
Mechanized Operational
Semantics

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 4: Inductive Invariant Proofs)

1

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

2

Conventional Mechanized Code Proofs

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

3

Conventional Mechanized Code Proofs

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

4

Conventional Mechanized Code Proofs

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s)).

5

Conventional Mechanized Code Proofs

The process by which proof obligations (verification

conditions or VCs) are generated from the code is

called verification condition generation and is

performed by a VCG program.

Typically, VCGs simplify the VC “on-the-fly.”

Typically, the language semantics is coded into the

VCG.

These are a common sources of errors.

6

Conventional Mechanized Code Proofs

To do conventional mechanized code proofs you

need:

• a Hoare semantics

• a VCG (driven off the semantics)

• a theorem prover

7

Conventional Mechanized Code Proofs

To do conventional mechanized code proofs you

need:

• an operational semantics

•

• a theorem prover

8

Operational Semantics (Revisited)

The semantics of the programming language may

be given by a function run which “interprets” a

program against some state and determines the

“final” state.

run (k, s) =

{

s if k = 0

run (k − 1, step (s)) otherwise

Here, step is the single step state transition

function.

9

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

10

We assume the program in s, π, does not change

during execution.

Let s0 be the initial state of program π.

pc (s0) = α

Let sk denote run (k, s0).

11

Formally Stated Correctness Theorems

Total:

∃k : P (s0) → (Q(sk) ∧ pc(sk) = γ).

∃k : P (s0) → (Q(run (k, s0)) ∧

This is sometimes stated without the quantifier as

P (s0) → (Q(run (sched (s0), s0)) ∧ . . .).

12

Partial:

P (s0) ∧ pc(sk) = γ → Q(sk).

13

Disadvantage of Direct Proofs

Direct proofs of program properties can be

complicated (or at least appear so) because of the

presence of the interpreter, the program counter,

the entire machine state, and the need to define a

schedule function.

The inductive assertion method produces such nice

proof obligations!

14

Conundrum

Can you prove

P (s0) ∧ pc(sk) = γ → Q(sk).

directly – where the only heavy-duty proof work is

proving the verification conditions?

Do you need a trusted VCG?

Can you make the automatic proof attempt

generate the standard verification conditions from

the operational semantics?

15

Caveat

The observations I make below are not deep, but I

think they have important practical implications:

16

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

(Actually, we assert “prog (s) = π” at α, β and γ,

but we omit that here by our convention that the

program is always π.)

17

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Objection: Is this definition consistent? Yes: Every

tail-recursive definition is witnessed by a total

function. (Manolios and Moore, 2000)

18

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Assume we’ve proved

Inv (s) → Inv (step (s)).

(We’ll see the proof in a moment.)

19

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s0) → Inv (sk) (By induction)

20

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s0) → Inv (sk)

pc (s0) = α (By construction)

21

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

P (s0) → Inv (sk)

22

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

P (s0) → Inv (sk)

P (s0) (Given)

23

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (sk)

24

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (sk)

pc (sk) = γ (Given)

25

Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Q (sk)

Q.E.D.

26

So it’s trivial to prove the theorem

P (s0) ∧ pc (sk) = γ → Q (sk)

if we can prove

Inv (s) → Inv (step (s)).

27

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

28

Inv (s) → Inv (step (s))

Proof.

Expanding Inv (s) generates four cases:

Case pc (s) = α:

Case pc (s) = β:

Case pc (s) = γ:

Case otherwise:

29

Inv (s) → Inv (step (s)) [Case pc(s) = α]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

30

P (s) → Inv (step (s)) [Case pc(s) = α]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

31

Inv (s) ≡

P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s) = Inv (step (s)) = Inv (step (step (s))) . . .

as long as the pc /∈ {α, β, γ}.

32

P (s) → Inv (step (s)) [Case pc(s) = α]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

33

P (s) → R (f (s)) [Case pc(s) = α]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

34

Inv (s) → Inv (step (s)) [Case pc(s) = β]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

35

(R (s) ∧ t → R (g (s))) [Case pc(s) = β]

(R (s) ∧ ¬t → Q (h(s)))

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

36

Inv (s) → Inv (step (s)) [Case pc(s) = γ]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

37

Inv (s) → Inv (s) [Case pc(s) = γ]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

38

Inv (s) → Inv (step (s)) [Case otherwise]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

39

Inv (step (s)) → Inv (step (s)) [Case otherwise]

RETURN

program

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

40

Recap: Given the definition of Inv , the “natural”

proof of

Inv (s) → Inv (step (s))

generates the standard verification conditions

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s))

as subgoals from the operational semantics!

It generates no other non-trivial proof obligations.

The VCs are simplified as they are generated.

41

Demo 1

42

Discussion

We did not write a VCG for M1.

The VCs were generated directly from the

operational semantics by the theorem prover.

Since VCs are generated by proof, the paths

explored and the VCs generated are sensitive to the

pre-condition specified.

The VCs are simplified (and possibly proved) by the

same process.

We did not count instructions or define a schedule.

43

We did not constrain the inputs so that the

program terminated.

Indeed, we can deal with non-terminating programs.

44

Demo 2

45

Total Correctness via Inductive
Assertions

We have also handled total correctness via the VCG

approach.

An ordinal measure is provided at each cut point

and the VCs establish that it decreases upon each

arrival at the cut point.

Schedule functions can be automatically generated

and admitted from such proofs.

46

Primary Citation

J S. Moore, “Inductive Assertions and Operational

Semantics,” CHARME 2003, D. Geist (Ed.),

Springer Verlag LNCS 2860, pp. 289–303, 2003.

47

Other Examples

Nested loops are handled exactly as by standard

VCG methods.

public static int tfact(int n){ /* Factorial by repeated addition. */

int i = 1; /* Verified using inductive assertions */

int b = 1; /* by Alan Turing, 1949. */

while (i<=n){

int j = 1;

int a = b;

while (j < i) {

b = a+b;

j++;

};

i++;

};

return b;

}

48

Recursive methods can be handled.

public static int fact(int n){

if (n>0)

{return n*fact(n-1);}

else return 1;

}

To handle recursive methods we

• modify run to terminate upon top-level return,

and

• add a standard invariant about the shape of the

call stack.

49

Conclusion

If you have

• a theorem prover and

• a formal operational semantics,

you can prove formally stated partial program

correctness theorems using inductive assertions

without building or verifying a VCG.

50

Related Work

P. Y. Gloess, “Imperative Program Verification in

PVS,” École Nationale Supérieure Électronique,

Informatique et Radiocommunications de Bordeaux,

1999.

P. Homeier and D. Martin, “A Mechanically

Verified Verification Condition Generator,” The

Computer Journal, 38(2), pp. 131–141, July 1995.

P. Manolios and J Moore, “Partial Functions in

ACL2,” JAR 2003.

51

J. Matthews, J S. Moore, S. Ray, and D. Vroon:

“Verification Condition Generation via Theorem

Proving,” to appear in M. Hermann and A.

Voronkov, editors, Proceedings of the 13th

International Conference on Logic for Programming,

Artifical Intelligence, and Reasoning (LPAR 2006),

Phnom Penh, Cambodia, November 2006,

Springer-Verlag.

52

Next Time

a much more interesting correctness proof

53

