
Incorporating design information

Mike Blazanin

Contents

Where are we so far? 1

Including design elements 2

Reading design elements from files 2

Importing block-shaped design files . 2

A basic example . 2

Importing multiple block-shaped design elements . 3

Importing tidy-shaped design files . 4

Generating designs in R 5

An example with a single design . 5

A few notes on the pattern . 6

Continuing with the example: multiple designs . 7

Saving designs to files . 11

Saving tidy-shaped designs . 11

Saving block-shaped designs . 12

Saving block-shaped designs to multiple files . 12

Saving block-shaped designs to a single file . 12

Merging spectrophotometric and design data 13

What’s next? 15

Where are we so far?

1. Introduction: vignette("gcplyr")
2. Importing and transforming data: vignette("import_transform")
3. Incorporating design information: vignette("incorporate_designs")
4. Pre-processing and plotting your data: vignette("preprocess_plot")
5. Processing your data: vignette("process")
6. Analyzing your data: vignette("analyze")

1

7. Dealing with noise: vignette("noise")
8. Statistics, merging other data, and other resources: vignette("conclusion")

So far, we’ve imported and transformed our measures data into R. Now we’re going to address how to
incorporate our experimental design.

If you haven’t already, load the necessary packages.

library(gcplyr)

Including design elements

We often want to combine information about the experimental design with our data. gcplyr enables incor-
poration of design elements in two ways:

1. Designs can be imported from files
2. Designs can be generated in R using make_design

Reading design elements from files

Users can read block-shaped or tidy-shaped design files:

• If design files are block-shaped, they can be read with import_blockdesigns
• If design files are tidy-shaped, they can simply be read with read_tidys

Importing block-shaped design files

To import block-shaped design files, use import_blockdesigns, which will return a tidy-shaped designs
data frame (or list of data frames).

import_blockdesigns only requires a list of filenames (or relative file paths) and will return a data.frame
(or list of data frames) in a tidy format that you can save in R.

A basic example

Let’s look at an example. First, we need to create an example file for the sake of this tutorial. Don’t worry
how the below code works, just imagine that you’ve created this file in Excel.

write.csv(
file = "mydesign.csv",
x = matrix(rep(c("Tr1", "Tr2"), each = 48),

nrow = 8, ncol = 12, dimnames = list(LETTERS[1:8], 1:12)))

Now let’s take a look at what the file looks like:

2

print_df(read.csv("mydesign.csv", header = FALSE, colClasses = "character"))
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> B Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> C Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> D Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> E Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> F Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> G Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2
#> H Tr1 Tr1 Tr1 Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2

Here we can see that our design has Treatment 1 on the left-hand side of the plate (wells in columns 1
through 6), and Treatment 2 on the right-hand side of the plate (wells in columns 7 through 12). Let’s
import this design using import_blockdesigns saving it with the column name Treatment_numbers.

my_design <- import_blockdesigns(files = "mydesign.csv",
block_names = "Treatment_numbers")

head(my_design, 20)
#> Well Treatment_numbers
#> 1 A1 Tr1
#> 2 A2 Tr1
#> 3 A3 Tr1
#> 4 A4 Tr1
#> 5 A5 Tr1
#> 6 A6 Tr1
#> 7 A7 Tr2
#> 8 A8 Tr2
#> 9 A9 Tr2
#> 10 A10 Tr2
#> 11 A11 Tr2
#> 12 A12 Tr2
#> 13 B1 Tr1
#> 14 B2 Tr1
#> 15 B3 Tr1
#> 16 B4 Tr1
#> 17 B5 Tr1
#> 18 B6 Tr1
#> 19 B7 Tr2
#> 20 B8 Tr2

Importing multiple block-shaped design elements

What do you do if you have multiple designs? For instance, what if you have several strains each in several
treatments? In that case, simply save each design component as a separate file, and import them all in one
go with import_blockdesigns.

First, let’s create another example designs file. Again, don’t worry how the below code works, just
imagine that you’ve created this file in Excel.

write.csv(
file = "mydesign2.csv",
x = matrix(rep(c("StrA", "StrB", "StrC", "StrD"), each = 24),

3

nrow = 8, ncol = 12, dimnames = list(LETTERS[1:8], 1:12),
byrow = TRUE))

Now let’s take a look at what the file looks like:

print_df(read.csv("mydesign2.csv", header = FALSE, colClasses = "character"))
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA
#> B StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA StrA
#> C StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB
#> D StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB StrB
#> E StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC
#> F StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC StrC
#> G StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD
#> H StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD StrD

Here we can see that our design has Strain A in the first two rows, Strain B in the next two rows, and so on.

Let’s now import both designs using import_blockdesigns, saving them to columns named Treatment_numbers
and Strain_letters.

my_design <-
import_blockdesigns(files = c("mydesign.csv", "mydesign2.csv"),

block_names = c("Treatment_numbers", "Strain_letters"))
head(my_design, 20)
#> Well Treatment_numbers Strain_letters
#> 1 A1 Tr1 StrA
#> 2 A2 Tr1 StrA
#> 3 A3 Tr1 StrA
#> 4 A4 Tr1 StrA
#> 5 A5 Tr1 StrA
#> 6 A6 Tr1 StrA
#> 7 A7 Tr2 StrA
#> 8 A8 Tr2 StrA
#> 9 A9 Tr2 StrA
#> 10 A10 Tr2 StrA
#> 11 A11 Tr2 StrA
#> 12 A12 Tr2 StrA
#> 13 B1 Tr1 StrA
#> 14 B2 Tr1 StrA
#> 15 B3 Tr1 StrA
#> 16 B4 Tr1 StrA
#> 17 B5 Tr1 StrA
#> 18 B6 Tr1 StrA
#> 19 B7 Tr2 StrA
#> 20 B8 Tr2 StrA

Importing tidy-shaped design files

You can import tidy-shaped designs with read_tidys.

read_tidys only requires a filename (or vector of filenames, or relative file paths) and will return a
data.frame (or list of data.frames) that you can save in R.

4

Once these design elements have been read into the R environment, you won’t need to transform them. So
you can skip down to learning how to merge them with your data in the Merging spectrophotometric
and design data section.

Generating designs in R

If you’d rather make your design data.frames in R, make_design can create:

• block-shaped data.frames with your design information (for saving to files)
• tidy-shaped data.frames with your design information (for saving to files and merging with tidy-shaped

data)

An example with a single design

Let’s start with a simple design.

Imagine you have a 96 well plate (12 columns and 8 rows) with a different bacterial strain in each row,
leaving the first and last rows and columns empty.

Row names Column 1 Column 2 Column 3 . . . Column 11 Column 12
Row A Blank Blank Blank . . . Blank Blank
Row B Blank Strain #1 Strain #1 . . . Strain #1 Blank
Row B Blank Strain #2 Strain #2 . . . Strain #2 Blank
. .
Row G Blank Strain #5 Strain #5 . . . Strain #5 Blank
Row G Blank Strain #6 Strain #6 . . . Strain #6 Blank
Row H Blank Blank Blank . . . Blank Blank

Typing a design like this manually into a spreadsheet can be tedious. But generating it with make_design
is easier.

make_design first needs some general information, like the nrows and ncols in the plate, and the
output_format you’d like (typically blocks or tidy).

Then, for each different design component, make_design needs five different pieces of information:

• a vector containing the possible values
• a vector specifying which rows these values should be applied to
• a vector specifying which columns these values should be applied to
• a string or vector of the pattern of these values
• a Boolean for whether this pattern should be filled byrow (defaults to TRUE)

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12,
Bacteria = list(c("Str1", "Str2", "Str3", "Str4", "Str5", "Str6"),

2:7,
2:11,
"123456",
FALSE)

)

5

So for our example above, we can see:

• the possible values are c("Strain 1", "Strain 2", "Strain 3", "Strain 4", "Strain 5",
"Strain 6")

• the rows these values should be applied to are 2:7
• the columns these values should be applied to are 2:11
• the pattern these values should be filled in by is "123456"
• and these values should not be filled by row (they should be filled by column)

my_design_blk
#> [[1]]
#> [[1]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" NA
#> C NA "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" NA
#> D NA "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" NA
#> E NA "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" NA
#> F NA "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" NA
#> G NA "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[1]]$metadata
#> block_name
#> "Bacteria"

This produces a data.frame with Bacteria as the block_name in the metadata. If we save this design to
a file or transform it to tidy-shaped, this block_name metadata will come in handy.

A few notes on the pattern

The pattern in make_design is flexible to make it easy to input designs.

The “0” character is reserved for NA values, and can be put into your pattern anywhere you’d like to
have the value be NA

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12,
Bacteria = list(c("Str1", "Str2", "Str3",

"Str4", "Str5", "Str6"),
2:7,
2:11,
"123056",
FALSE)

)
my_design_blk
#> [[1]]
#> [[1]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" NA
#> C NA "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" NA

6

#> D NA "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" NA
#> E NA NA NA NA NA NA NA NA NA NA NA NA
#> F NA "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" NA
#> G NA "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[1]]$metadata
#> block_name
#> "Bacteria"

In the previous examples, I used the numbers 1 through 6 to correspond to our values. If you have more
than 9 values, you can use letters too. By default, the order is numbers first, then uppercase letters, then
lowercase letters (so “A” is the 10th index). However, if you’d like to only use letters, you can simply specify
a different lookup_tbl_start so that make_design knows what letter you’re using as the 1 index.

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12, lookup_tbl_start = "A",
Bacteria = list(

c("Str1", "Str2", "Str3", "Str4", "Str5", "Str6"),
2:7,
2:11,
"ABCDEF",
FALSE)

)

You can also specify the pattern as a vector rather than a string.

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12,
Bacteria = list(

c("Str1", "Str2", "Str3", "Str4", "Str5", "Str6"),
2:7,
2:11,
c(1,2,3,4,5,6),
FALSE)

)

Continuing with the example: multiple designs

Now let’s return to our example growth curve experiment. In addition to having a different bacterial strain
in each row, we now also have a different media in each column of the plate.

Row names Column 1 Column 2 Column 3 . . . Column 11 Column 12
Row A Blank Blank Blank . . . Blank Blank
Row B Blank Media #1 Media #2 . . . Media #10 Blank
. .
Row G Blank Media #1 Media #2 . . . Media #10 Blank
Row H Blank Blank Blank . . . Blank Blank

We can generate both designs with make_design:

7

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12, lookup_tbl_start = "a",
Bacteria = list(c("Str1", "Str2", "Str3",

"Str4", "Str5", "Str6"),
2:7,
2:11,
"abcdef",
FALSE),

Media = list(c("Med1", "Med2", "Med3",
"Med4", "Med5", "Med6",
"Med7", "Med8", "Med9",
"Med10", "Med11", "Med12"),

2:7,
2:11,
"abcdefghij")

)

my_design_blk
#> [[1]]
#> [[1]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" NA
#> C NA "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" NA
#> D NA "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" NA
#> E NA "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" "Str4" NA
#> F NA "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" NA
#> G NA "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[1]]$metadata
#> block_name
#> "Bacteria"
#>
#>
#> [[2]]
#> [[2]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> C NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> D NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> E NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> F NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> G NA "Med1" "Med2" "Med3" "Med4" "Med5" "Med6" "Med7" "Med8" "Med9" "Med10" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[2]]$metadata
#> block_name
#> "Media"

However, the real strength of make_design is that it is not limited to simple alternating patterns.
make_design can use irregular patterns too, replicating them as needed to fill all the wells.

8

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12, lookup_tbl_start = "a",
Bacteria = list(c("Str1", "Str2"),

2:7,
2:11,
"abaaabbbab",
FALSE),

Media = list(c("Med1", "Med2", "Med3"),
2:7,
2:11,
"aabbbc000abc"))

my_design_blk
#> [[1]]
#> [[1]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Str1" "Str2" "Str1" "Str1" "Str1" "Str1" "Str2" "Str1" "Str1" "Str1" NA
#> C NA "Str2" "Str2" "Str1" "Str2" "Str2" "Str2" "Str2" "Str1" "Str2" "Str2" NA
#> D NA "Str1" "Str1" "Str1" "Str1" "Str2" "Str1" "Str1" "Str1" "Str1" "Str2" NA
#> E NA "Str1" "Str2" "Str2" "Str2" "Str2" "Str1" "Str2" "Str2" "Str2" "Str2" NA
#> F NA "Str1" "Str1" "Str2" "Str1" "Str1" "Str1" "Str1" "Str2" "Str1" "Str1" NA
#> G NA "Str2" "Str2" "Str2" "Str1" "Str2" "Str2" "Str2" "Str2" "Str1" "Str2" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[1]]$metadata
#> block_name
#> "Bacteria"
#>
#>
#> [[2]]
#> [[2]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Med1" "Med1" "Med2" "Med2" "Med2" "Med3" NA NA NA "Med1" NA
#> C NA "Med2" "Med3" "Med1" "Med1" "Med2" "Med2" "Med2" "Med3" NA NA NA
#> D NA NA "Med1" "Med2" "Med3" "Med1" "Med1" "Med2" "Med2" "Med2" "Med3" NA
#> E NA NA NA NA "Med1" "Med2" "Med3" "Med1" "Med1" "Med2" "Med2" NA
#> F NA "Med2" "Med3" NA NA NA "Med1" "Med2" "Med3" "Med1" "Med1" NA
#> G NA "Med2" "Med2" "Med2" "Med3" NA NA NA "Med1" "Med2" "Med3" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[2]]$metadata
#> block_name
#> "Media"

There is also an optional helper function called make_designpattern. make_designpattern just reminds
us what arguments are necessary for each design. For example:

my_design_blk <- make_design(
output_format = "blocks",
nrows = 8, ncols = 12, lookup_tbl_start = "a",

9

Bacteria = make_designpattern(
values = c("Str1", "Str2", "Str3",

"Str4", "Str5", "Str6"),
rows = 2:7, cols = 2:11, pattern = "abc0ef",
byrow = FALSE),

Media = make_designpattern(
values = c("Med1", "Med2", "Med3",

"Med4", "Med5", "Med6",
"Med7", "Med8", "Med9",
"Med10", "Med11", "Med12"),

rows = 2:7, cols = 2:11, pattern = "abcde0ghij"))

my_design_blk
#> [[1]]
#> [[1]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" "Str1" NA
#> C NA "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" "Str2" NA
#> D NA "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" "Str3" NA
#> E NA NA NA NA NA NA NA NA NA NA NA NA
#> F NA "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" "Str5" NA
#> G NA "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" "Str6" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[1]]$metadata
#> block_name
#> "Bacteria"
#>
#>
#> [[2]]
#> [[2]]$data
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A NA NA NA NA NA NA NA NA NA NA NA NA
#> B NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> C NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> D NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> E NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> F NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> G NA "Med1" "Med2" "Med3" "Med4" "Med5" NA "Med7" "Med8" "Med9" "Med10" NA
#> H NA NA NA NA NA NA NA NA NA NA NA NA
#>
#> [[2]]$metadata
#> block_name
#> "Media"

For merging our designs with plate reader data, we need it tidy-shaped, so we just need to change
the output_format to tidy.

my_design_tdy <- make_design(
output_format = "tidy",
nrows = 8, ncols = 12, lookup_tbl_start = "a",
Bacteria = make_designpattern(

10

values = c("Str1", "Str2", "Str3",
"Str4", "Str5", "Str6"),

rows = 2:7, cols = 2:11, pattern = "abc0ef",
byrow = FALSE),

Media = make_designpattern(
values = c("Med1", "Med2", "Med3",

"Med4", "Med5", "Med6",
"Med7", "Med8", "Med9",
"Med10", "Med11", "Med12"),

rows = 2:7, cols = 2:11, pattern = "abcde0ghij"))

head(my_design_tdy, 20)
#> Well Bacteria Media
#> 1 A1 <NA> <NA>
#> 2 A2 <NA> <NA>
#> 3 A3 <NA> <NA>
#> 4 A4 <NA> <NA>
#> 5 A5 <NA> <NA>
#> 6 A6 <NA> <NA>
#> 7 A7 <NA> <NA>
#> 8 A8 <NA> <NA>
#> 9 A9 <NA> <NA>
#> 10 A10 <NA> <NA>
#> 11 A11 <NA> <NA>
#> 12 A12 <NA> <NA>
#> 13 B1 <NA> <NA>
#> 14 B2 Str1 Med1
#> 15 B3 Str1 Med2
#> 16 B4 Str1 Med3
#> 17 B5 Str1 Med4
#> 18 B6 Str1 Med5
#> 19 B7 Str1 <NA>
#> 20 B8 Str1 Med7

Saving designs to files

If you’d like to save the designs you’ve created with make_design to files, you just need to decide if you’d
like them tidy-shaped or block-shaped. Both formats can easily be read back into R by gcplyr.

Saving tidy-shaped designs

These design files will be less human-readable, but easier to import and merge. Additionally, tidy-shaped
files are often better for data repositories, like Dryad. To save tidy-shaped designs, simply use the built-in
write.csv function.

#See the previous section where we created my_design_tdy
write.csv(x = my_design_tdy, file = "tidy_design.csv",

row.names = FALSE)

11

Saving block-shaped designs

These design files will be more human-readable but slightly more computationally involved to import and
merge. For these, use the gcplyr function write_blocks. Typically, you’ll use write_blocks to save files
in one of two formats:

• multiple - each block will be saved to its own .csv file
• single - all the blocks will be saved to a single .csv file, with an empty row in between them

Saving block-shaped designs to multiple files The default setting for write_blocks is output_format
= 'multiple'. This creates one csv file for each block. If we set file = NULL, the default is to name the
files according to the block_names in the metadata.

See the previous section where we created my_design_blk
write_blocks(my_design_blk, file = NULL)

Let's see what the files look like
print_df(read.csv("Bacteria.csv", header = FALSE, colClasses = "character"))
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A
#> B Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1
#> C Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2
#> D Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3
#> E
#> F Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5
#> G Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6
#> H

print_df(read.csv("Media.csv", header = FALSE, colClasses = "character"))
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A
#> B Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> C Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> D Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> E Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> F Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> G Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> H

Saving block-shaped designs to a single file The other setting for write_blocks is output_format
= 'single'. This creates a single csv file that contains all the blocks, putting metadata like block_names
in rows that precede each block.

Let’s take a look what the single output format looks like:

See the previous section where we created my_design_blk
write_blocks(my_design_blk, file = "Design.csv", output_format = "single")

Let's see what the file looks like
print_df(read.csv("Design.csv", header = FALSE, colClasses = "character"))
#> block_name Bacteria
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A

12

#> B Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1 Str1
#> C Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2 Str2
#> D Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3 Str3
#> E
#> F Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5 Str5
#> G Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6 Str6
#> H
#>
#> block_name Media
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A
#> B Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> C Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> D Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> E Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> F Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> G Med1 Med2 Med3 Med4 Med5 Med7 Med8 Med9 Med10
#> H

Here we can see all our design information has been saved to a single file, and the metadata has been added
in rows before each block.

Merging spectrophotometric and design data

Once we have both our design and data in theRenvironment and tidy-shaped, we can merge them using
merge_dfs.

For this, we’ll use the data in the example_widedata_noiseless dataset that is included with gcplyr, and
which was the source for our previous examples with import_blockmeasures and read_wides.

In the example_widedata_noiseless dataset, we have 48 different bacterial strains. The left side of the
plate has all 48 strains in a single well each, and the right side of the plate also has all 48 strains in a single
well each:

Row names Column 1 . . . Column 6 Column 7 . . . Column 12
Row A Strain #1 . . . Strain #6 Strain #1 . . . Strain #6
Row B Strain #7 . . . Strain #12 Strain #7 . . . Strain #12
. .
Row G Strain #37 . . . Strain #42 Strain #37 . . . Strain #42
Row H Strain #43 . . . Strain #48 Strain #43 . . . Strain #48

Then, on the right hand side of the plate a phage was also inoculated (while the left hand side remained
bacteria-only):

Row names Column 1 . . . Column 6 Column 7 . . . Column 12
Row A No Phage . . . No Phage Phage Added . . . Phage Added
Row B No Phage . . . No Phage Phage Added . . . Phage Added
. .
Row G No Phage . . . No Phage Phage Added . . . Phage Added
Row H No Phage . . . No Phage Phage Added . . . Phage Added

13

Let’s generate our design:

example_design <- make_design(
nrows = 8, ncols = 12,
"Bacteria_strain" = make_designpattern(

values = paste("Strain", 1:48),
rows = 1:8, cols = 1:6,
pattern = 1:48,
byrow = TRUE),

"Bacteria_strain" = make_designpattern(
values = paste("Strain", 1:48),
rows = 1:8, cols = 7:12,
pattern = 1:48,
byrow = TRUE),

"Phage" = make_designpattern(
values = c("No Phage"),
rows = 1:8, cols = 1:6,
pattern = "1"),

"Phage" = make_designpattern(
values = c("Phage Added"),
rows = 1:8, cols = 7:12,
pattern = "1"))

Here’s what the resulting data.frame looks like:

head(example_design, 20)
#> Well Bacteria_strain Phage
#> 1 A1 Strain 1 No Phage
#> 2 A2 Strain 2 No Phage
#> 3 A3 Strain 3 No Phage
#> 4 A4 Strain 4 No Phage
#> 5 A5 Strain 5 No Phage
#> 6 A6 Strain 6 No Phage
#> 7 A7 Strain 1 Phage Added
#> 8 A8 Strain 2 Phage Added
#> 9 A9 Strain 3 Phage Added
#> 10 A10 Strain 4 Phage Added
#> 11 A11 Strain 5 Phage Added
#> 12 A12 Strain 6 Phage Added
#> 13 B1 Strain 7 No Phage
#> 14 B2 Strain 8 No Phage
#> 15 B3 Strain 9 No Phage
#> 16 B4 Strain 10 No Phage
#> 17 B5 Strain 11 No Phage
#> 18 B6 Strain 12 No Phage
#> 19 B7 Strain 7 Phage Added
#> 20 B8 Strain 8 Phage Added

Now let’s transform the example_widedata_noiseless to tidy-shaped.

example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,
id_cols = "Time")

14

And finally, we merge the two using merge_dfs, saving the result to ex_dat_mrg, short for exam-
ple_data_merged. merge_dfs merges using columns with the same name between the two data.frames.

ex_dat_mrg <- merge_dfs(example_tidydata, example_design)
#> Joining with `by = join_by(Well)`

head(ex_dat_mrg)
#> Time Well Measurements Bacteria_strain Phage
#> 1 0 A1 0.002 Strain 1 No Phage
#> 2 0 B1 0.002 Strain 7 No Phage
#> 3 0 C1 0.002 Strain 13 No Phage
#> 4 0 D1 0.002 Strain 19 No Phage
#> 5 0 E1 0.002 Strain 25 No Phage
#> 6 0 F1 0.002 Strain 31 No Phage

What’s next?

Now that you’ve merged your data and designs, you can pre-process and plot your data

1. Introduction: vignette("gcplyr")
2. Importing and transforming data: vignette("import_transform")
3. Incorporating design information: vignette("incorporate_designs")
4. Pre-processing and plotting your data: vignette("preprocess_plot")
5. Processing your data: vignette("process")
6. Analyzing your data: vignette("analyze")
7. Dealing with noise: vignette("noise")
8. Statistics, merging other data, and other resources: vignette("conclusion")

15

	Where are we so far?
	Including design elements
	Reading design elements from files
	Importing block-shaped design files
	A basic example
	Importing multiple block-shaped design elements

	Importing tidy-shaped design files

	Generating designs in R
	An example with a single design
	A few notes on the pattern
	Continuing with the example: multiple designs
	Saving designs to files
	Saving tidy-shaped designs
	Saving block-shaped designs
	Saving block-shaped designs to multiple files
	Saving block-shaped designs to a single file

	Merging spectrophotometric and design data
	What's next?

