
Quantitative genetics using the sommer package

Giovanny Covarrubias-Pazaran

2023-04-02

The sommer package was developed to provide R users with a powerful and reliable multivariate mixed
model solver for different genetic and non-genetic analyses in diploid and polyploid organisms. This package
allows the user to estimate variance components for a mixed model with the advantages of specifying the
variance-covariance structure of the random effects, specifying heterogeneous variances, and obtaining other
parameters such as BLUPs, BLUEs, residuals, fitted values, variances for fixed and random effects, etc. The
core algorithms of the package are coded in C++ using the Armadillo library to optimize dense matrix
operations common in the derect-inversion algorithms. Although the vignette shows examples using the
mmer function, the mmec function can be faster when working with more records than coefficients to be
estimated and we highly recommend to shift to the use of the mmec function.

The package is focused on problems of the type p > n related to genomic prediction (hybrid prediction
& genomic selection) and GWAS analysis, although any general mixed model can be fitted as well. The
package provides kernels to estimate additive (A.mat), dominance (D.mat), and epistatic (E.mat) relationship
matrices that have been shown to increase prediction accuracy under certain scenarios or simply to estimate
the variance components of such. The package provides flexibility to fit other genetic models such as full and
half diallel models as well.

The vignettes aim to provide several examples in how to use the sommer package under different scenarios.
We will spend the rest of the space providing examples for:

SECTION 1: Introduction

1) Background in linear algebra

SECTION 2: Topics in quantitative genetics

1) Heritability (h2) calculation
2) Specifying heterogeneous variances in mixed models
3) Using the vpredict() calculator
4) Half and full diallel designs (using the overlay)
5) Genomic selection (predicting mendelian sampling)

• GBLUP
• rrBLUP

6) Indirect genetic effects
7) Single cross prediction (hybrid prediction)
8) Spatial modeling (using the 2-dimensional splines)
9) Multivariate genetic models and genetic correlations

SECTION 3: Special topics in quantitative genetics

1) Partitioned model
2) UDU’ decomposition
3) Mating designs
4) GWAS by GBLUP

1

SECTION 1: Introduction

Backgrounds in linear algebra

The core of the package is the mmer() and mmec functions which solve the mixed model equations. The
functions are an interface to call the NR Direct-Inversion Newton-Raphson or Average Information or mme-
based Average Information (Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2016). Since version 2.0, sommer
can handle multivariate models. Following Maier et al. (2015), the multivariate (and by extension the
univariate) mixed model implemented has the form:

y1 = X1β1 + Z1u1 + ε1

y2 = X2β2 + Z2u2 + ε2

. . .

yi = Xiβi + Ziui + εi

where yi is a vector of trait phenotypes, βi is a vector of fixed effects, ui is a vector of random effects for
individuals and ei are residuals for trait i (i = 1, . . . , t). The random effects (u1 . . . ui and ei) are assumed
to be normally distributed with mean zero. X and Z are incidence matrices for fixed and random effects
respectively. The distributions of the multivariate response and the phenotypic variance covariance (V) are:

Y = Xβ + ZU + εi

Y ~ MVN(Xβ, V)

Y =

y1
y2
...
yt

X =

 X1
...

. . .
...

... ... Xt

V =

 Z1Kσ
2
g1
Z ′1 +Hσ2

ε1
... Z1Kσg1,t

Z ′t +Hσε1,t

...
. . .

...
Z1Kσg1,t

Z ′t +Hσε1,t
... ZtKσ

2
gt
Z ′t +Hσ2

εt

where K is the relationship or covariance matrix for the kth random effect (u=1,. . . ,k), and R=I is an identity
matrix for the residual term. The terms σ2

gi
and σ2

εi
denote the genetic (or any of the kth random terms) and

residual variance of trait i, respectively and σg
ij

and σε
ij

the genetic (or any of the kth random terms) and
residual covariance between traits i and j (i=1,. . . ,t, and j=1,. . . ,t). The algorithm implemented optimizes
the log likelihood:

logL = 1/2 ∗ ln(|V |) + ln(X ′|V |X) + Y ′PY

where || is the determinant of a matrix. The REML estimates are updated using a Newton optimization
algorithm of the form:

θk+1 = θk + (Hk)−1 ∗ dL
dσ2

i
|θk

Where θ is the vector of variance components for random effects and covariance components among traits,
H−1 is the inverse of the Hessian matrix of second derivatives for the kth cycle, dL

dσ2
i
is the vector of first

derivatives of the likelihood with respect to the variance-covariance components. The Eigen decomposition
of the relationship matrix proposed by Lee and Van Der Werf (2016) was included in the Newton-Raphson

2

algorithm to improve time efficiency. Additionally, the popular vpredict() function to estimate standard
errors for linear combinations of variance components (i.e. heritabilities and genetic correlations) was added
to the package as well.

Please refer to the canonical papers listed in the Literature section to check how the algorithms work. We
have tested widely the methods to make sure they provide the same solution when the likelihood behaves
well, but for complex problems they might lead to slightly different answers. If you have any concern please
contact me at cova_ruber@live.com.mx.

In the following section we will go in detail over several examples on how to use mixed models in univariate
and multivariate case and their use in quantitative genetics.

SECTION 2: Topics in quantitative genetics

1) Marker and non-marker based heritability calculation

Heritability is one of the most popular parameters among the breeding and genetics communities because of
the insight it provides in the inheritance of the trait and potential selection response. Heritability is usually
estimated as narrow sense (h2; only additive variance in the numerator σ2

A), and broad sense (H2; all genetic
variance in the numerator σ2

G).

In a classical breeding experiment with no molecular markers, special designs are performed to estimate
and dissect the additive (σ2

A) and non-additive (e.g., dominance σ2
D, and epistatic σ2

E) variance along with
environmental variability. Designs such as generation analysis, North Carolina designs are used to dissect
σ2
A and σ2

D to estimate the narrow sense heritability (h2) using only σ2
A in the numerator. When no special

design is available we can still disect the genetic variance (σ2
G) and estimate the broad sense heritability. In

this first example we will show the broad sense estimation which doesn’t use covariance matrices for the
genotypic effect (e.g., genomic-additive relationship matrices). For big models with no relationship matrices,
sommer’s direct inversion is a bad idea to use but we will still show how to do it, but keep in mind that
for very sparse models with no relationship matrices or other special covariance structures we recommend
using the lmer() function from the lme4 package or any other package using MME-based algorithms (e.g.,
asreml-R).

The following dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We
show how to fit the model and extract the variance components to calculate the h2.
library(sommer)
data(DT_example)
DT <- DT_example
A <- A_example

ans1 <- mmec(Yield~1,
random= ~ Name + Env + Env:Name + Env:Block,
rcov= ~ units, nIters=3,
data=DT, verbose = FALSE)

summary(ans1)$varcomp

VarComp VarCompSE Zratio Constraint
Name:isc:isc 3.473141 1.740391 1.99560998 Positive
Env:isc:isc 8.123568 14.134504 0.57473313 Positive
Env:Name:isc:isc 3.065682 2.484768 1.23378974 Positive
Env:Block:isc:isc 1.980519 27.082952 0.07312789 Positive
units:isc:isc 5.754837 2.889317 1.99176374 Positive
(n.env <- length(levels(DT$Env)))

3

mailto:cova_ruber@live.com.mx

[1] 3
vpredict(ans1, h2 ~ V1 / (V1 + (V3/n.env) + (V5/(2*n.env))))

That is an estimate of broad-sense heritability.

Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When
markers are available, a special design is not neccesary to dissect the additive genetic variance. The availability
of the additive, dominance and epistatic relationship matrices allow us to estimate σ2

A, σ2
D and σ2

I , although
given that A, D and E are not orthogonal the interpretation of models that fit more than the A matrix at the
same time becomes cumbersome.

Assume you have a population (even unreplicated) in the field but in addition we have genetic markers. Now
we can fit the model and estimate the genomic heritability that explains a portion of the additive genetic
variance (with high marker density σ2

A = σ2
markers)

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
DT$idd <-DT$id; DT$ide <-DT$id
look at the data
A <- A.mat(GT) # additive relationship matrix
D <- D.mat(GT) # dominance relationship matrix
E <- E.mat(GT) # epistatic relationship matrix
ans.ADE <- mmer(color~1,

random=~vsr(id,Gu=A) + vsr(idd,Gu=D),
rcov=~units, nIters=3,
data=DT,verbose = FALSE)

(summary(ans.ADE)$varcomp)

VarComp VarCompSE Zratio Constraint
u:id.color-color 0.003486639 0.0011076709 3.147721 Positive
u:idd.color-color 0.001286778 0.0005071774 2.537136 Positive
units.color-color 0.002152054 0.0002976821 7.229372 Positive
vpredict(ans.ADE, h2 ~ (V1) / (V1+V3)) # narrow sense

Estimate SE
h2 0.6183417 0.08605268
vpredict(ans.ADE, h2 ~ (V1+V2) / (V1+V2+V3)) # broad-sense

Estimate SE
h2 0.6892552 0.05896317

In this example we showed how to estimate the additive (σ2
A) and dominance (σ2

D) variance components
based on markers and estimate broad (H2) and narrow-sense heritability (h2). Notice that we used the vsr()
function which indicates that the random effect inside the parenthesis (i.e. id, idd or ide) has a covariance
matrix (A, D, or E), that will be specified in the Gu argument of the vsr() function. Please DO NOT provide
the inverse, but rather the original covariance matrix.

2) Specifying heterogeneous variances in univariate models

Very often in multi-environment trials, the assumption that genetic variance is the same across locations may
be too naive. Because of that, specifying a general genetic component and a location-specific genetic variance
is the way to go.

4

We estimate variance components for GCA2 and SCA specifying the variance structure.
data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids
fit the model
modFD <- mmec(Yield~1,
random=~ vsc(atc(Location,c("3","4")),isc(GCA2)),
rcov= ~ vsc(dsc(Location),isc(units)), nIters=3,
returnParam = F,
data=DT, verbose = FALSE)
summary(modFD)

In the previous example we showed how the atr() function is used in the mmer() solver. By using the
atr() function you can specify that i.e. the GCA2 has a different variance in different Locations, in this case
locations 3 and 4, but also a main GCA variance. This is considered a CS + DIAG (compound symmetry +
diagonal) model.

In addition, other functions can be added on top to fit models with covariance structures, i.e. the Gu argument
from the vsr() function to indicate a covariance matrix (A, pedigree or genomic relationship matrix)
data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- as(GT_cornhybrids, Class = "dgCMatrix")
GT[1:4,1:4]
DT=DT[with(DT, order(Location)),]
fit the model
modFD <- mmec(Yield~1,
random=~ vsc(atc(Location,c("3","4")),isc(GCA2),Gu=GT),
rcov= ~ vsc(dsc(Location),isc(units)), nIters=3,
data=DT, verbose = FALSE)
summary(modFD)

3) Using the vpredict calculator

Sometimes the user needs to calculate ratios or functions of specific variance-covariance components and
obtain the standard errors for such parameters. Examples of these are the genetic correlations, heritabilities,
etc. Using the CPdata we will show how to estimate the heritability and the standard error using the
vpredict() function that uses the delta method to come up with these parameters. This can be extended
for any linear combination of the variance components.

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
look at the data
A <- A.mat(GT) # additive relationship matrix
ans <- mmer(color~1,

random=~vsr(id,Gu=A),
rcov=~units, nIters=3,

5

data=DT, verbose = FALSE)
(summary(ans.ADE)$varcomp)

3.1) Standar error for heritability

VarComp VarCompSE Zratio Constraint
u:id.color-color 0.003486639 0.0011076709 3.147721 Positive
u:idd.color-color 0.001286778 0.0005071774 2.537136 Positive
units.color-color 0.002152054 0.0002976821 7.229372 Positive
vpredict(ans, h2 ~ (V1) / (V1+V2))

Estimate SE
h2 0.6405467 0.05805209

The same can be used for multivariate models. Please check the documentation of the vpredict function to
see more examples.

just silenced to avoid too much time building the vignettes
data(DT_btdata)
DT <- DT_btdata
mix3 <- mmer(cbind(tarsus, back) ~ sex,
random = ~ vsr(dam, Gtc=unsm(2)) + vsr(fosternest,Gtc=diag(2)),
rcov=~vsr(units,Gtc=unsm(2)), nIters=3,
data = DT, verbose = FALSE)
summary(mix3)
calculate the genetic correlation
vpredict(mix3, gen.cor ~ V2 / sqrt(V1*V3))

3.2) Standar error for genetic correlation

4) Half and full diallel designs (use of the overlay)

When breeders are looking for the best single-cross combinations, diallel designs have been by far the most
used design in crops like maize. There are 4 types of diallel designs depending on whether reciprocal and
self-crosses (omission of parents) are performed (full diallel with parents nˆ2; full diallel without parents
n(n-1); half diallel with parents 1/2 * n(n+1); half diallel without parents 1/2 * n(n-1)). In this example
we will show a full diallel design (reciprocal crosses are performed) and half diallel designs (only one of the
directions is performed).

In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400
possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data
available to fit a model of the form:

y = Xβ + Zu1 + Zu2 + ZuS + ε

We estimate variance components for GCA1, GCA2 and SCA and use them to estimate heritability. Addi-
tionally BLUPs for GCA and SCA effects can be used to predict crosses.
data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids

modFD <- mmec(Yield~Location,

6

random=~GCA1+GCA2+SCA,
rcov=~units, nIters=3,
data=DT, verbose = FALSE)

(suma <- summary(modFD)$varcomp)

VarComp VarCompSE Zratio Constraint
GCA1:isc:isc 24.95534 49.80694 0.5010414 Positive
GCA2:isc:isc 49.09954 38.25552 1.2834629 Positive
SCA:isc:isc 80.62519 21.63046 3.7273920 Positive
units:isc:isc 242.34769 29.44579 8.2303016 Positive
Vgca <- sum(suma[1:2,1])
Vsca <- suma[3,1]
Ve <- suma[4,1]
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve)))

[1] 0.7185499
(h2 <- Va / (Vg + (Ve)))

[1] 0.3440141

Don’t worry too much about the h2 value, the data was simulated to be mainly dominance variance, therefore
the Va was simulated extremely small leading to such value of narrow sense h2.

In the second data set we show a small half diallel with 7 parents crossed in one direction. There are n(n-1)/2
possible crosses; 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two
replications in a CRD. For a half diallel design a single GCA variance component for both males and females
can be estimated and an SCA as well (σ2

GCA and σ2
SCA respectively), and BLUPs for GCA and SCA of the

parents can be extracted. We will show first how to do so with the mmer() function using the overlay()
function. The specific model here is:

y = Xβ + Zug + Zus + ε

data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)

rep geno male female sugar
1 1 12 1 2 13.950509
2 2 12 1 2 9.756918
3 1 13 1 3 13.906355
4 2 13 1 3 9.119455
5 1 14 1 4 5.174483
6 2 14 1 4 8.452221
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
model using overlay
modh <- mmec(sugar~1,

random=~vsc(isc(overlay(femalef,malef)))
+ genof, nIters=3,
data=DT, verbose = FALSE)

summary(modh)$varcomp

7

VarComp VarCompSE Zratio Constraint
femalef:malef:isc:isc 4.578188 1.726597 2.6515668 Positive
genof:isc:isc 1.657536 3.245121 0.5107780 Positive
units:isc:isc 3.443215 3.487367 0.9873396 Positive

Notice how the overlay() argument makes the overlap of incidence matrices possible making sure that male
and female are joint into a single random effect.

5) Genomic selection: predicting mendelian sampling

In this section we will use wheat data from CIMMYT to show how genomic selection is performed. This is
the case of prediction of specific individuals within a population. It basically uses a similar model of the form:

y = Xβ + Zu+ ε

and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship
matrix (A) and calculated using the A.mat function to establish connections among all individuals and predict
the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such
as the heritability (h2), training population used (TP), size of TP, etc.
data(DT_wheat)
DT <- DT_wheat
GT <- GT_wheat[,1:200]
colnames(DT) <- paste0("X",1:ncol(DT))
DT <- as.data.frame(DT);DT$id <- as.factor(rownames(DT))
select environment 1
rownames(GT) <- rownames(DT)
K <- A.mat(GT) # additive relationship matrix
colnames(K) <- rownames(K) <- rownames(DT)
GBLUP pedigree-based approach
set.seed(12345)
y.trn <- DT
vv <- sample(rownames(DT),round(nrow(DT)/5))
y.trn[vv,"X1"] <- NA
head(y.trn)

X1 X2 X3 X4 id
775 1.6716295 -1.72746986 -1.89028479 0.0509159 775
2166 -0.2527028 0.40952243 0.30938553 -1.7387588 2166
2167 NA -0.64862633 -0.79955921 -1.0535691 2167
2465 0.7854395 0.09394919 0.57046773 0.5517574 2465
3881 0.9983176 -0.28248062 1.61868192 -0.1142848 3881
3889 2.3360969 0.62647587 0.07353311 0.7195856 3889
GBLUP
ans <- mmer(X1~1,

random=~vsr(id,Gu=K),
rcov=~units,nIters=3,
data=y.trn, verbose = FALSE) # kinship based

ansU`u:id`$X1 <- as.data.frame(ans$U$`u:id`$X1)
rownames(ansU`u:id`$X1) <- gsub("id","",rownames(ansU`u:id`$X1))
cor(ansU`u:id`$X1[vv,],DT[vv,"X1"], use="complete")

[1] 0.4310372
rrBLUP
ans2 <- mmer(X1~1,

8

random=~vsr(list(GT), buildGu = FALSE),
rcov=~units, getPEV = FALSE, nIters=3,
data=y.trn, verbose = FALSE) # kinship based

u <- GT %*% as.matrix(ans2U`u:GT`$X1) # BLUPs for individuals
rownames(u) <- rownames(GT)
cor(u[vv,],DT[vv,"X1"]) # same correlation

[1] 0.4370181
the same can be applied in multi-response models in GBLUP or rrBLUP

Please notice that when specifying the marker matrix as a random effect we used the argument
‘buildGu=FALSE’ to inform the ‘mmer’ function that a covariance matrix for the levels of the random effect
shouldn’t be built. Imagine a model with 100,000 markers, that would imply a relationship matrix of 100,000
x 100,000. If that matrix is a diagonal it would only compromise the speed and memory of the function. By
setting ‘buildGu=FALSE’ the mmer solver will avoid the matrix multiplications using that huge diagonal
matrix. If you want to specify a relationship matrix for the marker matrix then you cannot use that ‘buildGu’
argument.

6) Indirect genetic effects

General variance structures can be used to fit indirect genetic effects. Here, we use an example dataset to
show how we can fit the variance and covariance components between two or more different random effects.

We first fit a direct genetic effects model:
data(DT_ige)
DT <- DT_ige
Af <- A_ige
An <- A_ige
#
Direct genetic effects model
modDGE <- mmec(trait ~ block,
random = ~ focal,
rcov = ~ units, nIters=3,
data = DT, verbose=FALSE)
summary(modDGE)$varcomp

We now fit the indirect genetic effects model without covariance between DGE and IGE:
data(DT_ige)
DT <- DT_ige
A <- A_ige
#
Indirect genetic effects model
modDGE <- mmec(trait ~ block,
random = ~ focal + neighbour,
rcov = ~ units, nIters=3,
data = DT, verbose=FALSE)
summary(modDGE)$varcomp

We now fit the indirect genetic effects model with covariance between DGE and IGE for which we will use
the gvsr() function:

9

Indirect genetic effects model
modIGE <- mmer(trait ~ block,
random = ~ gvsr(focal, neighbour),
rcov = ~ units, nIters=3,
data = DT, verbose=FALSE)
summary(modIGE)$varcomp

On top of that we can include a relationship matrix for the two random effects that are being forced to
co-vary
Indirect genetic effects model
modIGE <- mmer(trait ~ block,
random = ~ gvsr(focal, neighbour, Gu=list(Af,An)),
rcov = ~ units, nIters=3,
data = DT, verbose=FALSE)
summary(modIGE)$varcomp

7) Genomic selection: single cross prediction

When doing prediction of single cross performance the phenotype can be dissected in three main components,
the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the
same model analyzed in the diallel experiment mentioned before:

y = Xβ + Zu1 + Zu2 + ZuS + ε

with:

u1 ~ N(0, K1σ
2
u1)

u2 ~ N(0, K2σ
2
u2)

us ~ N(0, K3σ
2
us)

And we can specify the K matrices. The main difference between this model and the full and half diallel
designs is the fact that this model will include variance covariance structures in each of the three random
effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the
data published by Technow et al. (2015) to show how to do prediction of single crosses.
data(DT_technow)
DT <- DT_technow
Md <- (Md_technow*2) - 1
Mf <- (Mf_technow*2) - 1
Ad <- A.mat(Md)
Af <- A.mat(Mf)
Adi <- as(solve(Ad + diag(1e-4,ncol(Ad),ncol(Ad))), Class="dgCMatrix")
Afi <- as(solve(Af + diag(1e-4,ncol(Af),ncol(Af))), Class="dgCMatrix")
RUN THE PREDICTION MODEL
y.trn <- DT
vv1 <- which(!is.na(DT$GY))
vv2 <- sample(vv1, 100)
y.trn[vv2,"GY"] <- NA
anss2 <- mmec(GY~1,

random=~vsc(isc(dent),Gu=Adi) + vsc(isc(flint),Gu=Afi),
rcov=~units, nIters=3,
data=y.trn, verbose = FALSE)

summary(anss2)$varcomp

10

VarComp VarCompSE Zratio Constraint
dent:Adi:isc:isc 41.43821 3.018488 13.728134 Positive
flint:Afi:isc:isc 28.43672 3.282938 8.661971 Positive
units:isc:isc 18.93720 3.248462 5.829591 Positive
zu1 <- model.matrix(~dent-1,y.trn) %*% anss2U`u:dent`$GY
zu2 <- model.matrix(~flint-1,y.trn) %*% anss2U`u:flint`$GY
u <- zu1+zu2+anss2$Beta[1,"Estimate"]
cor(u[vv2,], DT$GY[vv2])

In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, altough it’s been shown
that the SCA effect doesn’t actually help that much in increasing prediction accuracy, but does increase a lot
the computation intensity required since the variance covariance matrix for SCA is the kronecker product of
the variance covariance matrices for the GCA effects, resulting in a 10578 x 10578 matrix that increases in a
very intensive manner the computation required.

A model without covariance structures would show that the SCA variance component is insignificant compared
to the GCA effects. This is why including the third random effect doesn’t increase the prediction accuracy.

8) Spatial modeling: using the 2-dimensional spline

We will use the CPdata to show the use of 2-dimensional splines for accomodating spatial effects in field
experiments. In early generation variety trials the availability of seed is low, which makes the use of
unreplicated designs a neccesity more than anything else. Experimental designs such as augmented designs
and partially-replicated (p-rep) designs are becoming ever more common these days.

In order to do a good job modeling the spatial trends happening in the field, special covariance structures
have been proposed to accomodate such spatial trends (i.e. autoregressive residuals; ar1). Unfortunately,
some of these covariance structures make the modeling rather unstable. More recently, other research groups
have proposed the use of 2-dimensional splines to overcome such issues and have a more robust modeling of
the spatial terms (Lee et al. 2013; Rodríguez-Álvarez et al. 2018).

In this example we assume an unreplicated population where row and range information is available which
allows us to fit a 2 dimensional spline model.
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
mimic two fields
A <- A.mat(GT)
mix <- mmer(Yield~1,

random=~vsr(id, Gu=A) +
vsr(Rowf) +
vsr(Colf) +
spl2Da(Row,Col), nIters=3,

rcov=~vsr(units),
data=DT, verbose = FALSE)

summary(mix)

==
Multivariate Linear Mixed Model fit by REML
********************** sommer 4.2 **********************
==
logLik AIC BIC Method Converge
Value -151.2647 304.5293 308.421 NR FALSE

11

==
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 792.6 317.6 2.4959 Positive
u:Rowf.Yield-Yield 807.6 371.3 2.1750 Positive
u:Colf.Yield-Yield 183.2 139.7 1.3121 Positive
A:all.Yield-Yield 515.8 701.3 0.7354 Positive
u:units.Yield-Yield 2918.4 292.8 9.9667 Positive
==
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 Yield (Intercept) 132.1 8.761 15.08
==
Groups and observations:
Yield
u:id 363
u:Rowf 13
u:Colf 36
A:all 168
==
Use the '$' sign to access results and parameters
make a plot to observe the spatial effects found by the spl2D()
W <- with(DT,spl2Da(Row,Col)) # 2D spline incidence matrix
DT$spatial <- W$Z$`A:all`%*%mix$U$`A:all`$Yield # 2D spline BLUPs
lattice::levelplot(spatial~Row*Col, data=DT) # plot the spatial effect by row and column

Row

C
ol

10

20

30

2 4 6 8 10 12

−5

0

5

10

Notice that the job is done by the spl2Da() function that takes the Row and Col information to fit a spatial
kernel.

12

9) Multivariate genetic models and genetic correlations

Sometimes is important to estimate genetic variance-covariance among traits–multi-reponse models are very
useful for such a task. Let see an example with 3 traits (color, Yield, and Firmness) and a single random
effect (genotype; id) although multiple effects can be modeled as well. We need to use a variance covariance
structure for the random effect to be able to obtain the genetic covariance among traits.
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
A <- A.mat(GT)
ans.m <- mmer(cbind(Yield,color)~1,
random=~ vsr(id, Gu=A, Gtc=unsm(2))
+ vsr(Rowf,Gtc=diag(2))
+ vsr(Colf,Gtc=diag(2)),
rcov=~ vsr(units, Gtc=unsm(2)), nIters=3,
data=DT, verbose = FALSE)

Now you can extract the BLUPs using randef(ans.m) or simply ans.m$U. Also, genetic correlations and
heritabilities can be calculated easily.
cov2cor(ans.m$sigma$`u:id`)

SECTION 3: Special topics in Quantitative genetics

1) Partitioned model

The partitioned model was popularized by () to show that marker effects can be obtained by fitting a GBLUP
model to reduce the computational burden and then recover them by creating some special matrices MM’ for
GBLUP and M’(M’M)- to recover marker effects. Here we show a very easy example using the DT_cpdata:
library(sommer)
data("DT_cpdata")
DT <- DT_cpdata
M <- GT_cpdata

################
MARKER MODEL
################
mix.marker <- mmer(color~1,

random=~Rowf+vsr(M),
rcov=~units,data=DT,
verbose = FALSE)

me.marker <- mix.markerU`u:M`$color

################
PARTITIONED GBLUP MODEL
################

MMT <-tcrossprod(M) ## MM' = additive relationship matrix
MMTinv<-solve(MMT) ## inverse

13

MTMMTinv<-t(M)%*%MMTinv # M' %*% (M'M)-

mix.part <- mmer(color~1,
random=~Rowf+vsr(id, Gu=MMT),
rcov=~units,data=DT,
verbose = FALSE)

#convert BLUPs to marker effects me=M'(M'M)- u
me.part<-MTMMTinv%*%matrix(mix.partU`u:id`$color,ncol=1)

compare marker effects between both models
plot(me.marker,me.part)

−0.003 −0.002 −0.001 0.000 0.001 0.002

−
0.

00
3

−
0.

00
1

0.
00

1

me.marker

m
e.

pa
rt

As can be seen, these two models are equivalent with the exception that the partitioned model is more
computationally efficient.

2) UDU’ decomposition

Lee and Van der Warf (2015) proposed a decomposition of the relationship matrix A=UDU’ together
with a transformation of the response and fixed effects Uy = Ux + UZ + e, to fit a model where the
phenotypic variance matrix V is a diagonal because the relationship matrix is the diagonal matrix D from
the decomposition that can be inverted easily and make multitrait models more feasible.
data("DT_wheat")
rownames(GT_wheat) <- rownames(DT_wheat)
G <- A.mat(GT_wheat)
Y <- data.frame(DT_wheat)
#
make the decomposition
UD<-eigen(G) # get the decomposition: G = UDU'
U<-UD$vectors
D<-diag(UD$values)# This will be our new 'relationship-matrix'

14

rownames(D) <- colnames(D) <- rownames(G)
X<-model.matrix(~1, data=Y) # here: only one fixed effect (intercept)
UX<-t(U)%*%X # premultiply X and y by U'
UY <- t(U) %*% as.matrix(Y) # multivariate
#
dataset for decomposed model
DTd<-data.frame(id = rownames(G) ,UY, UX =UX[,1])
DTd$id<-as.character(DTd$id)
#
modeld <- mmer(cbind(X1,X2) ~ UX - 1,
random = ~vsr(id,Gu=D),
rcov = ~vsr(units),
data=DTd, verbose = FALSE)
#
dataset for normal model
DTn<-data.frame(id = rownames(G) , DT_wheat)
DTn$id<-as.character(DTn$id)
#
modeln <- mmer(cbind(X1,X2) ~ 1,
random = ~vsr(id,Gu=G),
rcov = ~vsr(units),
data=DTn, verbose = FALSE)
#
compare regular and transformed blups
plot(x=(solve(t(U)))%*%modeldU`u:id`$X2[colnames(D)],
y=modelnU`u:id`$X2[colnames(D)], xlab="UDU blup",
ylab="blup")

As can be seen, the two models are equivalent. Despite the fact that sommer doesn’t take a great advantage
of this trick because it was built for dense matrices using the Armadillo library. Other software may be better
using this trick.

3) Mating designs

Estimating variance components has been a topic of interest for the breeding community for a long time.
Here we show how to calculate additive and dominance variance using the North Carolina Design I (Nested
design) and North Carolina Design II (Factorial design) using the classical Expected Mean Squares method
and the REML methods from sommer and how these two are equivalent.

data(DT_expdesigns)
DT <- DT_expdesigns$car1
DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)
DT$repf <- as.factor(DT$rep)
DT$malef <- as.factor(DT$male)
DT$femalef <- as.factor(DT$female)
#levelplot(yield~male*female|set, data=DT, main="NC design I")
##############################
Expected Mean Square method
##############################
mix1 <- lm(yield~ setf + setf:repf + femalef:malef:setf + malef:setf, data=DT)

15

MS <- anova(mix1); MS

North Carolina Design I (Nested design)

Analysis of Variance Table
##
Response: yield
Df Sum Sq Mean Sq F value Pr(>F)
setf 1 0.1780 0.17796 1.6646 0.226012
setf:repf 2 0.9965 0.49824 4.6605 0.037141 *
setf:malef 4 7.3904 1.84759 17.2822 0.000173 ***
setf:femalef:malef 6 1.6083 0.26806 2.5074 0.095575 .
Residuals 10 1.0691 0.10691

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ms1 <- MS["setf:malef","Mean Sq"]
ms2 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]
nrep=2
nfem=2
Vfm <- (ms2-mse)/nrep
Vm <- (ms1-ms2)/(nrep*nfem)

Calculate Va and Vd
Va=4*Vm # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
1.579537 -1.257241
##############################
REML method
##############################
mix2 <- mmer(yield~ setf + setf:repf,

random=~femalef:malef:setf + malef:setf, nIters=3,
data=DT, verbose = FALSE)

vc <- summary(mix2)$varcomp; vc

VarComp VarCompSE Zratio Constraint
femalef:malef:setf.yield-yield 0.0795986 0.07959526 1.000042 Positive
malef:setf.yield-yield 0.3875096 0.27561291 1.405992 Positive
units.yield-yield 0.1080557 0.05294578 2.040875 Positive
Vfm <- vc[1,"VarComp"]
Vm <- vc[2,"VarComp"]

Calculate Va and Vd
Va=4*Vm # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
1.550038 -1.231644

As can be seen the REML method is easier than manipulating the MS and we arrive to the same results.

16

DT <- DT_expdesigns$car2
DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)
DT$repf <- as.factor(DT$rep)
DT$malef <- as.factor(DT$male)
DT$femalef <- as.factor(DT$female)
#levelplot(yield~male*female|set, data=DT, main="NC desing II")
head(DT)

North Carolina Design II (Factorial design)

set male female rep yield setf repf malef femalef
1 1 1 1 1 831.03 1 1 1 1
2 1 2 1 1 1046.55 1 1 2 1
3 1 3 1 1 853.33 1 1 3 1
4 1 4 1 1 940.00 1 1 4 1
5 1 5 1 1 802.00 1 1 5 1
6 1 1 2 1 625.93 1 1 1 2
N=with(DT,table(female, male, set))
nmale=length(which(N[1,,1] > 0))
nfemale=length(which(N[,1,1] > 0))
nrep=table(N[,,1])
nrep=as.numeric(names(nrep[which(names(nrep) !=0)]))

##############################
Expected Mean Square method
##############################

mix1 <- lm(yield~ setf + setf:repf +
femalef:malef:setf + malef:setf + femalef:setf, data=DT)

MS <- anova(mix1); MS

Analysis of Variance Table
##
Response: yield
Df Sum Sq Mean Sq F value Pr(>F)
setf 1 847836 847836 45.6296 1.097e-09 ***
setf:repf 4 144345 36086 1.9421 0.109652
setf:malef 8 861053 107632 5.7926 5.032e-06 ***
setf:femalef 8 527023 65878 3.5455 0.001227 **
setf:femalef:malef 32 807267 25227 1.3577 0.129527
Residuals 96 1783762 18581

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ms1 <- MS["setf:malef","Mean Sq"]
ms2 <- MS["setf:femalef","Mean Sq"]
ms3 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]
nrep=length(unique(DT$rep))
nfem=length(unique(DT$female))
nmal=length(unique(DT$male))
Vfm <- (ms3-mse)/nrep;
Vf <- (ms2-ms3)/(nrep*nmale);

17

Vm <- (ms1-ms3)/(nrep*nfemale);

Va=4*Vm; # assuming no inbreeding (4/(1+F))
Va=4*Vf; # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm); # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
10840.192 8861.659
##############################
REML method
##############################

mix2 <- mmer(yield~ setf + setf:repf ,
random=~femalef:malef:setf + malef:setf + femalef:setf,
nIters=3,
data=DT, verbose = FALSE)

vc <- summary(mix2)$varcomp; vc

VarComp VarCompSE Zratio Constraint
femalef:malef:setf.yield-yield 2235.754 2320.298 0.9635634 Positive
malef:setf.yield-yield 5464.494 3484.990 1.5680085 Positive
femalef:setf.yield-yield 2722.922 2316.795 1.1752969 Positive
units.yield-yield 18569.305 2665.240 6.9672171 Positive
Vfm <- vc[1,"VarComp"]
Vm <- vc[2,"VarComp"]
Vf <- vc[3,"VarComp"]

Va=4*Vm; # assuming no inbreeding (4/(1+F))
Va=4*Vf; # assuming no inbreeding (4/(1+F))
Vd=4*(Vfm); # assuming no inbreeding(4/(1+F)ˆ2)
Vg=c(Va,Vd); names(Vg) <- c("Va","Vd"); Vg

Va Vd
10891.689 8943.017

As can be seen, the REML method is easier than manipulating the MS and we arrive to the same results.

4) GWAS by GBLUP

Gualdron-Duarte et al. (2014) and Bernal-Rubio et al. (2016) proved that in (SingleStep)GBLUP or
RRBLUP/SNP-BLUP, dividing the estimate of the marker effect by its standard error is mathematically
equivalent to fixed regression EMMAX GWAS, even if markers are estimated as random effects in GBLUP
and as fixed effects in EMMAX. That way fitting a GBLUP model is enough to perform GWAS for additive
and on-additive effects.

Let us use the DT_cpdata dataset to explore the GWAS by GBLUP method
data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata[,1:200]
MP <- MP_cpdata
create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix

18

n <- nrow(DT) # to be used for degrees of freedom
k <- 1 # to be used for degrees of freedom (number of levels in fixed effects)

First we fit a regular GWAS/EMMAX using the GWAS function available in sommer that first calculates
variance components and then fits a regression marker by marker as a fixed effect.
###########################
Regular GWAS/EMMAX approach
###########################
mix2 <- GWAS(color~1,

random=~vsr(id, Gu=A) + Rowf + Colf,
rcov=~units, M=GT, gTerm = "u:id",
verbose = FALSE, nIters=3,
data=DT)

Performing GWAS evaluation

To compare EMMAX to the approach proposed by Gualdron-Duarte et al. (2014) and Bernal-Rubio et
al. (2016) we will start fitting an RRBLUP/SNP-BLUP model to show that the estimate of the marker effect
by its standard error is mathematically equivalent to fixed regression EMMAX GWAS.
###########################
GWAS by RRBLUP approach
###########################
Z <- GT[as.character(DT$id),]
mixRRBLUP <- mmer(color~1,

random=~vsr(Z) + Rowf + Colf,
rcov=~units, nIters=3,
verbose = FALSE,
data=DT)

a <- mixRRBLUPU`u:Z`$color # marker effects
se.a <- sqrt(diag(kronecker(diag(ncol(Z)),mixRRBLUP$sigma$`u:Z`) - mixRRBLUP$PevU$`u:Z`$color)) # SE of marker effects
t.stat <- a/se.a # t-statistic
pvalRRBLUP <- dt(t.stat,df=n-k-1) # -log10(pval)

Instead of fitting the RRBLUP/SNP-BLUP model we can fit a GBLUP model which is less computationally
demanding and recover marker effects and their standard errors from the genotype effects.
###########################
GWAS by GBLUP approach
###########################
M<- GT
MMT <-tcrossprod(M) ## MM' = additive relationship matrix
MMTinv<-solve(MMT + diag(1e-6, ncol(MMT), ncol(MMT))) ## inverse of MM'
MTMMTinv<-t(M)%*%MMTinv # M' %*% (M'M)-
mixGBLUP <- mmer(color~1,

random=~vsr(id, Gu=MMT) + Rowf + Colf,
rcov=~units, nIters=3,
verbose = FALSE,
data=DT)

a.from.g <-MTMMTinv%*%matrix(mixGBLUPU`u:id`$color,ncol=1)
var.g <- kronecker(MMT,mixGBLUP$sigma$`u:id`) - mixGBLUP$PevU$`u:id`$color
var.a.from.g <- t(M)%*%MMTinv%*% (var.g) %*% t(MMTinv)%*%M
se.a.from.g <- sqrt(diag(var.a.from.g))
t.stat.from.g <- a.from.g/se.a.from.g # t-statistic

19

pvalGBLUP <- dt(t.stat.from.g,df=n-k-1) # -log10(pval)

Now we can look at the p-values coming from the 3 approaches to indeed show that results are equivalent.
###########################
Compare results
###########################
plot(mix2$scores[,1], main="GWAS")
plot(-log(pvalRRBLUP), main="GWAS by RRBLUP/SNP-BLUP")

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

3.
0

GWAS by RRBLUP/SNP−BLUP

Index

−
lo

g(
pv

al
R

R
B

LU
P

)

plot(-log(pvalGBLUP), main="GWAS by GBLUP")

20

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

3.
0

GWAS by GBLUP

Index

−
lo

g(
pv

al
G

B
LU

P
)

Final remarks

Keep in mind that mmer uses a direct inversion (DI) algorithm which can be very slow for large datasets
with many records. When datasets have more records than coefficients to be estimated please shift to the use
of the mmec function.

Literature

Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer.
PLoS ONE 11(6):1-15.

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models
for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in
linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics
vol. 31(2):423-447.

Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics
178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-spline ANOVA
mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22 - 37.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic
information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

21

https://doi.org/10.1101/354639
http://dx.doi.org/10.1101/027201

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia,
bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding experiments with
P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components.
Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of
relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.

22

	SECTION 1: Introduction
	Backgrounds in linear algebra

	SECTION 2: Topics in quantitative genetics
	1) Marker and non-marker based heritability calculation
	2) Specifying heterogeneous variances in univariate models
	3) Using the vpredict calculator
	4) Half and full diallel designs (use of the overlay)
	5) Genomic selection: predicting mendelian sampling
	6) Indirect genetic effects
	7) Genomic selection: single cross prediction
	8) Spatial modeling: using the 2-dimensional spline
	9) Multivariate genetic models and genetic correlations

	SECTION 3: Special topics in Quantitative genetics
	1) Partitioned model
	2) UDU' decomposition
	3) Mating designs
	4) GWAS by GBLUP
	Final remarks

	Literature

