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Abstract

Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function
of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that
implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein,
as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al.. These impurity
solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of
dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems
with arbitrary densities of states.
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1. Introduction: Quantum impurity models
and impurity solvers

Quantum impurity models appear in a variety of
contexts and play an important role in the study of
correlated electron systems. The impurity model
may either represent a nano-structure such as a
quantum dot or adatom on a surface, or it may
serve as an auxiliary problem whose solution yield
the “dynamical mean field” (DMFT) [? ? ] de-
scription of correlated lattice models. Powerful im-
purity solvers are in particular required for recently
developed extensions of DMFT [? ? ] and for the
study realistic materials [? ].

Quantum impurity models are amenable to nu-
merical study, and numerous solution techniques
exist, among them approximate semi-analytical [?
? ? ], renormalization group [? ], and quan-
tum Monte Carlo methods. The Hirsch-Fye [? ]
quantum Monte Carlo method, long the method of
choice for controlled quantitative studies, has one
important disadvantage: it suffers from a Trotter
breakup (‘∆τ ’) error that, in practice, needs to be
controlled by means of extrapolation procedures.
Continuous-time methods, originally developed by
Rubtsov et al. [? ? ] and Werner et al. [? ],
and later extended by various authors [? ? ? ?
? ], are based on partition function expansions
that are stochastically sampled to all orders using
diagrammatic quantum Monte Carlo techniques [?
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? ], thereby avoiding such errors. These methods
are orders of magnitude more efficient than Hirsch
Fye [? ] and have rapidly become the methods
of choice for the simulation of quantum impurity
models, in particular in the context of the DMFT,
where the possibility of treating more complicated
interactions (in particular the full multiplet struc-
ture of multi-orbital systems [? ] and retardation
effects [? ? ]) has allowed access to important
new physics. Recent applications include simula-
tions of model systems, realistic material simula-
tions, as well as “dual Fermion”[? ] and cluster
extensions [? ? ? ].

With this paper we provide implementations
of continuous-time methods and a DMFT self-
consistency framework, with the intention of en-
abling the reader to develop his own codes based on
these programs, as well as supplying the community
with state-of-the-art implementations for dynami-
cal mean-field calculations. The implementations
are based on version 2.0 of the open source ALPS
library [? ] available at http://alps.comp-phys.org.

In the remainder of this paper we review quan-
tum impurity models (Sec. 2) and continuous-time
algorithms (Sec. 3 and 4), present the DMFT
self-consistency conditions 5, and guide the reader
through some of our examples (Sec. 6).

2. Continuous-Time Quantum Monte Carlo
Impurity Solvers

A quantum impurity model represents an atom
or molecule (the ‘impurity’) embedded in some host
material (the ‘bath’ or ‘leads’) and can be described
by a Hamiltonian

H = Himp +Hbath +Hmix. (1)

Here, Himp = H0
imp+HI

imp corresponds to the impu-
rity (finite number of degrees of freedom, creation
operators d†α) with non-interacting and interacting
parts

H0
imp =

∑

αβ

εαβd
†
αdβ , (2)

HI
imp =

∑

αβγδ

Uαβγδd
†
αd
†
βdγdδ, (3)

while Hbath represents a non-interacting bath (infi-
nite number of degrees of freedom, creation opera-
tors a†ν)

Hbath =
∑

ν

ενa
†
νaν , (4)

and Hmix the exchange of electrons between the im-
purity and the bath (hybridization amplitude V ),

Hmix =
∑

να

V αν a
†
νdα +H.c.. (5)

Continuous-time Quantum Monte Carlo impurity
solvers allow the accurate and efficient simulation
of impurity models. The methods are based on an
expansion of the partition function Z = Tr[e−βH ]
into a series of diagrams and the stochastic sam-
pling of (collections of) these diagrams. In the
interaction expansion [? ? ], the Hamiltonian
Eq. (1) is split into a non-interacting part H1 =
H0

imp +Hbath +Hmix and an interacting part H2 =

H − H1 = HI
imp, while for the hybridization ex-

pansion [? ? ], the Hamiltonian is split into the
local part H1 = Himp + Hbath and the hybridiza-
tion part H2 = H − H1 = Hmix. In either case,
one then employs the interaction representation in
which the time evolution of operators is given by
H1: O(τ) = eτH1Oe−τH1 . Using the imaginary-
time-ordering operator Tτ the partition function
can be expressed as a time-ordered exponential,
which is then expanded into powers of H2,

Z = Tr
[
e−βH1Tτe−

∫ β
0

dτH2(τ)
]

=

∞∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[
e−(β−τn)H1(−H2) . . .

. . . e−(τ2−τ1)H1(−H2)e−τ1H1

]
. (6)

Eq. (6) represents the partition function as a
sum over all configurations c = {τ1 < . . . < τn},
n = 0, 1, . . ., τi ∈ [0, β) with weight wc =
Tr[e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e−τ1H1 ]dτn

and these configurations are sampled by a Monte
Carlo procedure.

In the following two sections we will describe the
interaction and hybridization expansion algorithms
in some more detail for the simple case of the single-
orbital Anderson Impurity model (AIM) for which
(σ denotes spin, nσ = d†σdσ) Himp = −µ(n↑+n↓)+
U(n↑n↓).

3. Interaction expansion impurity solver
CT-INT

The continuous-time impurity solver based on the
weak-coupling expansion has been proposed in [?
? ]. For the single-orbital AIM, the Monte Carlo
configurations c = {τ1 < . . . < τn} correspond to
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collections of interaction vertices placed at positions
τi on the imaginary time interval. The weight of
such a configuration is given by

wc = (−Udτ)n detM, (7)

where M is an n × n matrix with elements Mij =
G0(τi − τj), and G0(τ) (or its Fourier transform
G0(iωn)) is the “bath Green’s function” defined in
terms of the bath energy levels εν and hybridization
amplitudes Vν as [? ]

G0(iωn) = [iωn + µ−∆(iωn)]−1, (8)

∆(iωn) =
∑

ν

|Vν |2
iωn − εν

. (9)

In the case of repulsive interactions the chemical
potentials for spin up and down must be shifted to
avoid a trivial sign problem arising from the factor
(−U)n [? ].

4. Hybridization expansion impurity solver
CT-HYB

The continuous-time impurity solver based on
the hybridization expansion was developed in [? ?
]. After the expansion of the partition function in
powers of H2 = Hmix, the time evolution (given by
H1) no longer couples the impurity and the bath.
One can thus integrate out the bath degrees of free-
dom analytically to obtain

wc̃ =ZbathTrimp

[
e−βHimpTτd

†
α′n

(τ ′n)dαn(τn) . . .

d†α′1
(τ ′1)dα1(τ1)

]
× detM

(
{τ1, α1}, . . . , {τn, αn};

{τ ′1, α′1}, . . . , {τ ′n, α′n}
)

(dτ)2n. (10)

A configuration c̃ corresponding to perturbation or-
der 2n thus is a collection of n time arguments
τ1 < . . . < τn corresponding to annihilation opera-
tors with spin indices α1, . . . , αn and n time argu-
ments τ ′1 < . . . < τ ′n corresponding to creation op-
erators with spin indices α′1, . . . , α

′
n. The element

i, j of the matrix M is given by the hybridization
function ∆(τ ′i − τj) [? ].

Up to the irrelevant constant Zbath the weights
consist of two factors: Trimp[. . .] evaluates the
imaginary-time evolution of the quantum impurity
for a given sequence of hybridization events, while
detM gives the contribution of the bath degrees of
freedom which have been integrated out. In the
general case the computation of the trace factor

G0 −→ Impurity Solver −→ G

↑ ↓

G−1
0 = Ḡ−1 +Σ Σ = G−1

0 −G−1

տ ւ

Ḡ =

∞∫

−∞

dǫ
D(ǫ)

iωn + µ− ǫ− Σ

Figure 1: The DMFT self-consistency loop. The dependence
of Σ and all Green’s functions on the Matsubara frequency
iωn is omitted for simplicity

will lead to an exponential scaling of the algorithm
with number of orbitals. In the AIM and its multi-
orbital generalizations with density-density interac-
tions, however, the occupation number basis is an
eigenbasis of Himp and thus the very efficient seg-
ment formulation [? ] may be used.

5. Dynamical mean-field theory

The dynamical mean-field theory (DMFT) [? ?
? ] was originally motivated by the observation
that the diagrammatics of systems in the infinite
coordination number limit simplifies dramatically
[? ? ]. Following this observation several authors
(see [? ? ] for a detailed account of the history)
showed that if the momentum dependence of the
self-energy may be neglected, Σ(k, ω) ≈ Σ(ω), as is
the case in the infinite coordination limit, the solu-
tion of a quantum many body system may be ob-
tained as the solution of a quantum impurity model
(Eq. (1)) subject to an appropriately defined self-
consistency condition. While this approximation
is a priori uncontrolled, dynamical mean-field the-
ory becomes exact in the atomic and noninteracting
limits as well as for infinite coordination number,
and extensions to DMFT [? ] reintroduce momen-
tum dependence systematically, thereby rendering
it a controlled approximation with a small param-
eter [? ].

The DMFT self-consistency cycle starts with
an initial guess for the hybridization function ∆
(Eq. (9)) or bath Green’s function G0 (Eq. (8)),
which determines the initial “bath” for the quan-
tum impurity model Eq. (1). Using one of the
quantum impurity solvers described in Sec. 3 or
Sec. 4 the imaginary-time Green’s function G(τ) =
−〈Tτd(τ)d†(0)〉 or its Fourier transform G(iωn) and
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the Matsubara self-energy Σ(iωn) = G−10 −G−1 are
computed. This part of the calculation is compu-
tationally the most expensive part.

The self-consistency cycle is closed using a so-
called Hilbert transform, which for single-impurity
single-orbital DMFT calculations is best written as
an integral over the density of states D(ε) of the
lattice under consideration: using the (momentum-
independent impurity) self-energy a momentum-
averaged lattice Green’s function is computed as

Ḡ(iωn) =

∞∫

−∞

dε
D(ε)

iωn + µ− ε− Σ(iωn)
(11)

which, using Dyson’s equation Σ = G−10 − G−1,
provides a new bath Green’s function G0 for the
next iteration.

Deep within a phase convergence is stable and
usually achieved in less than 10 self-consistency
steps. Close to phase transition the convergence
may take much longer. In Fig. 1 we illustrate this
self-consistency cycle. For the special case of the
Bethe lattice [? ] in infinite dimensions, with
a semi-circular density of states D(ε), the Hilbert
transform simplifies dramatically to

G0(iωn) = iωn + µ− t2G(iωn) . (12)

Similar relations exist for other dispersion relations.

6. Codes and Examples

The main part of this work are the algorithm im-
plementations which are available from the online
repository as well as on the ALPS project home-
page http://alps.comp-phys.org. The implementa-
tions are written in C++ and rely heavily on the open
source ALPS Monte Carlo library [? ], in particular
on the “alea”[? ] and “scheduler” [? ] parts.

We present here two examples that illustrate the
power of these methods and show how they may
be used in practice. Further examples and tutorials
are available online. First we show the example of
a paramagnetic metal being cooled below the Néel
temperature TN and developing antiferromagnetic
correlations – an example taken from Fig. 11 of
Ref. [? ]. Secondly we illustrate the lack of dis-
cretization errors in continuous-time algorithms by
comparing self-energy data to Fig. 15 in the same
publication (see also Fig. 4 in Ref. [? ]). Both exam-
ples are available as tutorials in the ALPS package
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Figure 2: (Color online) Green’s functions G↑ (solid line)

and G↓ (dashed line) in the temperature range βD/
√

2 =
6, 8, ..., 16 (from bright to dark lines) for the half-filled Hub-
bard model simulated using the CT-HYB impurity solver
and a DMFT self-consistency allowing for antiferromagnetic
order.

available at http://alps.comp-phys.org, along with
detailed instructions on how to install programs and
libraries and how to run the simulations.

6.1. Néel transition in single site DMFT

We study a single-orbital Hubbard model at an
interaction strength U/D = 3/

√
2 within the tem-

perature range βD/
√

2 = 6, 8, ..., 16, where D is
the half-width of a semi-circular density of states.
Because of the simple structure of the Hilbert trans-
form Eq. (12) and the exact limit of infinite coor-
dination number such examples are frequently used
to test the dynamical mean-field theory and bench-
mark algorithms. We measure the imaginary-time
Green’s function Gσ(τ) = −〈Tτ cσ(τ)cσ(0)†〉 and
show results for spin σ =↑ and σ =↓ in Fig. 2.
The value −G(τ = β) corresponds to the expec-
tation value of the occupation number nσ. For
βD/
√

2 = 6 the system is in a paramagnetic phase
and hence n↑ = n↓ = 1/2. Upon reducing temper-
ature (βD/

√
2 = 8, ..., 16) the occupation numbers

for ‘up’ and ‘down’ spins n↑, n↓ start to deviate as
the system enters the antiferromagnetic phase. For
βD/
√

2 = 16 a self-consistent solution is reached
within 10 iterations, typical runtimes on current
computers are on the order of two minutes. In
the ALPS package we provide a python script to
run the example presented, which can be found in
the tutorial DMFT-02 CT-HYB. The simulation is
started by running vispython tutorial2a.py in
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Figure 3: (Color online) Self-energy for the paramag-
netic dynamical mean-field solution of the half-filled Hub-
bard model with interaction strength U/t = 4.24, at inverse
temperature β = 22.64/t. Data reproduced from Fig. 15 of
Ref. [? ] (ED, HF) and from Fig. 4 of Ref. [? ] (CT-AUX).
Shown are Hirsch Fye data with discretization (“Trotter”)
errors for different values of ∆τ , as well as accurate exact
diagonalization ([? ]) data converged in the number of bath
sites and data from the numerically exact algorithms CT-
HYB, CT-AUX and CT-INT. The continuous-time and ED
data are indistinguishable.

a terminal.

6.2. Paramagnetic metal and extrapolation errors

To illustrate one of the main advantages of
continuous-time algorithms, the absence of dis-
cretization errors, we show results for the self-
energy of a weakly interacting paramagnetic metal
at low temperature in Fig. 3. This is a regime of
parameter space that is well described by Fermi liq-
uid theory. Unlike in the Hirsch-Fye algorithm,
discretization errors are not present and the re-
sults are very well consistent with results from
e. g. exact diagonalization (see Ref. [? ], Fig.
15), which may be considered to be exact for
this problem. Fig. 3 can be generated by execut-
ing vispython tutorial6a.py for CT-HYB and
vispython tutorial6b.py for CT-INT of ‘Tuto-
rial DMFT-06 Paramagnet’ and plotting the self
energy files of the last DMFT-iterations.

We would like to direct the reader’s attention to
further examples and tutorials on the ALPS Project
website [? ].

7. Acknowledgments

E. G. is supported by NSF under Grant
No. DMR-0705847 and P. W. by the Swiss National
Science Foundation (grant PP002-118866). T. P.

and S. F. acknowledge support by the Deutsche
Forschungsgemeinschaft through the collaborative
research center SFB 602 and by the PPP exchange
program of the German Academic Exchange Ser-
vice (DAAD). We gratefully acknowledge support
by the wider ALPS community.

5


	Introduction: Quantum impurity models and impurity solvers
	Continuous-Time Quantum Monte Carlo Impurity Solvers
	Interaction expansion impurity solver CT-INT
	Hybridization expansion impurity solver CT-HYB
	Dynamical mean-field theory
	Codes and Examples
	Néel transition in single site DMFT
	Paramagnetic metal and extrapolation errors

	Acknowledgments

