Demidenko 2013; Gelman and Hill 2006; Pinheiro and Bates 2006). They
allow modeling of data measured on different levels at the same time – for instance data of
students nested within classes and schools – thus taking complex dependency structures into
account. It is not surprising that many packages for R have been developed to fit MLMs.
Usually, however, the functionality of these implementations is limited insofar as it is only
possible to predict the mean of the response distribution. Other parameters of the response
distribution, such as the residual standard deviation in linear models, are assumed constant
across observations, which may be violated in many applications. Accordingly, it is desirable
to allow for prediction of all response parameters at the same time. Models doing exactly that
are often referred to as distributional models or more verbosely models for location, scale and
shape (Rigby and Stasinopoulos 2005). Another limitation of basic MLMs is that they only
allow for linear predictor terms. While linear predictor terms already offer good flexibility,
they are of limited use when relationships are inherently non-linear. Such non-linearity can
be handled in at least two ways: (1) by fully specifying a non-linear predictor term with
corresponding parameters each of which can be predicted using MLMs (Lindstrom and Bates
1990), or (2) estimating the form of the non-linear relationship on the fly using splines (Wood
2004) or Gaussian processes (Rasmussen and Williams 2006). The former are often simply
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called non-linear models, while models applying splines are referred to as generalized additive
models (GAMs; Hastie and Tibshirani, 1990).
Combining all of these modeling options into one framework is a complex task, both concep-
tually and with regard to model fitting. Maximum likelihood methods, which are typically
applied in classical ’frequentist’ statistics, can reach their limits at some point and fully
Bayesian methods become the go-to solutions to fit such complex models (Gelman, Car-
lin, Stern, and Rubin 2014). In addition to being more flexible, the Bayesian framework
comes with other advantages, for instance, the ability to derive probability statements for
every quantity of interest or explicitly incorporating prior knowledge about parameters into
the model. The former is particularly relevant in non-linear models, for which classical ap-
proaches struggle more often than not in propagating all the uncertainty in the parameter
estimates to non-linear functions such as out-of-sample predictions.
Possibly the most powerful program for performing full Bayesian inference available to date
is Stan (Stan Development Team 2017c; Carpenter, Gelman, Hoffman, Lee, Goodrich, Be-
tancourt, Brubaker, Guo, Li, and Ridell 2017). It implements Hamiltonian Monte Carlo
(Duane, Kennedy, Pendleton, and Roweth 1987; Neal 2011; Betancourt, Byrne, Livingstone,
and Girolami 2014) and its extension, the No-U-Turn (NUTS) Sampler (Hoffman and Gel-
man 2014). These algorithms converge much more quickly than other Markov-Chain Monte-
Carlo (MCMC) algorithms especially for high-dimensional models (Hoffman and Gelman
2014; Betancourt et al. 2014; Betancourt 2017). An excellent non-mathematical introduction
to Hamiltonian Monte Carlo can be found in Betancourt (2017).
Stan comes with its own programming language, allowing for great modeling flexibility Stan
Development Team (2017c); Carpenter et al. (2017)). Many researchers may still be hesitent
to use Stan directly, as every model has to be written, debugged and possibly also opti-
mized. This may be a time-consuming and error-prone process even for researchers familiar
with Bayesian inference. The brms package (Bürkner 2017), presented in this paper, aims
to remove these hurdles for a wide range of regression models by allowing the user to benefit
from the merits of Stan by using extended lme4-like (Bates, Mächler, Bolker, and Walker
2015) formula syntax, with which many R users are familiar with. It offers much more
than writing efficient and human-readable Stan code: brms comes with many post-processing
and visualization functions, for instance to perform posterior predictive checks, leave-one-out
cross-validation, visualization of estimated effects, and prediction of new data. The overar-
ching aim is to have one general framework for regression modeling, which offers everything
required to successfully apply regression models to complex data. To date, it already replaces
and extends the functionality of dozens of other R packages, each of which is restricted to
specific regression models1.
The purpose of the present article is to provide an introduction of the advanced multilevel
formula syntax implemented in brms, which allows to fit a wide and growing range of non-
linear distributional multilevel models. A general overview of the package is already given
in Bürkner (2017). Accordingly, the present article focuses on more recent developments.
We begin by explaining the underlying structure of distributional models. Next, the formula
syntax of lme4 and its extensions implemented in brms are explained. Four examples that
demonstrate the use of the new syntax are discussed in detail. Afterwards, the functionality of

1Unfortunately, due to the implementation via Stan, it is not easily possible for users to define their own
response distributions and run them via brms. If you feel that a response distribution is missing in brms,
please open an issue on GitHub (https://github.com/paul-buerkner/brms).

https://github.com/paul-buerkner/brms
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brms is compared with that of rstanarm (Stan Development Team 2017a) and MCMCglmm
(Hadfield 2010). We end by describing future plans for extending the package.

2. Model description
The core of models implemented in brms is the prediction of the response y through predicting
all parameters θp of the response distribution D, which is also called the model family in
many R packages. We write

yi ∼ D(θ1i, θ2i, ...)

to stress the dependency on the ith observation. Every parameter θp may be regressed on its
own predictor term ηp transformed by the inverse link function fp that is θpi = fp(ηpi)2. Such
models are typically refered to as distributional models3. Details about the parameterization
of each family are given in vignette("brms_families").
Suppressing the index p for simplicity, a predictor term η can generally be written as

η = Xβ + Zu+
K∑
k=1

sk(xk)

In this equation, β and u are the coefficients at population-level and group-level respectively
and X,Z are the corresponding design matrices. The terms sk(xk) symbolize optional smooth
functions of unspecified form based on covariates xk fitted via splines (see Wood (2011) for
the underlying implementation in the mgcv package) or Gaussian processes (Williams and
Rasmussen 1996). The response y as well as X, Z, and xk make up the data, whereas β, u,
and the smooth functions sk are the model parameters being estimated. The coefficients β
and u may be more commonly known as fixed and random effects, but I avoid theses terms
following the recommendations of Gelman and Hill (2006). Details about prior distributions
of β and u can be found in Bürkner (2017) and under help("set_prior").
As an alternative to the strictly additive formulation described above, predictor terms may
also have any form specifiable in Stan. We call it a non-linear predictor and write

η = f(c1, c2, ..., φ1, φ2, ...)

The structure of the function f is given by the user, cr are known or observed covariates,
and φs are non-linear parameters each having its own linear predictor term ηφs of the form
specified above. In fact, we should think of non-linear parameters as placeholders for linear
predictor terms rather than as parameters themselves. A frequentist implementation of such
models, which inspired the non-linear syntax in brms, can be found in the nlme package
(Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2016).

3. Extended multilevel formula syntax
The formula syntax applied in brms builds upon the syntax of the R package lme4 (Bates
et al. 2015). First, we will briefly explain the lme4 syntax used to specify multilevel models

2A parameter can also be assumed constant across observations so that a linear predictor is not required.
3The models described in Bürkner (2017) are a sub-class of the here described models.
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and then introduce certain extensions that allow to specify much more complicated models
in brms. An lme4 formula has the general form

response ~ pterms + (gterms | group)

The pterms part contains the population-level effects that are assumed to be the same across
obervations. The gterms part contains so called group-level effects that are assumed to vary
accross grouping variables specified in group. Multiple grouping factors each with multiple
group-level effects are possible. Usually, group contains only a single variable name pointing
to a factor, but you may also use g1:g2 or g1/g2, if both g1 and g2 are suitable grouping
factors. The : operator creates a new grouping factor that consists of the combined levels
of g1 and g2 (you could think of this as pasting the levels of both factors together). The /
operator indicates nested grouping structures and expands one grouping factor into two or
more when using multiple / within one term. If, for instance, you write (1 | g1/g2), it will
be expanded to (1 | g1) + (1 | g1:g2). Instead of | you may use || in grouping terms to
prevent group-level correlations from being modeled. This may be useful in particular when
modeling so many group-level effects that convergence of the fitting algorithms becomes an
issue due to model complexity. One limitation of the || operator in lme4 is that it only
splits up terms so that columns of the design matrix originating from the same term are still
modeled as correlated (e.g., when coding a categorical predictor; see the mixed function of
the afex package by Singmann, Bolker, and Westfall (2015) for a way to avoid this behavior).
While intuitive and visually appealing, the classic lme4 syntax is not flexible enough to allow
for specifying the more complex models supported by brms. In non-linear or distributional
models, for instance, multiple parameters are predicted, each having their own population and
group-level effects. Hence, multiple formulas are necessary to specify such models4. Then,
however, specifying group-level effects of the same grouping factor to be correlated across
formulas becomes complicated. The solution implemented in brms (and currently unique to
it) is to expand the | operator into |<ID>|, where <ID> can be any value. Group-level terms
with the same ID will then be modeled as correlated if they share same grouping factor(s)5.
For instance, if the terms (x1|ID|g1) and (x2|ID|g1) appear somewhere in the same or
different formulas passed to brms, they will be modeled as correlated.
Further extensions of the classical lme4 syntax refer to the group part. It is rather limited
in its flexibility since only variable names combined by : or / are supported. We propose
two extensions of this syntax: Firstly, group can generally be split up in its terms so that,
say, (1 | g1 + g2) is expanded to (1 | g1) + (1 | g2). This is fully consistent with the
way / is handled so it provides a natural generalization to the existing syntax. Secondly,
there are some special grouping structures that cannot be expressed by simply combining
grouping variables. For instance, multi-membership models cannot be expressed this way. To
overcome this limitation, we propose wrapping terms in group within special functions that
allow specifying alternative grouping structures: (gterms | fun(group)). In brms, there

4Actually, it is possible to specify multiple model parts within one formula using interactions terms for
instance as implemented in MCMCglmm (Hadfield 2010). However, this syntax is limited in flexibility and
requires a rather deep understanding of the way R parses formulas, thus often being confusing to users.

5It might even be further extended to |fun(<ID>)|, where fun defines the type of correlation structure,
defaulting to unstructured that is estimating the full correlation matrix. The fun argument is not yet supported
by brms but could be supported in the future if other correlation structures, such as compound symmetry or
Toeplitz, turn out to have reasonable practical applications and effective implementations in Stan.
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are currently two such functions implemented, namely gr for the default behavior and mm for
multi-membership terms. To be compatible with the original syntax and to keep formulas
short, gr is automatically added internally if none of these functions is specified.
While some non-linear relationships, such as quadratic relationships, can be expressed within
the basic R formula syntax, other more complicated ones cannot. For this reason, it is possible
in brms to fully specify non-linear predictor terms similar to how it is done in nlme, but fully
compatible with the extended multilevel syntax described above. Suppose, for instance, we
want to model the non-linear growth curve

y = b1(1 − exp(−(x/b2)b3)

between y and x with parameters b1, b2, and b3 (see Example 3 in this paper for an imple-
mentation of this model with real data). Furthermore, we want all three parameters to vary
by a grouping variable g and model those group-level effects as correlated. Additionally b1
should be predicted by a covariate z. We can express this in brms using multiple formulas,
one for the non-linear model itself and one per non-linear parameter:

y ~ b1 * (1 - exp(-(x / b2) ^ b3)
b1 ~ z + (1|ID|g)
b2 ~ (1|ID|g)
b3 ~ (1|ID|g)

The first formula will not be evaluated using standard R formula parsing, but instead taken
literally. In contrast, the formulas for the non-linear parameters will be evaluated in the usual
way and are compatible with all terms supported by brms. Note that we have used the above
described ID-syntax to model group-level effects as correlated across formulas.
There are other syntax extensions implemented in brms that do not directly target group-
ing terms. Firstly, there are terms formally included in the pterms part that are handled
separately. The most prominent examples are smooth terms specified through the s and t2
functions of the mgcv package (Wood 2011). Other examples are category specific effects
cs, monotonic effects mo, noise-free effects me, or Gaussian process terms gp. The former is
explained in Bürkner (2017), while the latter three are documented in help(brmsformula).
Internally, these terms are extracted from pterms and not included in the construction of
the population-level design matrix. Secondly, making use of the fact that | is unused on
the left-hand side of ∼ in formula, additional information on the response variable may be
specified via

response | aterms ~ <predictor terms>

The aterms part may contain multiple terms of the form fun(<variable>) separated by
+ each providing special information on the response variable. This allows among others
to weight observations, provide known standard errors for meta-analysis, or model cen-
sored or truncated data. As it is not the main topic of the present paper, we refer to
help("brmsformula") and help("addition-terms") for more details.
To set up the model formulas and combine them into one object, brms defines the brmsformula
(or short bf) function. Its output can then be passed to the parse_bf function, which splits
up the formulas in separate parts and prepares them for the generation of design matrices
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and related data. Other packages may re-use these functions in their own routines making it
easier to offer support for the above described multilevel syntax.

4. Examples
The idea of brms is to provide one unified framework for multilevel regression models in R. As
such, the above described formula syntax in all of its variations can be applied in combination
with all response distributions supported by brms (currently about 35 response distributions
are supported; see help("brmsfamily") and vignette("brms_families") for an overview).
In this section, we will discuss four examples in detail, each focusing on certain aspects of the
syntax. They are chosen to provide a broad overview of the modeling options. The first is
about the number of fish caught be different groups of people. It does not actually contain any
multilevel structure, but helps in understanding how to set up formulas for different model
parts. The second example is about housing rents in Munich. We model the data using splines
and a distributional regression approach. The third example is about cumulative insurance
loss payments across several years, which is fitted using a rather complex non-linear multilevel
model. Finally, the fourth example is about the performance of school children, who change
school during the year, thus requiring a multi-membership model.
Despite not being covered in the four examples, there are a few more modeling options
that we want to briefly describe. First, brms allows fitting so called phylogenetic mod-
els. These models are relevant in evolutionary biology when data of many species are an-
alyzed at the same time. Species are not independent as they come from the same phy-
logenetic tree, implying that different levels of the same grouping-factor (i.e., species) are
likely correlated. There is a whole vignette dedicated to this topic, which can be found via
vignette("brms_phylogenetics"). Second, there is a canonical way to handle ordinal pre-
dictors, without falsely assuming they are either categorical or continuous. We call them
monotonic effects and discuss them in vignette("brms_monotonic"). Last but not least, it
is possible to account for measurement error in both response and predictor variables. This
is often ignored in applied regression modeling (Westfall and Yarkoni 2016), although mea-
surement error is very common in all scientific fields making use of observational data. There
is no vignette yet covering this topic, but one will be added in the future. In the meantime,
help("brmsformula") is the best place to start learning about such models as well as about
other details of the brms formula syntax.

4.1. Example 1: Catching fish

An important application of the distributional regression framework of brms are so called
zero-inflated and hurdle models. These models are helpful whenever there are more zeros in
the response variable than one would naturally expect. Here, we consider an example dealing
with the number of fish caught by various groups of people. On the UCLA website (https:
//stats.idre.ucla.edu/stata/dae/zero-inflated-poisson-regression), the data are
described as follows: “The state wildlife biologists want to model how many fish are being
caught by fishermen at a state park. Visitors are asked how long they stayed, how many
people were in the group, were there children in the group and how many fish were caught.
Some visitors do not fish, but there is no data on whether a person fished or not. Some
visitors who did fish did not catch any fish so there are excess zeros in the data because of

https://stats.idre.ucla.edu/stata/dae/zero-inflated-poisson-regression
https://stats.idre.ucla.edu/stata/dae/zero-inflated-poisson-regression
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the people that did not fish.”

zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
zinb$camper <- factor(zinb$camper, labels = c("no", "yes"))
head(zinb)

nofish livebait camper persons child xb zg count
1 1 0 no 1 0 -0.8963146 3.0504048 0
2 0 1 yes 1 0 -0.5583450 1.7461489 0
3 0 1 no 1 0 -0.4017310 0.2799389 0
4 0 1 yes 2 1 -0.9562981 -0.6015257 0
5 0 1 no 1 0 0.4368910 0.5277091 1
6 0 1 yes 4 2 1.3944855 -0.7075348 0

As predictors we choose the number of people per group, the number of children, as well
as whether or not the group consists of campers. Many groups may not catch any fish just
because they do not try and so we fit a zero-inflated Poisson model. For now, we assume a
constant zero-inflation probability across observations.

fit_zinb1 <- brm(count ~ persons + child + camper, data = zinb,
family = zero_inflated_poisson("log"))

The model is readily summarized via

summary(fit_zinb1)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

Data: zinb (Number of observations: 250)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.01 0.17 -1.34 -0.67 2171 1
persons 0.87 0.04 0.79 0.96 2188 1
child -1.36 0.09 -1.55 -1.18 1790 1
camper 0.80 0.09 0.62 0.98 2950 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

zi 0.41 0.04 0.32 0.49 2409 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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A graphical summary is available through

conditional_effects(fit_zinb1)
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Figure 1: Conditional effects plots of the fit_zinb1 model.

(see Figure 1). In fact, the conditional_effects method turned out to be so powerful in
visualizing effects of predictors that I am using it almost as frequently as summary. According
to the parameter estimates, larger groups catch more fish, campers catch more fish than non-
campers, and groups with more children catch less fish. The zero-inflation probability zi
is pretty large with a mean of 41%. Please note that the probability of catching no fish is
actually higher than 41%, but parts of this probability are already modeled by the Poisson
distribution itself (hence the name zero-inflation). If you want to treat all zeros as originating
from a separate process, you can use hurdle models instead (not shown here).
Now, we try to additionally predict the zero-inflation probability by the number of children.
The underlying reasoning is that we expect groups with more children to not even try catch-
ing fish, since children often lack the patience required for fishing. From a purely statistical
perspective, zero-inflated (and hurdle) distributions are a mixture of two processes and pre-
dicting both parts of the model is natural and often very reasonable to make full use of the
data.

fit_zinb2 <- brm(bf(count ~ persons + child + camper, zi ~ child),
data = zinb, family = zero_inflated_poisson())

To transform the linear predictor of zi into a probability, brms applies the logit-link, which
takes values within [0, 1] and returns values on the real line. Thus, it allows the transition
between probabilities and linear predictors.

summary(fit_zinb2)

Family: zero_inflated_poisson (log)
Formula: count ~ persons + child + camper

zi ~ child
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Data: zinb (Number of observations: 250)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept -1.07 0.18 -1.43 -0.73 2322 1
persons 0.89 0.05 0.80 0.98 2481 1
child -1.17 0.10 -1.37 -1.00 2615 1
camper 0.78 0.10 0.60 0.96 3270 1
zi_Intercept -0.95 0.27 -1.52 -0.48 2341 1
zi_child 1.21 0.28 0.69 1.79 2492 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

According to the model, trying to fish with children not only decreases the overall number fish
caught (as implied by the Poisson part of the model) but also drastically increases your chance
of catching no fish at all (as implied by the zero-inflation part), possibly because groups with
more children spend less time or no time at all fishing. Comparing model fit via leave-one-out
cross validation as implemented in the loo package (Vehtari, Gelman, and Gabry 2016a,b).

LOO(fit_zinb1, fit_zinb2)

LOOIC SE
fit_zinb1 1639.52 363.30
fit_zinb2 1621.35 362.39
fit_zinb1 - fit_zinb2 18.16 15.71

reveals that the second model using the number of children to predict both model parts has
better fit. However, when considering the standard error of the LOOIC difference, improvement
in model fit is apparently modest and not substantial. More examples of distributional model
can be found in vignette("brms_distreg").

4.2. Example 2: Housing rents

In their book about regression modeling, Fahrmeir, Kneib, Lang, and Marx (2013) use an
example about the housing rents in Munich from 1999. The data contains information about
roughly 3000 apartments including among others the absolute rent (rent), rent per square
meter (rentsqm), size of the apartment (area), construction year (yearc), and the district in
Munich (district), where the apartment is located. The data can be found in the gamlss.data
package (Stasinopoulos and Rigby 2016):

data("rent99", package = "gamlss.data")
head(rent99)



10 Advanced Bayesian Multilevel Modeling with brms

rent rentsqm area yearc location bath kitchen cheating district
1 109.9487 4.228797 26 1918 2 0 0 0 916
2 243.2820 8.688646 28 1918 2 0 0 1 813
3 261.6410 8.721369 30 1918 1 0 0 1 611
4 106.4103 3.547009 30 1918 2 0 0 0 2025
5 133.3846 4.446154 30 1918 2 0 0 1 561
6 339.0256 11.300851 30 1918 2 0 0 1 541

Here, we aim at predicting the rent per square meter with the size of the apartment as well
as the construction year, while taking the district of Munich into account. As the effect of
both predictors on the rent is of unknown non-linear form, we model these variables using a
bivariate tensor spline (Wood, Scheipl, and Faraway 2013). The district is accounted for via
a varying intercept.

fit_rent1 <- brm(rentsqm ~ t2(area, yearc) + (1|district), data = rent99,
chains = 2, cores = 2)

We fit the model using just two chains (instead of the default of four chains) on two processor
cores to reduce the model fitting time for the purpose of the present paper. In general, using
the default option of four chains (or more) is recommended.

summary(fit_rent1)

Family: gaussian(identity)
Formula: rentsqm ~ t2(area, yearc) + (1 | district)

Data: rent99 (Number of observations: 3082)
Samples: 2 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 2000
ICs: LOO = NA; WAIC = NA; R2 = NA

Smooth Terms:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sds(t2areayearc_1) 4.93 2.32 1.61 10.77 1546 1.00
sds(t2areayearc_2) 5.78 2.87 1.58 13.15 1175 1.00
sds(t2areayearc_3) 8.09 3.19 3.66 16.22 1418 1.00

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.48 0.73 494 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 7.80 0.11 7.59 8.02 2000 1.00
t2areayearc_1 -1.00 0.09 -1.15 -0.83 2000 1.00
t2areayearc_2 0.75 0.17 0.43 1.09 2000 1.00
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t2areayearc_3 -0.07 0.16 -0.40 0.24 1579 1.00

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 1.95 0.03 1.90 2.01 2000 1.00

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

For models including splines, the output of summary is not tremendously helpful, but we
get at least some information. Firstly, the credible intervals of the standard deviations of
the coefficients forming the splines (under ’Smooth Terms’) are sufficiently far away from
zero to indicate non-linearity in the (combined) effect of area and yearc. Secondly, even
after controlling for these predictors, districts still vary with respect to rent per square meter
by a sizable amount as visible under ’Group-Level Effects’ in the output. To further
understand the effect of the predictor, we apply graphical methods:

conditional_effects(fit_rent1, surface = TRUE)

In Figure 2, the conditional effects of both predictors are displayed, while the respective other
predictor is fixed at its mean. In Figure 3, the combined effect is shown, clearly demonstrating
an interaction between the variables. In particular, housing rents appear to be highest for
small and relatively new apartments.
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Figure 2: Conditional effects plots of the fit_rent1 model for single predictors.

In the above example, we only considered the mean of the response distribution to vary by
area and yearc, but this my not necessarily reasonable assumption, as the variation of the
response might vary with these variables as well. Accordingly, we fit splines and effects of
district for both the location and the scale parameter, which is called sigma in Gaussian
models.

bform <- bf(rentsqm ~ t2(area, yearc) + (1|ID1|district),
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Figure 3: Surface plot of the fit_rent1 model for the combined effect of area and yearc.

sigma ~ t2(area, yearc) + (1|ID1|district))
fit_rent2 <- brm(bform, data = rent99, chains = 2, cores = 2)

If not otherwise specified, sigma is predicted on the log-scale to ensure it is positive no matter
how the predictor term looks like. Instead of (1|district) as in the previous model, we now
use (1|ID1|district) in both formulas. This results in modeling the varying intercepts of
both model parts as correlated (see the description of the ID-syntax above). The group-level
part of the summary output looks as follows:

Group-Level Effects:
~district (Number of levels: 336)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 0.60 0.06 0.49 0.73 744 1.00
sd(sigma_Intercept) 0.11 0.02 0.06 0.15 751 1.00
cor(Intercept,sigma_Intercept) 0.72 0.17 0.35 0.98 648 1.00

As visible from the positive correlation of the intercepts, districts with overall higher rent per
square meter have higher variation at the same time. Lastly, we want to turn our attention
to the splines. While conditional_effects is used to visualize effects of predictors on the
expected response, conditional_smooths is used to show just the spline parts of the model:

conditional_smooths(fit_rent2)

The plot on the left-hand side of Figure 4 resembles the one in Figure 3, but the scale is
different since only the spline is plotted. The right-hand side of 4 shows the spline for sigma.
Since we apply the log-link on sigma by default the spline is on the log-scale as well. As
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visible in the plot, the variation in the rent per square meter is highest for relatively small
and old apartments, while the variation is smallest for medium to large apartments build
around the 1960s.
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Figure 4: Plots showing the smooth terms of the fit_rent2 model.

4.3. Example 3: Insurance loss payments

On his blog, Markus Gesmann predicts the growth of cumulative insurance loss payments
over time, originated from different origin years (see http://www.magesblog.com/2015/11/
loss-developments-via-growth-curves-and.html). We will use a slightly simplified ver-
sion of his model for demonstration purposes here. It looks as follows:

cumAY,dev ∼ N(µAY,dev, σ)

µAY,dev = ultAY

(
1 − exp

(
−
(
dev

θ

)ω))
The cumulative insurance payments cum will grow over time, and we model this dependency
using the variable dev. Further, ultAY is the (to be estimated) ultimate loss of accident each
year. It constitutes a non-linear parameter in our framework along with the parameters θ
and ω, which are responsible for the growth of the cumulative loss and are for now assumed
to be the same across years. We load the data

url <- paste0("https://raw.githubusercontent.com/mages/",
"diesunddas/master/Data/ClarkTriangle.csv")

loss <- read.csv(url)
head(loss)

AY dev cum
1 1991 6 357.848
2 1991 18 1124.788
3 1991 30 1735.330
4 1991 42 2182.708

http://www.magesblog.com/2015/11/loss-developments-via-growth-curves-and.html
http://www.magesblog.com/2015/11/loss-developments-via-growth-curves-and.html
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5 1991 54 2745.596
6 1991 66 3319.994

and translate the proposed model into a non-linear brms model.

nlform <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|AY), omega ~ 1, theta ~ 1, nl = TRUE)

nlprior <- c(prior(normal(5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta"))

fit_loss1 <- brm(formula = nlform, data = loss, family = gaussian(),
prior = nlprior, control = list(adapt_delta = 0.9))

In the above functions calls, quite a few things are going on. The formulas are wrapped
in bf to combine them into one object. The first formula specifies the non-linear model.
We set argument nl = TRUE so that brms takes this formula literally and instead of using
standard R formula parsing. We specify one additional formula per non-linear parameter
(a) to clarify what variables are covariates and what are parameters and (b) to specify the
predictor term for the parameters. We estimate a group-level effect of accident year (variable
AY) for the ultimate loss ult. This also shows nicely how a non-linear parameter is actually a
placeholder for a linear predictor, which in the case of ult, contains only a varying intercept
for year. Both omega and theta are assumed to be constant across observations so we just
fit a population-level intercept.
Priors on population-level effects are required and, for the present model, are actually manda-
tory to ensure identifiability. Otherwise, we may observe that different Markov chains con-
verge to different parameter regions as multiple posterior distribution are equally plausible.
Setting prior distributions is a difficult task especially in non-linear models. It requires some
experience and knowledge both about the model that is being fitted and about the data at
hand. Additionally, there is more to keep in mind to optimize the sampler’s performance:
Firstly, using non- or weakly informative priors in non-linear models often leads to problems
even if the model is generally identified. For instance, if a zero-centered and reasonably wide
prior such as normal(0, 10000) it set on ult, there is little information about theta and
omega for samples of ult being close to zero, which may lead to convergence problems. Sec-
ondly, Stan works best when parameters are roughly on the same order of magnitude (Stan
Development Team 2017b). In the present example, ult is of three orders larger than omega.
Still, the sampler seems to work quite well, but this may not be true for other models. One
solution is to rescale parameters before model fitting. For instance, for the present example,
one could have downscaled ult by replacing it with ult * 1000 and correspondingly the
normal(5000, 1000) prior with normal(5, 1).
In the control argument we increase adapt_delta to get rid of a few divergent transitions
(cf. Stan Development Team, 2017b; Bürkner, 2017). Again the model is summarized via

summary(fit_loss1)
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Family: gaussian (identity)
Formula: cum ~ ult * (1 - exp(-(dev / theta)^omega))

ult ~ 1 + (1 | AY)
omega ~ 1
theta ~ 1

Data: loss (Number of observations: 55)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~AY (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(ult_Intercept) 745.74 231.31 421.05 1306.04 916 1

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

ult_Intercept 5273.70 292.34 4707.11 5852.28 798 1
omega_Intercept 1.34 0.05 1.24 1.43 2167 1
theta_Intercept 46.07 2.09 42.38 50.57 1896 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 139.93 15.52 113.6 175.33 2358 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

as well as

conditional_effects(fit_loss1)

(see Figure 5). We can also visualize the cumulative insurance loss over time separately for
each year.

conditions <- data.frame(AY = unique(loss$AY))
rownames(conditions) <- unique(loss$AY)
me_year <- conditional_effects(fit_loss1, conditions = conditions,

re_formula = NULL, method = "predict")
plot(me_year, ncol = 5, points = TRUE)

(see Figure 6). It is evident that there is some variation in cumulative loss across accident
years, for instance due to natural disasters happening only in certain years. Further, we
see that the uncertainty in the predicted cumulative loss is larger for later years with fewer
available data points.
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Figure 5: Conditional effects plots of the fit_loss1 model.

In the above model, we considered omega and delta to be constant across years, which may
not necessarily be true. We can easily investigate this by fitting varying intercepts for all three
non-linear parameters also estimating group-level correlation using the above introduced ID
syntax.

nlform2 <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1|ID1|AY), omega ~ 1 + (1|ID1|AY),
theta ~ 1 + (1|ID1|AY), nl = TRUE)

fit_loss2 <- update(fit_loss1, formula = nlform2,
control = list(adapt_delta = 0.90))

We could have also specified all predictor terms more conveniently within one formula as

ult + omega + theta ~ 1 + (1|ID1|AY)

because the structure of the predictor terms is identical. To compare model fit, we perform
leave-one-out cross-validation.

LOO(fit_loss1, fit_loss2)

LOOIC SE
fit_loss1 715.44 19.24
fit_loss2 720.60 19.85
fit_loss1 - fit_loss2 -5.15 5.34
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Figure 6: Conditional effects plots of the fit_loss1 model separately for each accident year.

Since smaller values indicate better expected out-of-sample predictions and thus better model
fit, the simpler model that only has a varying intercept over parameter ult is preferred. This
may not be overly surprising, given that three varying intercepts as well as three group-level
correlations are probably overkill for data containing only 55 observations. Nevertheless, it
nicely demonstrates how to apply the ID syntax in practice. More examples of non-linear
models can be found in vignette("brms_nonlinear").

4.4. Example 4: Performance of school children

Suppose that we want to predict the performance of students in the final exams at the end of
the year. There are many variables to consider, but one important factor will clearly be school
membership. Schools might differ in the ratio of teachers and students, the general quality of
teaching, in the cognitive ability of the students they draw, or other factors we are not aware
of that induce dependency among students of the same school. Thus, it is advised to apply a
multilevel modeling techniques including school membership as a group-level term. Of course,
we should account for class membership and other levels of the educational hierarchy as well,
but for the purpose of the present example, we will focus on schools only. Usually, accounting
for school membership is pretty-straight forward by simply adding a varying intercept to the
formula: (1 | school). However, a non-negligible number of students might change schools
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during the year. This would result in a situation where one student is a member of multiple
schools and so we need a multi-membership model. Setting up such a model not only requires
information on the different schools students attend during the year, but also the amount of
time spend at each school. The latter can be used to weight the influence each school has
on its students, since more time attending a school will likely result in greater influence. For
now, let us assume that students change schools maximally once a year and spend equal time
at each school. We will later see how to relax these assumptions.
Real educational data are usually relatively large and complex so that we simulate our own
data for the purpose of this tutorial paper. We simulate 10 schools and 1000 students, with
each school having the same expected number of 100 students. We model 10% of students as
changing schools.

data_mm <- sim_multi_mem(nschools = 10, nstudents = 1000, change = 0.1)
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.5 0.5 16.27422
2 10 9 0.5 0.5 18.71387
3 5 3 0.5 0.5 23.65319
4 3 5 0.5 0.5 22.35204
5 5 3 0.5 0.5 16.38019
6 10 6 0.5 0.5 17.63494

The code of function sim_multi_mem can be found in the online supplement of the present
paper. For reasons of better illustration, students changing schools appear in the first rows
of the data. Data of students being only at a single school looks as follows:

data_mm[101:106, ]

s1 s2 w1 w2 y
101 2 2 0.5 0.5 27.247851
102 9 9 0.5 0.5 24.041427
103 4 4 0.5 0.5 12.575001
104 2 2 0.5 0.5 21.203644
105 4 4 0.5 0.5 12.856166
106 4 4 0.5 0.5 9.740174

Thus, school variables are identical, but we still have to specify both in order to pass the
data appropriately. Incorporating no other predictors into the model for simplicity, a multi-
membership model is specified as

fit_mm <- brm(y ~ 1 + (1 | mm(s1, s2)), data = data_mm)

The only new syntax element is that multiple grouping factors (s1 and s2) are wrapped in mm.
Everything else remains exactly the same. Note that we did not specify the relative weights
of schools for each student and thus, by default, equal weights are assumed.
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summary(fit_mm)

Family: gaussian (identity)
Formula: y ~ 1 + (1 | mm(s1, s2))

Data: data_mm (Number of observations: 1000)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000
WAIC: Not computed

Group-Level Effects:
~mms1s2 (Number of levels: 10)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(Intercept) 2.76 0.82 1.69 4.74 682 1.01

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 19 0.93 17.06 20.8 610 1

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 3.58 0.08 3.43 3.75 2117 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

With regard to the assumptions made in the above example, it is unlikely that all children
who change schools stay in both schools equally long. To relax this assumption, we have to
specify weights. First, we amend the simulated data to contain non-equal weights for students
changing schools. For all other students, weighting does of course not matter as they stay in
the same school anyway.

data_mm[1:100, "w1"] <- runif(100, 0, 1)
data_mm[1:100, "w2"] <- 1 - data_mm[1:100, "w1"]
head(data_mm)

s1 s2 w1 w2 y
1 8 9 0.3403258 0.65967423 16.27422
2 10 9 0.1771435 0.82285652 18.71387
3 5 3 0.9059811 0.09401892 23.65319
4 3 5 0.4432007 0.55679930 22.35204
5 5 3 0.8052026 0.19479738 16.38019
6 10 6 0.5610243 0.43897567 17.63494

Incorporating these weights into the model is straight forward.

fit_mm2 <- brm(y ~ 1 + (1 | mm(s1, s2, weights = cbind(w1, w2))),
data = data_mm)
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The summary output is similar to the previous, so we do not show it here. The second
assumption that students change schools only once a year, may also easily be relaxed by
providing more than two grouping factors, say, mm(s1, s2, s3).

5. Comparison between packages

Over the years, many R packages have been developed that implement MLMs, each being
more or less general in their supported models. In Bürkner (2017), I compared brms with
lme4 (Bates et al. 2015), MCMCglmm (Hadfield 2010), rstanarm (Stan Development Team
2017a), and rethinking (McElreath 2017). Since then, quite a few new features have been
added in particular to brms and rstanarm. Accordingly, in the present paper, I will update
these comparisons, but focus on brms, rstanarm, and MCMCglmm as the possibly most im-
portant R packages implementing Bayesian MLMs. While brms and rstanarm are both based
on the probabilistic programming language Stan, MCMCglmm implements its own custom
MCMC algorithm. Modeling options and other important information of these packages are
summarized in Table 1 and will be discussed in detail below.
Regarding general model classes, all three packages support the most common types such as
linear, count data and certain survival models. Currently, brms and MCMCglmm provide
more flexibility when modeling categorical and ordinal data. Additionally, they offer support
for zero-inflated and hurdle models to account for access zeros in the data (see Example 1
above). For survival / time-to-event models, rstanarm offers great flexibility via the stan_jm
function, which allows for complex association structures between time-to-event data and one
or more models of longitudinal covariates (for details see https://cran.r-project.org/
web/packages/rstanarm/vignettes/jm.html). Model classes currently specific to brms
are robust linear models using Student’s t-distribution (family student) as well as response
times models via the exponentially modified Gaussian (family exgaussian) distribution or
the Wiener diffusion model (family wiener). The latter allows to simultaneously model
dichotomous decisions and their corresponding response times (for a detailed example see
http://singmann.org/wiener-model-analysis-with-brms-part-i/).
All three packages offer many additional modeling options, with brms currently having the
greatest flexibility (see Table 1 for a summary). Moreover, the packages differ in the general
framework, in which they are implemented: brms and MCMCglmm each come with a single
model fitting function (brm and MCMCglmm respectively), through which all of their models can
be specified. Further, their framework allows to seamlessly combine most modeling options
with each other in the same model. In contrast, the approach of rstanarm is to emulate
existing functions of other packages. This has the advantage of an easier transition between
classical and Bayesian models, since the syntax used to specify models stays the same. How-
ever, it comes with the main disadvantage that many modeling options cannot be used in
combination within the same model.
Information criteria are available in all three packages. The advantages of WAIC and LOO
implemented in brms and rstanarm, are their less restrictive assumptions and that their stan-
dard errors can be easily estimated to get a better sense of the uncertainty in the criteria.
Comparing the prior options of the packages, brms offers a little more flexibility than MCM-
Cglmm and rstanarm, as virtually any prior distribution can be applied on population-level
effects as well as on the standard deviations of group-level effects. In addition, I believe

https://cran.r-project.org/web/packages/rstanarm/vignettes/jm.html
https://cran.r-project.org/web/packages/rstanarm/vignettes/jm.html
http://singmann.org/wiener-model-analysis-with-brms-part-i/
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that the way priors are specified in brms is more intuitive as it is directly evident what
prior is actually applied. In brms, Bayes factors are available both via Savage-Dickey ratios
(Wagenmakers, Lodewyckx, Kuriyal, and Grasman 2010) and bridge-sampling (Gronau and
Singmann 2017), while rstanarm allows for the latter option. For a detailed comparison with
respect to sampling efficiency, see Bürkner (2017).

6. Conclusion
The present paper is meant to introduce R users and developers to the extended lme4 formula
syntax applied in brms. Only a subset of modeling options were discussed in detail, which
ensured the paper was not too broad. For some of the more basic models that brms can fit,
see Bürkner (2017). Many more examples can be found in the growing number of vignettes
accompanying the package (see vignette(package = "brms") for an overview).
To date, brms is already one of the most flexible R packages when it comes to regression
modeling. However, for the future, there are quite a few more features that I am planning
to implement (see https://github.com/paul-buerkner/brms/issues for the current list of
issues). In addition to smaller, incremental updates, I have two specific features in mind: (1)
latent variables estimated via confirmatory factor analysis and (2) missing value imputation.
I receive ideas and suggestions from users almost every day – for which I am always grateful
– and so the list of features that will be implemented in the proceeding versions of brms will
continue to grow.
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