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Abstract
Pseudo-code for the simplex projection algorithm [1] and the S-map

algorithm [2]. Algorithms are presented for the simple case of predicting
one variable using its own time series.

1 Notation
• E denotes the embedding dimension.

• k denotes the number of nearest neighbors we use. For the simplex
method, the default is k = E + 1 but for the S-map method it can be
much larger.

• Tp denotes how many time-steps into the future we are trying to predict.

• X ∈ R denotes a (potentially long) time series.

• y ∈ RE is a vector of lagged observations for which we want to make a
prediction — in the simplest case where all components of the vector are
single time step lags, y1 represents the current value, y2 is the value one
time step prior and yE is the value E − 1 time steps prior.

• θ ≥ 0 is the tuning parameter in the S-map method.

• XE
t = (Xt, Xt−1, . . . , Xt−E+1)

′ ∈ RE denotes the lagged embedding vec-
tors.

• ‖v‖ is an unspecified norm of v. We do not specify which norm to use and
that choice is left to the user / reader.

• ‖v‖22 =
∑

i v
2
i is the squared L2-norm (squared Euclidean distances).

• Entries of matrices and vectors are indexed in the standard linear algebraic
fashion, starting at 1 (like the R standard) and not at 0 (like the C/C++
and python standard).
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2 Helper Methods

2.1 Nearest neighbors
I will not write implementation of the nearst neighbors method, just present its
description. The method will be used with the signature presented in algorithm
1.

The input variables X, y and k are defined in section 1. The method returns
a list of indices N = {N1, . . . , Nk} such that

‖XE
Ni
− y‖ ≤ ‖XE

Nj
− y‖ if 1 ≤ i ≤ j ≤ k,

Algorithm 1 Find Nearest neighbors
1: procedure Nearneighbor(y,X, k)

2.2 Least Squares
A least squares method finds x that minimizes the error in the solution of an
over-determined linear system (more equations than variables). Below, A ∈
Rp×q, p > q and b ∈ Rp and the least squares problem is to find

x̂ := argmin
x∈Rq

‖Ax− b‖22.

This problem can be solved using a Singular Value Decompostion (SVD), as
outlined in algorithm 2.

Algorithm 2 Least Squares via SVD
1: procedure LeastSquares(A, b) . Assume A ∈ Rp×q, p > q.
2: U, S, V ← SVD(A) . Thus, A = USV ′

3: Sinv ← zeros(q, p) . The zero matrix in Rq×p

4: for i = 1, . . . , q do
5: if Sii > 10−5S11 then . Note that 10−5 is arbitrary
6: Sinv

ii ← 1
Sii

7: x← V SinvU ′b
8: return x

3 Simplex Projection
Ignoring ties in distances, minimal distances, minimal weights and other poten-
tial hazards, the following algorithm performs Simplex projection to predict Tp
time-steps ahead.
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Algorithm 3 Simplex Projection [1]
1: procedure SimplexPrediction(y,X,E, k, Tp)
2: N ← Nearneighbor(y,X, k) . Find k nearest neighbors.
3: d← ‖XE

N1
− y‖ . Define the distance scale.

4: for i = 1, . . . , k do
5: wi ← exp(−‖XE

Ni
− y‖/d) . Compute weights.

6: ŷ ←
∑k

i=1

(
wiXNi+Tp

)
/
∑k

i=1 wi . prediction = average of predicitions.
7: return ŷ

4 S-map
Ignoring ties in distances, minimal distances, minimal weights and other po-
tential hazards, the following algorithm uses the S-map method to predict Tp
time-steps ahead.

Algorithm 4 S-map [2]
1: procedure SmapPrediction(y,X,E, k, Tp, θ )
2: N ← Nearneighbor(y,X, k) . Find NN to use for prediciton.
3: d← 1

k

∑k
i=1 ‖XE

Ni
− y‖ . Sum of distances.

4: for i = 1, . . . , k do
5: wi ← exp(−θ‖XE

Ni
− y‖/d) . Compute weights.

6: W ← diag(wi) . Reweighting matrix.

7: A←


1 XN1

XN1−1 . . . XN1−E+1

1 XN2
XN2−1 . . . XN2−E+1

...
...

...
. . .

...
1 XNk

XNk−1 . . . XNk−E+1

 . Design matrix.

8: A←WA . Weighted design matrix.

9: b←


XN1+Tp

XN2+Tp

...
XNk+Tp

 . Response vector.

10: b←Wb . Weighted response vector.
11: ĉ← argminc ‖Ac− b‖22 . Least squares, can be solved via algorithm 2.
12: ŷ ← ĉ0 +

∑E
i=1 ĉiyi . Using the local linear model ĉ for prediction.

13: return ŷ

Note that k, the number of nearest neighbors used for prediciton, can be
very large compared to the embedding dimension E. Since A ∈ Rk×(1+E), this
means that A is “tall and skinny” and the system Ac = b is over-determined (it
has more equations than variables). This means (typically) that there does not
exist any unique c that solves said system. This is why we seek a least-squares
solution instead.
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