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Where are we so far?

1. Introduction: vignette("gcplyr")
2. Importing and transforming data: vignette("import_transform")
3. Incorporating design information: vignette("incorporate_designs")
4. Pre-processing and plotting your data: vignette("preprocess_plot")
5. Processing your data: vignette("process")
6. Analyzing your data: vignette("analyze")
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7. Dealing with noise: vignette("noise")
8. Statistics, merging other data, and other resources: vignette("conclusion")

Previously, we gave a quick demonstration of what gcplyr can do. Here, we’re going into more detail about
how to import your data into R and and transform it into a better layout.

If you haven’t already, load the necessary packages.

library(gcplyr)

Data layouts

Growth curve data and designs can be organized in one of three different layouts: block-shaped, wide-shaped,
and tidy-shaped, described below.

Tidy-shaped data is the best layout for analyses, but most plate readers output block-shaped or wide-shaped
data, and most user-created design files will be block-shaped. Thus, gcplyr works by reshaping block-shaped
and wide-shaped data into tidy-shaped data, then running analyses.

So, how can you tell which layout your data is in?

Block-shaped

In block-shaped data, the organization of the data corresponds directly with the layout of the physical multi-
well plate it was generated from. For instance, a data point from the third row and fourth column of the
data.frame will be from the well in the third row and fourth column in the physical plate. A timeseries
of growth curve data that is block-shaped will consist of many separate block-shaped data.frames, each
corresponding to a single timepoint.

For example, here is a block-shaped data.frame of a 96-well plate (with “. . . ” indicating Columns 4 - 10,
not shown). In this example, all the data shown would be from a single timepoint.

Column 1 Column 2 Column 3 . . . Column 11 Column 12
Row A 0.060 0.083 0.086 . . . 0.082 0.085
Row B 0.099 0.069 0.065 . . . 0.066 0.078
Row C 0.081 0.071 0.070 . . . 0.064 0.084
Row D 0.094 0.075 0.065 . . . 0.067 0.087
Row E 0.052 0.054 0.072 . . . 0.079 0.065
Row F 0.087 0.095 0.091 . . . 0.075 0.058
Row G 0.095 0.079 0.099 . . . 0.063 0.075
Row H 0.056 0.069 0.070 . . . 0.053 0.078

Wide-shaped

In wide-shaped data, each column of the dataframe corresponds to a single well from the plate, and each
row of the dataframe corresponds to a single timepoint. Typically, headers contain the well names.

For example, here is a wide-shaped dataframe of a 96-well plate (here, “. . . ” indicates the 91 columns A4 -
H10, not shown). Each row of this dataframe corresponds to a single timepoint.

Time A1 A2 A3 . . . H11 H12
0 0.060 0.083 0.086 . . . 0.053 0.078
1 0.012 0.166 0.172 . . . 0.106 0.156
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Time A1 A2 A3 . . . H11 H12
2 0.024 0.332 0.344 . . . 0.212 0.312
3 0.048 0.664 0.688 . . . 0.424 0.624
4 0.096 1.128 0.976 . . . 0.848 1.148
5 0.162 1.256 1.152 . . . 1.096 1.296
6 0.181 1.292 1.204 . . . 1.192 1.352
7 0.197 1.324 1.288 . . . 1.234 1.394

Tidy-shaped

In tidy-shaped data, there is a single column that contains all the plate reader measurements, with each
unique measurement having its own row. Additional columns specify the timepoint, which well the data
comes from, and any other design elements.
Note that, in tidy-shaped data, the number of rows equals the number of wells times the number of timepoints.
Yes, that’s a lot of rows! But tidy-shaped data is the best format for analyses, and is common in a number
of R packages, including ggplot, where it’s sometimes called a “long” format.

Timepoint Well Measurement
1 A1 0.060
1 A2 0.083
1 A3 0.086
. . . . . . . . .
7 H10 1.113
7 H11 1.234
7 H12 1.394

Importing data

Once you’ve determined what format your data is in, you can begin importing it using the read_* or
import_* functions of gcplyr.
If your data is block-shaped: use import_blockmeasures and start in the next section: Importing
block-shaped data

If your data is wide-shaped: use read_wides and skip down to the Importing wide-shaped data
section
If your data is already tidy-shaped: use read_tidys and skip down to the Importing tidy-shaped
data section.

Importing block-shaped data

To import block-shaped data, use the import_blockmeasures function. import_blockmeasures only re-
quires a list of filenames (or relative file paths) and will return a wide-shaped data.frame that you can
save in R.

A basic example

Here’s a simple example. First, we need to create a series of example block-shaped .csv files. Don’t worry
how this code works. When working with real growth curve data, these files would be output by the
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plate reader. All you need to do is put the file names in R in a vector, here we’ve stored the file names in
temp_filenames.

# This code just creates a series of block-shaped example files
# Don't worry about how it works - when working with real growth
# curves data, all these files would be created by the plate reader
temp_filenames <-

paste("Plate1-",
paste(example_widedata_noiseless$Time %/% 3600,

formatC((example_widedata_noiseless$Time %% 3600) %/% 60,
width = 2, flag = 0),

formatC((example_widedata_noiseless$Time %% 3600) %% 60,
width = 2, flag = 0),

sep = "_"), ".csv", sep = "")
for (i in 1:length(temp_filenames)) {

temp_filenames[i] <- strsplit(temp_filenames[i], split = "\\\\")[[1]][
length(strsplit(temp_filenames[i], split = "\\\\")[[1]])]

}
for (i in 1:length(temp_filenames)) {

write.table(
cbind(

matrix(c("", "", "", "", "A", "B", "C", "D", "E", "F", "G", "H"),
nrow = 12),

rbind(rep("", 12),
matrix(c("Time", example_widedata_noiseless$Time[i], rep("", 10)),

ncol = 12),
rep("", 12),
matrix(1:12, ncol = 12),
matrix(

example_widedata_noiseless[i, 2:ncol(example_widedata_noiseless)],
ncol = 12))

),
file = temp_filenames[i], quote = FALSE, row.names = FALSE, sep = ",",
col.names = FALSE)

}

If you’ve saved all the files to a single folder, you can easily get a vector with all their names using list.files.
If your folder contains other files, you can specify a regular expression pattern to limit it to just those you
want to import:

# Here we print all the files we're going to read
list.files(pattern = "Plate1.*csv")
#> [1] "Plate1-0_00_00.csv" "Plate1-0_15_00.csv" "Plate1-0_30_00.csv"
#> [4] "Plate1-0_45_00.csv" "Plate1-1_00_00.csv" "Plate1-1_15_00.csv"
#> [7] "Plate1-1_30_00.csv" "Plate1-1_45_00.csv" "Plate1-10_00_00.csv"
#> [10] "Plate1-10_15_00.csv" "Plate1-10_30_00.csv" "Plate1-10_45_00.csv"
#> [13] "Plate1-11_00_00.csv" "Plate1-11_15_00.csv" "Plate1-11_30_00.csv"
#> [16] "Plate1-11_45_00.csv" "Plate1-12_00_00.csv" "Plate1-12_15_00.csv"
#> [19] "Plate1-12_30_00.csv" "Plate1-12_45_00.csv" "Plate1-13_00_00.csv"
#> [22] "Plate1-13_15_00.csv" "Plate1-13_30_00.csv" "Plate1-13_45_00.csv"
#> [25] "Plate1-14_00_00.csv" "Plate1-14_15_00.csv" "Plate1-14_30_00.csv"
#> [28] "Plate1-14_45_00.csv" "Plate1-15_00_00.csv" "Plate1-15_15_00.csv"
#> [31] "Plate1-15_30_00.csv" "Plate1-15_45_00.csv" "Plate1-16_00_00.csv"
#> [34] "Plate1-16_15_00.csv" "Plate1-16_30_00.csv" "Plate1-16_45_00.csv"
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#> [37] "Plate1-17_00_00.csv" "Plate1-17_15_00.csv" "Plate1-17_30_00.csv"
#> [40] "Plate1-17_45_00.csv" "Plate1-18_00_00.csv" "Plate1-18_15_00.csv"
#> [43] "Plate1-18_30_00.csv" "Plate1-18_45_00.csv" "Plate1-19_00_00.csv"
#> [46] "Plate1-19_15_00.csv" "Plate1-19_30_00.csv" "Plate1-19_45_00.csv"
#> [49] "Plate1-2_00_00.csv" "Plate1-2_15_00.csv" "Plate1-2_30_00.csv"
#> [52] "Plate1-2_45_00.csv" "Plate1-20_00_00.csv" "Plate1-20_15_00.csv"
#> [55] "Plate1-20_30_00.csv" "Plate1-20_45_00.csv" "Plate1-21_00_00.csv"
#> [58] "Plate1-21_15_00.csv" "Plate1-21_30_00.csv" "Plate1-21_45_00.csv"
#> [61] "Plate1-22_00_00.csv" "Plate1-22_15_00.csv" "Plate1-22_30_00.csv"
#> [64] "Plate1-22_45_00.csv" "Plate1-23_00_00.csv" "Plate1-23_15_00.csv"
#> [67] "Plate1-23_30_00.csv" "Plate1-23_45_00.csv" "Plate1-24_00_00.csv"
#> [70] "Plate1-3_00_00.csv" "Plate1-3_15_00.csv" "Plate1-3_30_00.csv"
#> [73] "Plate1-3_45_00.csv" "Plate1-4_00_00.csv" "Plate1-4_15_00.csv"
#> [76] "Plate1-4_30_00.csv" "Plate1-4_45_00.csv" "Plate1-5_00_00.csv"
#> [79] "Plate1-5_15_00.csv" "Plate1-5_30_00.csv" "Plate1-5_45_00.csv"
#> [82] "Plate1-6_00_00.csv" "Plate1-6_15_00.csv" "Plate1-6_30_00.csv"
#> [85] "Plate1-6_45_00.csv" "Plate1-7_00_00.csv" "Plate1-7_15_00.csv"
#> [88] "Plate1-7_30_00.csv" "Plate1-7_45_00.csv" "Plate1-8_00_00.csv"
#> [91] "Plate1-8_15_00.csv" "Plate1-8_30_00.csv" "Plate1-8_45_00.csv"
#> [94] "Plate1-9_00_00.csv" "Plate1-9_15_00.csv" "Plate1-9_30_00.csv"
#> [97] "Plate1-9_45_00.csv"

# Here we save them to the temp_filenames variable
temp_filenames <- list.files(pattern = "Plate1.*csv")

Here’s what one of the files looks like (where the values are absorbance/optical density):

print_df(read.csv(temp_filenames[1], header = FALSE, colClasses = "character"))
#>
#> Time 0
#>
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> B 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> C 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> D 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> E 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> F 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> G 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> H 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

This file corresponds to all the reads for a single plate taken at the very first timepoint. We can see that
the second row of the file contains some metadata about the timepoint when this plate read read was taken.
Then, the data itself starts with column headers on row 4 and rownames in column 1.

If we want to read these files into R, we simply provide import_blockmeasures with the vector of file names,
and save the result to some R object (here, imported_blockdata). import_blockmeasures assumes your
data starts on the first row and column, and ends on the last row and column, unless you specify otherwise.

# Now let's read it with import_blockmeasures
imported_blockdata <- import_blockmeasures(

files = temp_filenames, startrow = 4)
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head(imported_blockdata, c(6, 8))
#> block_name A1 A2 A3 A4 A5 A6 A7
#> 1 Plate1-0_00_00 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 2 Plate1-0_15_00 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 3 Plate1-0_30_00 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 4 Plate1-0_45_00 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 5 Plate1-1_00_00 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 6 Plate1-1_15_00 0.002 0.003 0.002 0.003 0.003 0.002 0.002

Here we can see that import_blockmeasures has created a wide-shaped R object containing the data from
all of our reads. It has also added the file names under the block_name column, so that we can easily track
which row came from which file.

If you’re looking at your data in Excel or a similar spreadsheet program, you’ll notice that the columns are
coded by letter. import_blockmeasures allows you to specify the column by letter too.

# We can specify rows or columns by Excel-style letters too
imported_blockdata <- import_blockmeasures(

files = temp_filenames,
startrow = 4, startcol = "A")

Specifying metadata

Sometimes, your input files will have information you want to import that’s not included in the main block
of data. For instance, with block-shaped data the timepoint is nearly always specified somewhere in the
input file. import_blockmeasures can include that information as well via the metadata argument.

For example, let’s return to our most-recent example files:

print_df(read.csv(temp_filenames[1], header = FALSE, colClasses = "character"))
#>
#> Time 0
#>
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> B 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> C 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> D 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> E 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> F 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> G 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> H 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

In these files, the timepoint information was located in the 2nd row and 3rd column. Here’s how we could
specify that metadata in our import_blockmeasures command:

# Reading the blockcurves files with metadata included
imported_blockdata <- import_blockmeasures(

files = temp_filenames,
startrow = 4,
metadata = list("time" = c(2, 3)))

head(imported_blockdata, c(6, 8))
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#> block_name time A1 A2 A3 A4 A5 A6
#> 1 Plate1-0_00_00 0 0.002 0.002 0.002 0.002 0.002 0.002
#> 2 Plate1-0_15_00 900 0.002 0.002 0.002 0.002 0.002 0.002
#> 3 Plate1-0_30_00 1800 0.002 0.002 0.002 0.002 0.002 0.002
#> 4 Plate1-0_45_00 2700 0.002 0.002 0.002 0.002 0.002 0.002
#> 5 Plate1-1_00_00 3600 0.002 0.002 0.002 0.002 0.002 0.002
#> 6 Plate1-1_15_00 4500 0.002 0.003 0.002 0.003 0.003 0.002

You can see that the metadata you specified has been added as a column in our output data.frame. When
specifying metadata, the metadata argument must be a list of named vectors. Each vector should have two
elements specifying the location of the metadata in the input files: the first element is the row, the second
element is the column.

You can also specify the location of metadata with Excel-style lettering.

# Reading the blockcurves files with metadata included
imported_blockdata <- import_blockmeasures(

files = temp_filenames,
startrow = 4,
metadata = list("time" = c(2, "C")))

Reading multiple blocks from a single file

import_blockmeasures can also import multiple blocks from a single file, which some plate readers may
output. In this case, you simply have to specify a vector of rows and columns that define the location of
each block within the file.

First, let’s create an example file. Don’t worry about how this code works, normally this file would be
created by the plate reader.

# This code just creates an example file with multiple blocks
# Don't worry about how it works - when working with real growth
# curves data, this would be created by the plate reader
write_blocks(read_blocks(files = temp_filenames,

startrow = 4,
metadata = list("time" = c(2, "C"))),

file = "blocks_single.csv",
output_format = "single",
block_name_location = "file")

Let’s take a look at what the file looks like:

print_df(head(read.csv("blocks_single.csv", header = FALSE,
colClasses = "character"),

c(20, 8)))
#> block_name Plate1-0_00_00
#> time 0
#> 1 2 3 4 5 6 7
#> A 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> B 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> C 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> D 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> E 0.002 0.002 0.002 0.002 0.002 0.002 0.002

7



#> F 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> G 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> H 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#>
#> block_name Plate1-0_15_00
#> time 900
#> 1 2 3 4 5 6 7
#> A 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> B 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> C 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> D 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> E 0.002 0.002 0.002 0.002 0.002 0.002 0.002

We can see that the first block has some metadata above it, then the block of data itself. After that there’s
an empty row before the next block starts. In fact, if we look at the whole file, we’ll notice that all the
blocks go from column 1 (“A” in Excel) to column 13 (“M” in Excel), they start on rows 3, 15, 27, 39, etc,
and end on rows 11, 23, 35, 47, etc. When we look in the file, we can also see that the very last block starts
on row 1155 and ends on row 1163. Let’s read this information in using import_blockmeasures:

imported_blockdata <- import_blockmeasures(
"blocks_single.csv",
startrow = seq(from = 3, to = 1155, by = 12),
endrow = seq(from = 11, to = 1163, by = 12),
startcol = 1, endcol = 13)

Here we’ve used the built-in R function seq to generate the full vector of startrows and endrows. If we take
a look, we can see that it’s been read successfully:

head(imported_blockdata, c(6, 8))
#> block_name A1 A2 A3 A4 A5 A6 A7
#> 1 blocks_single 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 2 blocks_single 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 3 blocks_single 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 4 blocks_single 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 5 blocks_single 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 6 blocks_single 0.002 0.003 0.002 0.003 0.003 0.002 0.002

Now let’s add some metadata. Because we’re reading from a single file, we need to specify the metadata
slightly differently. Instead of the metadata being a single vector c(row,column) with the location, it’s
going to be a list of two vectors, one with the row numbers, and one with the column numbers.

Going back to the file, we can see that the time of the block is saved in the second column, in rows 2, 14,
26, 38, . . . through 1154.

imported_blockdata <- import_blockmeasures(
"blocks_single.csv",
startrow = seq(from = 3, to = 1155, by = 12),
endrow = seq(from = 11, to = 1163, by = 12),
startcol = 1, endcol = 13,
metadata = list("time" = list(seq(from = 2, to = 1154, by = 12), 2)))

And now if we take a look at the resulting object, we can see that the time metadata has been incorporated.

8



head(imported_blockdata, c(6, 8))
#> block_name time A1 A2 A3 A4 A5 A6
#> 1 blocks_single 0 0.002 0.002 0.002 0.002 0.002 0.002
#> 2 blocks_single 900 0.002 0.002 0.002 0.002 0.002 0.002
#> 3 blocks_single 1800 0.002 0.002 0.002 0.002 0.002 0.002
#> 4 blocks_single 2700 0.002 0.002 0.002 0.002 0.002 0.002
#> 5 blocks_single 3600 0.002 0.002 0.002 0.002 0.002 0.002
#> 6 blocks_single 4500 0.002 0.003 0.002 0.003 0.003 0.002

What to do next

Now that you’ve imported your block-shaped data, you’ll need to transform it for later analyses. Jump
directly to the Transforming data section.

Importing wide-shaped data

To import wide-shaped data, use the read_wides function. read_wides only requires a filename (or vector
of filenames, or relative file paths) and will return a data.frame (or list of data.frames) that you can save
in R.

A basic example

Here’s a simple example. First, we need to create an example wide-shaped .csv file. Don’t worry how
this code works. When working with real growth curve data, these files would be output by the plate
reader. All you need to do is know the file name(s) to put in you R code. In this example, the file name is
widedata.csv.

# This code just creates a wide-shaped example file where the data doesn't
# start on the first row.
# Don't worry about how it works - when working with real growth
# curves data, this file would be created by the plate reader
temp_example_widedata <- example_widedata_noiseless
colnames(temp_example_widedata) <- paste("V", 1:ncol(temp_example_widedata),

sep = "")
modified_example_widedata <-

rbind(
as.data.frame(matrix("", nrow = 4, ncol = ncol(example_widedata_noiseless))),
colnames(example_widedata_noiseless),
temp_example_widedata)

modified_example_widedata[1:2, 1:2] <-
c("Experiment name", "Start date", "Experiment_1", as.character(Sys.Date()))

write.table(modified_example_widedata, file = "widedata.csv",
row.names = FALSE, col.names = FALSE, sep = ",")

write.table(modified_example_widedata, file = "widedata2.csv",
row.names = FALSE, col.names = FALSE, sep = ",")

Here’s what the start of the file looks like (where the values are absorbance/optical density):
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# Let's take a peek at what this file looks like
print_df(head(read.csv("widedata.csv", header = FALSE,

colClasses = "character"),
c(10, 10)))

#> Experiment name Experiment_1
#> Start date 2023-05-02
#>
#>
#> Time A1 B1 C1 D1 E1 F1 G1 H1 A2
#> 0 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 900 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 1800 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 2700 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 3600 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.003 0.002

This file contains all the reads for a single plate taken across all timepoints. We can see that the first two
rows contain some metadata saved by the plate reader, like the name of the experiment and the date of the
experiment. Then, we can see that the data starts on the 5th row with a header. The first column contains
the timepoint information, and each subsequent column corresponds to a well in the plate.

If we want to read this file into R, we simply provide read_wides with the file name, and save the result
to some R object (here, imported_widedata). read_wides assumes your data starts on the first row and
column, and ends on the last row and column, unless you specify otherwise.

imported_widedata <- read_wides(files = "widedata.csv", startrow = 5)

The resulting data.frame looks like this:

head(imported_widedata, c(6, 10))
#> file Time A1 B1 C1 D1 E1 F1 G1 H1
#> 6 widedata 0 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 7 widedata 900 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 8 widedata 1800 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 9 widedata 2700 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
#> 10 widedata 3600 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.003
#> 11 widedata 4500 0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.003

Note that read_wides automatically saves the filename the data was imported from into the first column
of the output data.frame. This is done to ensure that later on, data.frames from multiple plates can be
combined without fear of losing the identity of each plate.

If you’re looking at your data in Excel or a similar spreadsheet program, you’ll notice that the columns are
coded by letter. read_wides allows you to specify the column by letter too.

imported_widedata <- read_wides(files = "widedata.csv",
startrow = 5, startcol = "A")

Note that if you have multiple files you’d like to read in, you can do so directly with a single read_wides
command. In this case, read_wides will return a list containing all the data.frames:

# If we had multiple wide-shaped data files to import
imported_widedata <- read_wides(files = c("widedata.csv", "widedata2.csv"))
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Specifying metadata

Sometimes, your input files will have information you want to import that’s not included in the main block
of data. read_wides can include that information as well via the metadata argument.
The metadata argument should be a list of named vectors. Each vector should be of length 2, with the first
entry specifying the row and the second entry specifying the column where the metadata is located.
For example, in our previous example files, the experiment name was located in the 2nd row, 2nd column,
and the start date was located in the 3rd row, 2nd column. Here’s how we could specify that metadata:

imported_widedata <- read_wides(files = "widedata.csv",
startrow = 5,
metadata = list("experiment_name" = c(1, 2),

"start_date" = c(2, 2)))
head(imported_widedata, c(6, 8))
#> file experiment_name start_date Time A1 B1 C1 D1
#> 6 widedata Experiment_1 2023-05-02 0 0.002 0.002 0.002 0.002
#> 7 widedata Experiment_1 2023-05-02 900 0.002 0.002 0.002 0.002
#> 8 widedata Experiment_1 2023-05-02 1800 0.002 0.002 0.002 0.002
#> 9 widedata Experiment_1 2023-05-02 2700 0.002 0.002 0.002 0.002
#> 10 widedata Experiment_1 2023-05-02 3600 0.002 0.002 0.002 0.003
#> 11 widedata Experiment_1 2023-05-02 4500 0.002 0.003 0.002 0.003

You can also specify the location of metadata with Excel-style lettering.

imported_widedata <- read_wides(files = "widedata.csv",
startrow = 5,
metadata = list("experiment_name" = c(1, "B"),

"start_date" = c(2, "B")))

Reading multiple wides from a single file

read_wides can read multiple wide-shaped datasets from a single file. Refer to the earlier section Reading
multiple blocks from a single file, since the syntax for such operations is the same for read_wides as it
is for import_blockmeasures.

What to do next

Now that you’ve imported your wide-shaped data, you’ll need to transform it for later analyses. Continue
on to the Transforming data section.

Importing tidy-shaped data

To import tidy-shaped data, you could use the built-in R functions like read.table. However, if you need
a few more options, you can use the gcplyr function read_tidys. Unlike the built-in option, read_tidys
can import multiple tidy-shaped files at once, can add the filename as a column in the resulting data.frame,
and can handle files where the tidy-shaped information doesn’t start on the first row and column.
read_tidys only requires a filename (or vector of filenames, or relative file paths) and will return a
data.frame (or list of data.frames) that you can save in R.
If you’ve read in your tidy-shaped data, you won’t need to transform it, so you can skip down to the What’s
next? section.
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Transforming data

Now that you’ve gotten your data into the R environment, we need to transform it before we can do analyses.
To reiterate, this is necessary because most plate readers that generate growth curve data outputs it in block-
shaped or wide-shaped files, but tidy-shaped data.frames are the best shape for analyses and required by
gcplyr.
You can transform your data.frames using the trans_* functions in gcplyr.

Transforming from wide-shaped to tidy-shaped

If the data you’ve read into theRenvironment is wide-shaped (or you’ve gotten wide-shaped data by trans-
forming your originally block-shaped data), you’ll transform it to tidy-shaped using trans_wide_to_tidy.
First, you need to provide trans_wide_to_tidy with theRobject created by read_wides or by
trans_block_to_wide.
Then, you have to specify one of:

• the columns your data (the spectrophotometric measures) are in via data_cols
• what columns your non-data (e.g. time and other information) are in via id_cols

imported_blocks_now_tidy <- trans_wide_to_tidy(
wides = imported_blockdata,
id_cols = c("block_name", "time"))

imported_wides_now_tidy <- trans_wide_to_tidy(
wides = imported_widedata,
id_cols = c("file", "experiment_name", "start_date", "Time"))

print(head(imported_blocks_now_tidy), row.names = FALSE)
#> block_name time Well Measurements
#> blocks_single 0 A1 0.002
#> blocks_single 0 A2 0.002
#> blocks_single 0 A3 0.002
#> blocks_single 0 A4 0.002
#> blocks_single 0 A5 0.002
#> blocks_single 0 A6 0.002

What’s next?

Now that you’ve imported and transformed your data to be tidy-shaped, you likely want to incorporate some
design information on what went into each well (and plate). Alternatively, if you’d like to skip that step for
now, you can go directly to pre-processing and plotting your data

1. Introduction: vignette("gcplyr")
2. Importing and transforming data: vignette("import_transform")
3. Incorporating design information: vignette("incorporate_designs")
4. Pre-processing and plotting your data: vignette("preprocess_plot")
5. Processing your data: vignette("process")
6. Analyzing your data: vignette("analyze")
7. Dealing with noise: vignette("noise")
8. Statistics, merging other data, and other resources: vignette("conclusion")
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