
ASCO
A SPICE Circuit Optimizer

Written by João Ramos

Companion to version 0.4.10

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts.

Contents

1 Preface 5
1.1 Tool Fitness . 5
1.2 Scope and Audience . 5
1.3 Document Conventions . 6
1.4 Trademarks . 6

2 Quick Start Guide 7
2.1 0 seconds: Compiling . 7
2.2 20 seconds: Running ASCO . 7
2.3 140 seconds: Interpreting ASCO Results 7

2.3.1 File asco.log . 8
2.3.2 File <hostname>.log . 8

2.4 More Information . 9

3 Introduction 10
3.1 Features and Applications . 10

4 Installation and Operation 13
4.1 Installing ASCO . 13

4.1.1 Building with Autotools . 13
4.1.2 Building in win32 . 14

Text file format . 14
4.1.3 Compile time options . 14

Optimization algorithms . 14
Work distribution method . 14
Spectre R© BSIM selection . 15

4.2 Using ASCO . 15
4.2.1 Encapsulation to the SPICE Simulator 15
4.2.2 The Cost Function . 15
4.2.3 Stop Criteria . 17

4.3 Input and Output Files . 17
4.3.1 SPICE input netlist . 18
4.3.2 Configuration File . 19

1

CONTENTS 2

Optimization Flow Options . 19
Differential Evolution Options . 20
Alter Options . 22
Monte Carlo Options . 22
Parameter Options . 22
Measurement Options . 24
Post Processing Options . 25

4.3.3 Extract Commands . 25
4.3.4 Output Files . 26

4.4 Invoking ASCO . 27
4.4.1 The usefulness of asco-test . 27
4.4.2 Runtime Messages . 28

4.5 Invoking ASCO with multiprocessor support 28
4.5.1 MPICH configure options . 29

5 Efficient Usage 30
5.1 Accuracy . 30
5.2 Convergence Speed . 30
5.3 Number of Optimization Variables and Search Space 31
5.4 Objectives and Constraints . 31
5.5 Evaluating Optimization Results . 31

6 ASCO Tutorials 32
6.1 Getting Started . 32
6.2 Eldo

TM
Examples . 35
Latest tested version . 35

6.2.1 Tutorial #1 – Digital inverter . 35
Summary . 35
Full Netlist . 35
Configuration File . 36
Command Line . 37
Optimization Results Analysis . 38

6.2.2 Tutorial #2 – Three stage operational amplifier 39
Summary . 39
Full Netlist . 39
Configuration File . 41
Command Line . 42
Optimization Results Analysis . 43

6.2.3 Tutorial #3 – Class-E power amplifier 44
Summary . 44
Full Netlist . 44
Configuration File . 46
Command Line . 47

CONTENTS 3

Optimization Results Analysis . 47
6.2.4 Tutorial #4 – Chebyshev band pass filter 48

Summary . 48
Full Netlist . 49
Configuration File . 49
Command Line . 52
Optimization Results Analysis . 52

6.3 HSPICE R© Examples . 53
Latest tested version . 53

6.3.1 Tutorial #1 – Digital inverter . 53
Command Line . 53

6.3.2 Tutorial #2 – Three stage operational amplifier 53
Command Line . 53

6.3.3 Tutorial #3 – Class-E power amplifier 53
Command Line . 53

6.3.4 Tutorial #4 – Chebyshev band pass filter 53
Command Line . 53

6.4 LTspice
TM

Examples . 54
Latest tested version . 54

6.4.1 Tutorial #1 – Digital inverter . 54
Command Line . 54

6.4.2 Tutorial #2 – Three stage operational amplifier 54
Command Line . 54

6.4.3 Tutorial #3 – Class-E power amplifier 54
Command Line . 54

6.4.4 Tutorial #4 – Chebyshev band pass filter 55
Command Line . 55

6.5 Spectre R© Examples . 56
Latest tested version . 56

6.5.1 Tutorial #1 – Digital inverter . 56
Command Line . 56

6.5.2 Tutorial #2 – Three stage operational amplifier 56
Command Line . 56

6.5.3 Tutorial #3 – Class-E power amplifier 56
Command Line . 56

6.5.4 Tutorial #4 – Chebyshev band pass filter 56
6.6 Qucs Examples . 57

Latest tested version . 57
6.6.1 Tutorial #1 – Digital inverter . 57
6.6.2 Tutorial #2 – Three stage operational amplifier 57
6.6.3 Tutorial #3 – Class-E power amplifier 57
6.6.4 Tutorial #4 – Chebyshev band pass filter 57

Command Line . 57

CONTENTS 4

6.7 ngspice Examples . 58
Latest tested version . 58

6.7.1 Tutorial #1 – Digital inverter . 58
Command Line . 58

6.7.2 Tutorial #2 – Three stage operational amplifier 58
Command Line . 58

6.7.3 Tutorial #3 – Class-E power amplifier 58
Command Line . 58

6.7.4 Tutorial #4 – Chebyshev band pass filter 58
6.8 General Purpose Simulator . 59

Summary . 59
Full Netlist . 59
Configuration File . 59
Command Line . 59
Optimization Results Analysis . 60

7 Tools and Modules 61
7.1 alter . 61

7.1.1 Spectre R© . 62
Command Line . 62

7.2 log . 63
Command Line . 63

7.3 monte . 63
Command Line . 63

7.4 postp . 63
Command Line . 67

7.5 RF module . 67
Parameter dependent parasitic . 69

8 Adding new Simulators 71
8.1 Where to start editing . 71
8.2 Where to continue editing . 72

9 Adding new Optimizers 73

10 Development Roadmap 74
10.1 How You Can Help . 75

11 Submitting a Bug 76

12 FAQ 77

13 Acknowledgments 78

Chapter 1

Preface

1.1 Tool Fitness

ASCO (A SPICE Circuit Optimizer)
Copyright (C) 2004-2016 João Ramos

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA

1.2 Scope and Audience

The information described in this manual assumes that is to be used by an expert circuit
designer with the knowledge of the operation of a SPICE simulator. The ASCO tool is
intended as a helper to the designer in their quest to “better” design a circuit. It shall not
be used as an automatic way to size a circuit by someone which cannot understand the
consequences of each one of the assumptions made during the optimization.

ASCO tool does not create nor suggest new circuit arrangements, but simplifies the
design process, since fine-tuning, verification and optimization of circuit functionality over
process-voltage-temperature corners is automated.

ASCO tool can be seen as the automaton that does the tedious work, thus giving time
to the designer to concentrate on intellectual challenges of devising new architectures and
solutions for existing problems.

5

CHAPTER 1. PREFACE 6

1.3 Document Conventions

This document uses the following conventions for fonts and commands, which are shown
in Table 1.1.

Table 1.1:
Convention Description
courier Indicates a code fragment
Brackets ([]) Indicates the component is optional
Arrows (< >) Indicates the component is mandatory
Pipe (|) Indicates that one of the items can be selected

1.4 Trademarks

All products mentioned in this document are the property of their respective owners and
carry the appropriate trademarks, registered trademarks, and/or copyrights. Any trade-
mark infringements are unintentional.

Chapter 2

Quick Start Guide

This Chapter describes the minimum set of commands and information needed to start
using ASCO to optimize a CMOS inverter with a 10 pF load operating at 850 MHz. The
goal is to find the PMOS transistor width for minimum power consumption.

2.1 0 seconds: Compiling

Download the latest version and compile ASCO by typing at the command prompt

tar -zxvf ASCO-<version>.tar.gz

cd ASCO-<version>

make

2.2 20 seconds: Running ASCO

Copy the executable asco to examples/<YOUR SIMULATOR>/inv. If you are using Eldo
TM

execute the following commands

cp asco examples/Eldo/inv

cd examples/Eldo/inv

./asco -eldo inv

otherwise, replace the word Eldo and eldo by the appropriate text representing your
simulator.

2.3 140 seconds: Interpreting ASCO Results

Depending on your computer the optimization can take up to a few minutes. At the end,
two log files are available: asco.log which has a summary of the optimization evolution
and <hostname>.log where the input and output variables of every SPICE simulation call
are stored.

7

CHAPTER 2. QUICK START GUIDE 8

2.3.1 File asco.log

With the data in the following file, it is possible to know the number of SPICE calls
(nfeval), the minimum cost (cmin, lower the better) which is a measure on how good
the circuit is, and the cost-variance which is an indication of the optimization conver-
gence. The best test vector (best[0]), scaled from -10 to +10 is produced. In addition, a
summary of the Differential Evolution optimization algorithm parameters are printed for
future reference. In the last lines, the reason for ending the optimization is given.

nfeval=20 cmin=3.1914 cost-variance=3.9852

nfeval=30 cmin=3.1914 cost-variance=2.6059

nfeval=40 cmin=3.188 cost-variance=1.1017

nfeval=50 cmin=3.188 cost-variance=0.11595

nfeval=60 cmin=3.188 cost-variance=0.048998

nfeval=70 cmin=3.188 cost-variance=0.036212

nfeval=80 cmin=3.1879 cost-variance=0.0048361

nfeval=90 cmin=3.1879 cost-variance=0.0025139

nfeval=100 cmin=3.1879 cost-variance=0.00048362

nfeval=110 cmin=3.1795 cost-variance=0.00041958

nfeval=120 cmin=3.1696 cost-variance=0.00012673

nfeval=130 cmin=3.1696 cost-variance=5.568e-05

nfeval=140 cmin=3.1696 cost-variance=1.873e-05

nfeval=150 cmin=3.1696 cost-variance=1.1294e-05

nfeval=160 cmin=3.1696 cost-variance=5.8484e-06

nfeval=170 cmin=3.1696 cost-variance=3.3654e-06

nfeval=180 cmin=3.1696 cost-variance=3.5067e-07

Best-so-far obj. funct. value = 3.1696

best[0]=-7.990420912

Generation=18 NFEs=180 Strategy: DE/rand-to-best/1/exp

NP=10 F=0.5 CR=1 cost-variance=3.5067e-07

INFO: de36.c - Minimum cost variance reached (cvarmin=1.000000E-06)

INFO: Ending optimization

2.3.2 File <hostname>.log

All simulation calls are stored in this file having the name of the running machine. The
data is saved in plain text format and allows further post-processing with a spreadsheet or

CHAPTER 2. QUICK START GUIDE 9

a graphic plotting program. The last line of this file is now shown

+cost:3.169600E+00: P_SUPPLY:3.169600E-01: +VHIGH:2.154500E+00: //

+VLOW:2.605600E-02: WP:1.904311E-03:

The plus signal as the first character in the line, as opposed to -cost, is an indication
that all optimization constraints have been met. In the last column, the transistor size,
1.904 mm, that originates the minimum power consumption is presented.

2.4 More Information

Please keep on reading. Should doubts arise, contact the developer.

Chapter 3

Introduction

ASCO aims to bring circuit optimization capabilities to existing SPICE simulators. It
takes an unsized netlist and design criteria and outputs a sized netlist. As a result of the
previous sentence, the ASCO tool requires an experienced designer who selects the circuit
topology, finds reasonable operating conditions with realistic design goals, defines the test
benches and measurements for achieving the desired design objectives, evaluates the pro-
posed sized circuits and select the most suitable circuit. All this is based on knowledge
of the application. In return, the tool automates the test of multiple candidates for a
given fixed circuit using a hybrid optimization strategy with a high-performance differen-
tial evolution (DE) global optimization algorithm [SP95] coupled with a local optimizer
(Hooke&Jeeves or Nelder-Mead). The best result is passed from one to the next. Different
circuit architectures can be tried, falling to the designer the task of selecting the most
appropriate one.

The ASCO tool as been written from the ground-up with the purpose of being simulator
independent. As long as the simulator reads its inputs from text files, outputs its results
in ASCII format, and can be launched from the command line, it can most likely be added
to the list of supported SPICE simulators. Even though it has been designed to work with
existing SPICE simulators, at this moment it is flexible enough to interact with other tools,
for example, with FastHenry.

Today, it is possible to find various offers of commercial products with similar character-
istics. In some cases, the optimization algorithms are suitable only for local optimizations.
In other cases, they are better than the ASCO tool, but this comes at a monetary cost.
Once again, it is up to the designer to decide the best option to meet the design goals.

3.1 Features and Applications

ASCO is the result of academic research which in itself did not intend to create a new
tool, but only to design high performance analog low-power low-voltage circuits for mobile
communications. Interaction with other experienced designers has resulted in the ideas ex-
isting in the ASCO tool. With the exception of the optimizers, all code has been personally

10

CHAPTER 3. INTRODUCTION 11

written. The key features of the ASCO tool are:

• Simulator independent: currently out-of-the-box support for Eldo
TM

, HSPICE R©,
LTspice

TM
, Spectre R©, Qucs and ngspice exist. More are to be included in future

releases.

• Number of variables: there is, in theory, no limit to the number of circuit variables
that can be optimized, except those constraints imposed by the available computer
memory and/or the time required to generate a functional circuit. It is currently
hardcoded in the C code.

• PVT corners: by using the simulator functionality, the possibility to test various
design corners and Monte Carlo analysis is only limited to the simulator capability
and by the time it takes to finish the optimization.

• Efficiency: the optimization algorithm features a global optimization using differen-
tial evolution. It has been used on a variety of applications and is known to produce
good results in an acceptable time. Furthermore, this algorithm can be chained with
a local optimizer to gain convergence speed as suggested by open literature.

• Parallel/distributed computation: time savings are achieved by simultaneously eval-
uating the proposed values over multiple computers on the network. No limit exists
on the total number that can be used concurrently.

• Within the supported SPICE simulators, an arbitrary netlist can be optimized on
different conditions without having to recompile the code.

• File format: all outputted data and log information is stored in plain text format.
This guarantees that they will always be readable in the future. In addition, it makes
possible the use of other existing tools to post-process the optimization results.

• It is free software: the code is available under the GNU GPL license.

ASCO has been designed to address problems that are oriented to electric circuits.
Although not limited, some possible applications can include:

• Fully redesign a new circuit described in a SPICE netlist.

• Reuse, optimize an existing circuit.

• Migrate an existing and working design to a more advanced semiconductor technology
process effortlessly.

• Increase the robustness and yield of an already designed circuit by guaranteeing that
it comply with all design goals and constraints in some/all process corners at will.

CHAPTER 3. INTRODUCTION 12

• Easily explore a new operating point (design space) of an already existing topology,
to reduce power consumption, area or both.

• Look for a feasible new design topology before investing a considerable time trying
to derive equations that describe its operation.

Refer to Chapter 6 for ready to use practical examples to introduce you to ASCO, a
SPICE circuit optimization tool.

Chapter 4

Installation and Operation

4.1 Installing ASCO

ASCO is written in ANSI C. Portability on *NIX type operating systems should follow
relatively easily. Download the latest version and at the command line type the following:

tar -zxvf ASCO-<version>.tar.gz

cd ASCO-<version>

make

Two executables are created: asco and asco-test. Copy them to a common directory
so that they can be used later.

4.1.1 Building with Autotools

For portability building and installing across different environments, the use of GNU Au-
totools is desirable. The necessary configure.ac and Makefile.am files are packed in
Autotools.tar.gz distributed alongside with ASCO. Execute

tar -zxvf Autotools.tar.gz

to extract all necessary files. Then, type the following lines to configure and compile

aclocal

automake -f -c -a

sh autogen.sh

./configure

make

and obtain the same executables.

13

CHAPTER 4. INSTALLATION AND OPERATION 14

4.1.2 Building in win32

ASCO has been patched to compile natively in win32 using cygwin and MinGW32. How-
ever, should difficulties continue, try using Makefile.win32 instead. You are kindly invited
to report progress and difficulties.

A binary version is also made available to download at the project homepage, for
situations where a build system is not installed.

Text file format

Before using the example files, the end-of-file format must be converted. This is necessary
because ASCO is developed in a *NIX system, where the EOF is 0x0D instead of 0x0D0A.

4.1.3 Compile time options

For increased flexibility but also because sometimes SPICE simulators differ considerably,
ASCO flow is sometimes defined at compile time.

Optimization algorithms

Currently, one global (DE) optimization algorithm and two local (Hooke&Jeeves or Nelder-
Mead) optimizers are available to use in ASCO. The parameters for tuning the differential
evolution (DE) algorithm are accessible via the configuration file. On the contrary, local
optimizers can only be tunned in the source code. Furthermore, the selection of the two
local optimizers, is only possible at compilation time by editing the file asco.c around
Step4.

The local optimizers use an intrinsically a sequential method. To gain design speed in
situations where a good local starting point is known, the parallel global DE algorithm
can be used in an emulated local mode. Thus benefiting from distributed computing while
strongly limiting the search space.

Work distribution method

At the present time, three parallelization methods are supported in ASCO. By default,
scattering with load balance is used if the source file de36.c is not edited and line: #define
MPI METHOD 3 is not changed to one of the possible methods:

1. Send: each process receives one vector at a time and returns the single cost back to
the Master process before receiving new parameters (one vector).

2. Scatter: within the same generation, all vectors are scattered among all existing
processes. All evaluations are performed before returning all the cost values back to
the Master process. In the next generation, it repeats itself.

CHAPTER 4. INSTALLATION AND OPERATION 15

3. Scatter with load balancing: for situations where the computer power is evenly avail-
able to each one of the processes, either due to different machines or to machines with
different loads, balancing the number of simulations according to the computational
resources, decreases optimization time. On a perfect balanced situation, all processes
start and finish their work at the same time. This, despite having received a different
number of vectors.

Spectre R© BSIM selection

It is not possible to know on before hand which BSIM transistor model level is going to
be needed or has been used in Spectre R©. The output from Spectre R© version changes from
version-to-version but the change is more significant between different transistor models. As
such, the selection between BSIM3 and BSIM4 (the only two supported models) has to be
made by editing the source files. Search for BSIM4 string. File auxfunc measurefromlis.c

requires 2 one byte changes, while the file auxfunc updatelis.c requires commenting 5
lines and un-commenting another 5 lines of code. The changes are self explanatory for an
experienced C programmer.

4.2 Using ASCO

Usage of ASCO requires the existence of a determined number of files that must reside in
the current directory. The simulator that evaluates the cost function (see sub-section 4.2.2)
must be on the search path.

The definition of the cost function is calculated automatically by the ASCO tool. This
is the function that has to be minimized. Individual minimization or maximization of each
one of the measurements is also accomplished without user intervention. In most of the
cases, only the specification of the parameters range and constraints is sufficient before
starting a new optimization.

4.2.1 Encapsulation to the SPICE Simulator

TODO: A description on the program interface between ASCO and the SPICE simulation
program is to be included here.

4.2.2 The Cost Function

The implemented sizing methodology is a simulation-based optimization approach using a
differential evolution optimization algorithm [Sto96] (the global optimizer block in Fig. 4.1).
The key property of this optimization algorithm is that it generates new parameter vec-
tors by adding the weighted difference vector between two population members to a third
member. If the resulting vector yields a lower objective function value than a predeter-
mined population member, the newly generated vector replaces the vector with which it is

CHAPTER 4. INSTALLATION AND OPERATION 16

Figure 4.1: Interface between ASCO tool and the SPICE simulation program.

compared. For each vector xi,G of generation G, a perturbed vector vi,G+1 is generated as
follows:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (4.1)

The indexes r1, r2 and r3 indicate three randomly chosen individuals of the population.
They are mutually different integer indexes (∈ [0, (N−1)]) and also differ from the running
index i. The (real) constant factor F (∈ [0, 2]) controls the amplification of the differential
variation. The vector xr1,G that is being perturbed has no relation to the vector xi,G

that will potentially be replaced. To increase the potential diversity of the perturbed
parameter vectors, crossover is introduced. More information about the algorithm and
details of several variants or strategies for constructing new parameter vectors can be
found in [SP95, Sto96]. In addition, this algorithm has been altered to include parameter
bounding, stop criteria and mixed continuous/discrete parameter support.

Any circuit variable (device sizes, component values, bias inputs, . . .) can be selected
as optimization parameters. Furthermore, one or more optimization objectives (minimize,
maximize) can be specified as well as a number of (performance) constraints (e.g. ALF >
60dB or Vnode1 < 0.1V). All these requirements (n objectives and m constraints) are
combined into a single cost function 1 which can be evaluated by the optimizer:

Cost = Wobj ·
i=n∑
i=1

Psimi

+ Wcon · max
j∈[1,m]

(
Pspecj − Psimj

Pspecj

)
(4.2)

with Wobj and Wcon the weights for the cost due to the objectives and constraints,
respectively, and where P indicates performances, either simulated or specified. With

1The cost function, or objective function, is the function being optimized. It represents the quantity
that is to be minimized by the optimizer in a given search space. This function can be for example the
power consumption, circuit area or the sum of both. Maximization of objective such as Phase Margin is
obtained by minimizing 1/(Phase Margin).

CHAPTER 4. INSTALLATION AND OPERATION 17

properly scaled weights (which is very easily accomplished), the optimizer will first try to
find feasible solutions (satisfying the constraints) and then further tunes the parameters
to optimize the objectives. This scaling can easily be adjusted manually after a “dry-run”
(which can also be automated) and only requires altering the order of magnitude of one of
the weights depending on the cost values which are logged. In order to deal with complex
problems with many constraints, a minimax problem formulation is used in (4.2). When
the genetic algorithm proposes bad combinations of parameters (e.g. out of bound), a
“high” cost is assigned (e.g. 108) to such solutions.

In order to facilitate the automated optimization of specific circuit classes (Op-Amps,
comparators, . . .), constraint and objective templates can be loaded. These could have
been stored for reuse by the designer himself or provided by another expert designer.

4.2.3 Stop Criteria

Allows halting the optimization under user-defined conditions. Currently defined as the
maximum number of generations that has been reached or the minimum cost variance is
satisfied. See sub-section 4.3.2/Differential Evolution Options for further details.

4.3 Input and Output Files

A set of files are required to define the netlist and optimization configuration. First, a brief
enumeration is given which is followed by a more in-depth description of each one of the
files. They are:

<inputfile>.* Properly formatted SPICE input netlist. Default
extension is .cir for Eldo

TM
, .sp for HSPICE R©,

.net for LTspice
TM

, .scs for Spectre R©, .txt for
Qucs and .sp for ngspice.

<inputfile>.cfg Configuration file having the same name as the
SPICE input netlist with .cfg extension.

extract/ Extract commands for each one of the perfor-
mances are stored in this directory.

Upon starting an optimization, the following files are created.

<hostname>.tmp Temporary file containing a post-processed version
of the SPICE input netlist <inputfile>.*.

<hostname>.log Simulator results log file.
<hostname>.* Simulator specific input/output files.
asco.log Optimizer log file.

CHAPTER 4. INSTALLATION AND OPERATION 18

4.3.1 SPICE input netlist

In the SPICE input netlist, all devices, sub-circuits, and simulation commands necessary
to have a functional simulation must exist. The measurement lines are better excluded
from this netlist and should be introduced via the configuration file (<inputfile>.cfg)
for flexibility. An example for a simple CMOS inverter in Eldo

TM
is now shown:

*Digital inverter

.PARAM V_SUPPLY = ’#V_SUPPLY#’

.PARAM INP_FREQ = ’#INP_FREQ#’

.PARAM INP_PERIOD = ’1/INP_FREQ’

.PARAM NO_PERIODS = ’4’

.PARAM TMEAS_START = ’(NO_PERIODS-1)*INP_PERIOD’

.PARAM TMEAS_STOP = ’(NO_PERIODS)*INP_PERIOD’

.PARAM TMEAS_1 = ’TMEAS_STOP -3*INP_PERIOD/4’

.PARAM TMEAS_2 = ’TMEAS_STOP -1*INP_PERIOD/4’

*** *** SUPPLY VOLTAGES *** ***

VDD VDD 0 V_SUPPLY

VSS VSS 0 0

*** *** INPUT SIGNAL *** ***

VSIG IN VSS PULSE V_SUPPLY 0 ’INP_PERIOD/2’ ’INP_PERIOD/1000’

+ ’INP_PERIOD/1000’ ’INP_PERIOD/2’ ’INP_PERIOD’

*** *** CIRCUIT *** ***

MP OUT IN VDD VDD PMOS W=’#WP#’ L=#LMIN#

MN OUT IN VSS VSS NMOS W=’#WP#/3’ L=#LMIN#

CL OUT VSS 10p

*** *** ANALYSIS *** ***

.TRAN ’INP_PERIOD/1000’ ’NO_PERIODS*INP_PERIOD’

.MC 2 ALL

.PROBE TRAN V(IN)

.PROBE TRAN V(OUT)

.OPTION EPS=1E-6

.INCLUDE p.typ

.INCLUDE n.typ

.END

In the above netlist representing a digital inverter, all lines are the same as in a normal
simulation with a couple of exceptions:

CHAPTER 4. INSTALLATION AND OPERATION 19

• All values that are to be replace by the optimizer are enclosed in number sign # #.
This does not necessarily imply a variable to optimize. It can also be a fixed number
whose value is set for flexibility in the configuration file. This is a simple method
to optimize a write protected SPICE input netlist circuit with different operating
conditions.

• This is optional: no measurements exist in the netlist, although those that will not
be used to verify circuit performance and/or correct operation can still be present.

4.3.2 Configuration File

Instructions on how to carry on the optimization are defined in the configuration input
file. Information regarding the optimization algorithm schedule, SPICE re-run using the
ALTER command, Monte Carlo matching performance, parameters, measurements and
post-processing, must be defined in the configuration file which is divided in categories
that are now presented.

The following syntax is enforced throughout the configuration file so ASCO can properly
write and read the input and output files:

• All comment lines must start with an asterisk (*).

• Comments following a command (in-line) start with the dollar ($) sign.

• Category name is enclosed within the number (#) symbol. If no space exists in the
beginning and at the end of the category name (#text#), the command lines in that
block of lines cannot be interchanged nor deleted, only the value. On the contrary, if
a space is present (# text #), then the category is not locked and an arbitrary number
of lines can exist and their relative position is irrelevant.

• Number (#) character at the end of a category must exist at all times.

• Syntax is a colon separated list.

Optimization Flow Options

In this category, which is very likely to be revamped in future releases, optimization chain
steps are described. So far, only two exist but there is the possibility to make them user
defined in the order they are executed and in a fixed number of possible steps.

#Optimization Flow#

Alter:no $do we want to do corner analysis?

MonteCarlo:no $do we want to do MonteCarlo analysis?

AlterMC cost:0.00 $point below which ALTER and/or MONTECARLO can start

ExecuteRF:no $Execute or not the RF module to add RF parasitics?

SomethingElse:

#

CHAPTER 4. INSTALLATION AND OPERATION 20

Word yes and no are used to perform or not a given analysis in the optimization
loop. The scheduled simulations with Alter and/or MonteCarlo, are only executed if all
constraints have been met in the previous cost evaluation, otherwise, they are executed
immediately after the real value specified in the AlterMC cost.

During and optimization, misconvergence can occur if before starting simulations re-
runs using Alter, a lower cost has already been obtained than the possible best when
including design corners. This situation can be avoided by not setting AlterMC too low.
Similar situation applies to the MonteCarlo case.

Differential Evolution Options

The optimization algorithm settings are grouped in this category which are now explained.
Some text has been verbatim copied from the source code.

#DE#

choice of method:3

maximum no. of iterations:50

Output refresh cycle:2

No. of parents NP:60

Constant F:0.85

Crossover factor CR:1

Seed for pseudo random number generator:3

Minimum Cost Variance:1e-6

Cost objectives:10

Cost constraints:100

#

There is no choice of parameters that fits all. Each optimization problem has an ideal
choice of the above factors. However F=0.5 and CR=0.8 can be taken as good starting
point alongside with method 3 or 4. Read the following lines for further clarification.

• choice of method

An explanation of the naming-convention follows for the DE/x/y/z. DE: stands
for Differential Evolution; x: a string which denotes the vector to be perturbed; y:
number of difference vectors taken for perturbation of x; z: crossover method (exp =
exponential, bin = binomial). When the DE/best... schemes fail DE/rand... usually
works and vice versa. One of the following methods can be chosen using a number
between 1 and 10.

1. DE/best/1/exp: The oldest strategy but still not bad. Several optimization
problems where misconvergence occurs have been found.

2. DE/rand/1/exp: It works especially well when the “bestit[]”-schemes experience
misconvergence. Try e.g. F=0.7 and CR=0.5 as a first guess.

CHAPTER 4. INSTALLATION AND OPERATION 21

3. DE/rand-to-best/1/exp: This strategy seems to be one of the best strategies.
Try F=0.85 and CR=1. If you get misconvergence try to increase NP. If this
doesn’t help you should play around with all three control variables. Similar to
DE/rand/1/exp but generally better.

4. DE/best/2/exp: Another powerful strategy worth trying.

5. DE/rand/2/exp: Seems to be a robust optimizer for many functions.

6. DE/best/1/bin: Essentially same strategy but binomial crossover.

7. DE/rand/1/bin: Essentially same strategy but binomial crossover.

8. DE/rand-to-best/1/bin: Essentially same strategy but binomial crossover.

9. DE/best/2/bin: Essentially same strategy but binomial crossover.

10. DE/rand/2/bin: Essentially same strategy but binomial crossover.

• maximum no. of iterations NI

Stop criteria. Be aware that the maximum possible number of SPICE simulation
calls can be as large as NIxNP. Generations is another name used for iterations.

• Output refresh cycle

• No. of parents NP

Number of population members. To start off NP=10xD is a reasonable choice. In-
crease NP if misconvergence happens. If you increase NP, F usually has to be de-
creased. The number of population members NP is also not very critical. A good
initial guess is 10xD. Depending on the difficulty of the problem NP can be lower
than 10xD or must be higher than 10xD to achieve convergence.

• Constant F

DE-stepsize F from interval [0, 2] which affects the differential variation between two
individuals. The scale factor F must be above a certain minimum value to avoid
premature converge to a local minimum (sub-optimal solution). However, making F
too large causes the number of function evaluations to increase before converging to
an optimum solution. On the other hand, it allows global exploration of the search
space. F is usually between 0.5 and 1 (in rare cases >1). DE is also somewhat
sensitive to the choice of the stepsize F.

• Crossover factor CR

Crossover probability constant from interval [0, 1] which affects the diversity of pop-
ulation for the next generation. Helps to maintain the diversity of the population
and is rather uncritical, with 0.0, 0.3, 0.7 and 1.0 being optimal first choices. If
the parameters are correlated, high values of CR work better. The reverse is true
for no correlation. In low-dimensional problems (<10), higher values of crossover
probability work better to preserve the diversity in the population.

CHAPTER 4. INSTALLATION AND OPERATION 22

• seed for pseudo random number generator

Self-explanatory.

• Minimum Cost Variance

Another stop criteria. Simulation stops if current cost variance is smaller than the
defined value.

• Cost objectives

Wobj in (4.2)

• Cost constraints

Wcon in (4.2)

More information can be found either in the C source file de36.c or in [SP95, Sto96].

Alter Options

Refer to Section 7.1 for information on this category.

Monte Carlo Options

Refer to Section 7.3 for information on this category.

Parameter Options

Parameters

Supply voltage:#V_SUPPLY#:2.0:0:0:LIN_DOUBLE:---

Supply voltage:#V_SUPPLY#:2.0:0:0:LIN_DOUBLE:OPT

Input frequency:#INP_FREQ#:850E6:0:0:LIN_DOUBLE:---

PMOS width:#WP#:70u:75u:250u:LIN_DOUBLE:OPT

Multiplier:#M#:4:2:5:LIN_INT:OPT

#

A sequence of colon separated specifying different fields: Text description, Symbol,
Initial value, Minimum, Maximum, Number format and Type. A clarification of each one
the parameters is now presented:

• Text description: of the variable. Any text is acceptable.

• Symbol: must be enclosed with # #. ASCO searches the SPICE input netlist and
replaces every single occurrence by its numerical value.

• Initial value: of the parameter.

• Minimum: lower bound of the parameter.

CHAPTER 4. INSTALLATION AND OPERATION 23

• Maximum: upper bound of the parameter.

• Number format: Naming-convention follows x y, where x stands for the scale in the
feasible range; y is the number format. x can either be LIN (linear interpolation) or
LOG (logarithmic interpolation) while y can take DOUBLE (continuous) or INT (discrete)
as possible values for the type of variables.

For IEC 60063 preferred number series (E3, E6, E12, E24, E48, E96 and E192 only)
use for example :E48: alone. The code was contributed by Stefan Mahr.

• Type: if the parameter is to be optimized, OPT must be added, otherwise use --- to
represent a parameter that is to be kept constant throughout the optimization. The
previous is useful to simulate the exactly same SPICE input netlist under different
conditions that are changed only in the configuration file, that is, for netlist integrity
purposes.

Notes:

• With the initial value, minimum and maximum, units must not be included, only
scale factors. This is: 2A is read as 2 atto instead of 2 Ampere, while 3F is read as
3 femto instead of 3 Farad. The Volt unit (V) must not be added.

• Exponential format (1e2, 1e-5, 1e+4) or engineering format (K, T, N) can be inter-
changeably used. Use one of the following:

T=1E12 G=1E9 MEG=1E6 K=1E3
A=1E-18 F=1E-15 P=1E-12 N=1E-9 U=1E-6 M=1E-3

• Character case is ignored.

As such, each one of the above lines implies:

• Supply voltage:#V SUPPLY#:2.0:0:0:LIN DOUBLE:---

Text clarifies that this parameter is related to the Supply voltage, the symbol to
look for and replace in the SPICE input netlist is #V SUPPLY#. Initial value used for
the optimization is 2.0 Volt with a minimum and maximum of 0. Because it is only
a parameter to replace (note the string ---) the maximum values would have been
ignored. In this case LIN DOUBLE indicates a parameter with double precision with
linear parameter variation.

• Supply voltage:#V SUPPLY#:2.0:0:0:LIN DOUBLE:---

Owing to the fact that the maximum is equal to the minimum, but the variable is
set to optimized, the parallel global DE algorithm is used in an emulated local mode.
The minimum and maximum are internally set to -10/+10% of the initial value.

CHAPTER 4. INSTALLATION AND OPERATION 24

• Input frequency:#INP FREQ#:850E6:0:0:LIN DOUBLE:---

The Input frequency where the symbol to look and replace is #INP FREQ# has an
initial value of 850E6 Hertz. Again, because it is not a variable to optimize, due to
the presence of ---, the minimum and the maximum values are ignored.

• PMOS width:#WP#:70u:75u:250u:LIN DOUBLE:OPT

The PMOS width has the symbol #WP#. The initial value is 70u. In this case, the
parameter is to be optimized (OPT) with a minimum value of 75u and a maximum
value of 250u. The double precision is used alongside with a linear swept of the
optimization parameter range due to the LIN DOUBLE keyword.

• Multiplier:#M#:4:2:5:LIN INT:OPT

Possible values are 2, 3, 4 and 5 for multiplier parameter because xxx INT is used.
Initial value in the optimization is set to 4.

Measurement Options

To avoid the introduction of a user-defined cost function, objectives and constraints must be
manually introduced in the configuration input file. As such, measurements that assert cir-
cuit performance and/or correct operation shall not be included in the input SPICE netlist
(<inputfile>.*). This also simplifies the user work, as the definition of the cost function
is frequently tricky. The preferred method is to add an entry in the # Measurements #

category of the input configuration file. Furthermore, the added advantage is that this
knowledge in the form of objectives and constraints is stored in a template which can be
reused later.

Measurements

P_SUPPLY:---:MIN:0

P_OUT:OUT:GE:0.0316

#

A sequence of colon separated specifying different fields: Measurement, Node, Objective
or Constraint, Gain or Constraint value, having the following meaning:

• Measurement: The name of the measurement to perform. See sub-section 4.3.3 for
the format.

• Node: at which the measurement is to be done.

• Objective or Constraint: objectives can either be MIN (minimize) or MAX (maximize)
while constraint can be LE (lower-or-equal), GE (greater-or-equal) and EQ (equal:
hardcoded to 1 %). MON keyword is used to monitor a measurement while ignoring
its value from the cost function calculation.

CHAPTER 4. INSTALLATION AND OPERATION 25

• Gain or Constraint: value that is dependent on the previous selected parameter. If
it is an objective, the entry represents a gain to the cost function (currently not
implemented and hardcoded to 10) or else it is the user-defined constraint value.

Taking as example the above lines:

• P SUPPLY:---:MIN:0

Measure the power supply, no node is specified, minimize is the optimization objec-
tive. Because the objective gain is not yet implemented, the hardcoded value of 10
is used instead of 0.

• P OUT:OUT:GE:0.0316

Measure the output power at node OUT which must be greater-or-equal than 0.0316 Watt.

Only one objective and one constraint is specified, but in theory there is no limit
to the maximum number of objectives and/or constraints that can be considered in an
optimization. Neither is there a limit to the type of measurements to perform. However,
different cost functions or different penalties can lead to distinctive “optimal” solutions.
It is thus advisable to have only one objective combined with the necessary constraints.
A figure-of-merit (FOM) which accounts for all partial minimize/maximize goals is then
minimized by the optimizer.

Post Processing Options

Refer to Section 7.4 for information on this category.

4.3.3 Extract Commands

Each one of the templates is stored in a file in the extract/ directory that must reside
in the same parent directory where the SPICE input netlist is. It is mandatory to name
the file as the name used in # Measurements # category of the configuration file (Sub-
section 4.3.2/Measurement Options).

In Eldo
TM

, the following example is used to measure the output power at a user-defined
frequency.

Info

Name:P_OUT

Symbol:ZP_OUT

Unit:W

Analysis type:TRAN

Definition:Output power at the fundamental harmonic.

Note:

#

CHAPTER 4. INSTALLATION AND OPERATION 26

Commands

.OPTFOUR TSTART=TMEAS_START TSTOP=TMEAS_STOP NBPT=1024

.FOUR LABEL=fftout v(#NODE#)

.EXTRACT FOUR LABEL=#SYMBOL# {((YVAL(FOUR(fftout), INP_FREQ))^2)/(2*FILT_RES)}

#

Post Processing

#

Each file defining one parameter extraction must have the three categories shown above:

• # Info #

All fields are self-explanatory. Currently ignored.

• # Commands #

Commands to be included in the SPICE netlist to extract waveform information from
a simulation run are defined here. The node where the measurement is to be done,
is replaced by the text given in sub-section 4.3.2/Measurement Options. Currently,
the symbol is automatically filled by the tool.

• # Post Processing #

Refer to Section 7.4 for the appropriate syntax. Note, that only the MEASURE VAR

command can be used in here.

4.3.4 Output Files

The option of naming the output files with the machine name the optimization is run-
ning on, is to ease the transition to a multi-CPU environment where multiple machines
optimizing the same input SPICE netlist write their output to different files.

All output files are simulator specific and are created by the simulator that is being
used. The exception, two log files that report all the steps that have been done during the
optimization loop, more precisely:

• <hostname>.log In this file, the results of each one of the simulations is stored in
a character separated value for easy importing by a spreadsheet. In each one of the
lines a detailed report quantities is given:

– The current cost of the evaluation, which carries the character “+” if all con-
straints are met, otherwise “-” is added.

– A list of objectives (minimize, maximize), constraints (lower-or-equal, greater-
or-equal, equal) and measurements to monitor. Again, those constraints that
have been met, have the character “+” added.

CHAPTER 4. INSTALLATION AND OPERATION 27

– All components values that have been optimized have their value documents on
the right most part of each line.

Before exiting, one last simulation is executed with the best set of set of values
obtained during the optimization. In this way, it is thus possible to analyze the
SPICE output log file and visually see each one of the waveforms for correct operation
assurance. The line, or lines in case corner analysis, should start with “+cost”.

• asco.log General information about the optimization process is stored in this file.

4.4 Invoking ASCO

Copy the ASCO executable to the directory where your files are. Not obligatory but having
everything stored in one place, means that you can move from computer to another, without
having to worry if the optimizer is installed or even with different ASCO versions having
different formats. Furthermore, by doing this you can easily compare differences between
versions. You decide which option best suits your needs.

To invoke ASCO, simply type at the command line:

./asco -<eldo|hspice|ltspice|spectre|qucs|ngspice|general> <inputfile>

The simulator to use must be specified in the first input argument. The <inputfile>

can include the file extension.

4.4.1 The usefulness of asco-test

During a long optimization, which can include corner analysis and/or Monte Carlo simula-
tion, the netlist (<hostname>.tmp) is changed at the beginning of each new step. It might
be that everything is running as expected, but the execution of the Alter or Monte Carlo
options introduces an error in the temporary file <hostname>.tmp. For this purpose, the
executable asco-test is used, since it ignores the fulfillment of any constraint and simple
goes from optimization to Alter and then to Monte Carlo.

As programmed, an Alter and/or Monte Carlo simulation is only started after all con-
straints are met in the previous step. This, unless AlterMC cost is defined in the configu-
ration file with a high value making that the simulation re-runs start immediately, because
the returned cost from the previous simulation is lower than the AlterMC cost defined
to start simulating the PVT corners. The normal flow, if all steps are to be executed
is: optimization⇒Alter⇒Monte Carlo. If an error exists in any of the subsequent steps,
the simulator might not run at all. The necessary corrections must be made so that the
sequence of the three steps can end without errors. After this, the long optimization se-
quence can start, so that at this time one can rest assured that no errors exist in either
Alter and/or Monte Carlo netlist. At the command line, type:

./asco-test -<eldo|hspice|ltspice|spectre|qucs|ngspice|general> <inputfile>

CHAPTER 4. INSTALLATION AND OPERATION 28

As programmed in this current version, it is not possible to first execute Monte Carlo
simulations and then Alter. Monte Carlo always follows the optimization or Alter.

4.4.2 Runtime Messages

To provide some help where the execution is going, there are three type of messages that
are written to the standard output:

• Informative messages are outputted with INFO:

• Debug messages are written with DEBUG: ... and only appear when executing
asco-test with the objective to provide enough information to the user to correct
the SPICE input netlist and the ASCO configuration file.

• All other remaining messages are error messages. The C code filename and the
function at the point the program cannot continue, with a small explanation of the
error type is given. The program always exits after this message.

4.5 Invoking ASCO with multiprocessor support

The differential evolution optimization algorithm can be easily parallelized in order to dis-
tribute computational effort among different CPUs. This is a consequence of the inherently
parallel nature of the DE algorithm within each generation, where population members are
individually evaluated. The parallel/distributed version of ASCO can use as many as NP
(number of parents in the DE algorithm) computers in parallel because there are no gains
in using more.

Interprocess communication is handled by the Message Passing Interface (MPI), a stan-
dard for a parallel program on a distributed memory system communicate to other nodes.
In the model implemented, there is one master process responsible for giving to each slave
the data which is then simulated on another computer. The cost function at the end of each
simulation is then returned to the master. Due to the time required for a packet to travel
among nodes, and in comparison with the sequential code, the parallel implementation is
more suitable to expensive function evaluation.

First it is necessary to download, compile and install the MPI library available at:

http://www.mcs.anl.gov/mpi/mpich/

If the executable mpicc is not in the PATH environment variable, the ASCO Makefile

must be edited and the full path added to CC MPI. Compile asco-mpi, the executable with
parallel processing support by typing at the command prompt:

make asco-mpi

CHAPTER 4. INSTALLATION AND OPERATION 29

Before continuing, make sure the simulator is available through ssh or rsh. If the PATH

environment variable is set in your current shell but not in your remote shell environment,
the simulator might not be visible. To test this, type the following at the command line

ssh|rsh <MACHINE_NAME> <simulator>

In case of an error two possible solutions exist. You can either edit your shell configu-
ration file to add the path to the directories that are searched by default, or you can edit
the file errfunc.c around line 600-650 (in Step3), and add the full path to the simulator.
To execute the parallel version with just one computer, type

mpirun -np 2 asco-mpi -<simulator> <inputfile>

This is exactly the same as executing the sequential optimization algorithm, but with
two processes, one being the master and the other being the slave. Should a network of
computers be available, the following method can be used:

mpirun -f machines.txt [-np X] asco-mpi -<simulator> <inputfile>

where, to execute on three computers, machines.txt is a text file containing a list of
machines similar to

node1

node1:2 #2 processes on this node

node2:1

node3

in which nodeN is the name of the machine as given by the *NIX command hostname.
More than one process can be launched per computer. The simulation netlist(s) and
configuration file(s) is/are then copied to the local disk (of the node computer) to reduce
traffic in the network and as such decrease total optimization time.

The result given by the parallel version of ASCO is exactly the same as given by the
sequential implementation. The exception is in the case where PVT corner analysis is
performed. Nevertheless, a similar result is reached.

4.5.1 MPICH configure options

If the ASCO binary uses all your CPU cycles, you are advised to recompile MPICH using
the sock channel instead of the default nemesis channel. You can do this by configuring
MPICH with the --with-device=ch3:sock.

Chapter 5

Efficient Usage

5.1 Accuracy

In itself, the ASCO tool does not define the accuracy of the results. The algorithm used in
ASCO has been applied to various sets of problems and has obtained good results in term
of speed, robustness and convergence. More information is available in the DE’s homepage
in: http://www.icsi.berkeley.edu/∼storn/code.html.

The methodology applied to the ASCO tool has been proved on silicon. For further
details see Chapter 2 [Ram05] for a low-voltage low-power design of a three stage opera-
tional amplifier and Chapter 6 [Ram05] for the design in the presence of passive and board
parasitics, a high-efficiency 30 dBm class-E CMOS two-stage power amplifier for the GSM
standard.

5.2 Convergence Speed

In the DE algorithm, alongside with the choice of method, three parameters deserve
special attention to define the convergence speed: NP, F and CR. Electric circuits transfer
function being multi-modal require large populations (NP) to find a working topology.
Likewise, the constant F must be above a certain value so that premature convergence to
a local minimum does not occur. In addition to that, parameters are usually dependent
which makes large values of CR work better. However, overestimating NP and F has the
consequence that the number of SPICE simulation calls grow quickly, and thus, slows the
optimization process.

A careful selection of the number of optimization PVT corners and a thoughtful number
of Monte Carlo simulations, is a good trade-off between optimization time and robustness.
In addition, planning the exact moment to start sweeping the process corners is critical
for minimizing CPU time. A two-step approach, where first only the optimization is done,
followed by shrinking the variables search space to the range where all constraints have
been met, i.e., upper and lower range from all the lines starting with +cost. Only then,
the more computer intensive PVT optimization is performed.

30

http://www.icsi.berkeley.edu/~storn/code.html

CHAPTER 5. EFFICIENT USAGE 31

Minimizing the number of ASCII and binary files created by the simulator, the num-
ber of measurements (.EXTRACT or .MEAS) and output variables (.PROBE), and the
number of analysis (.AC, .PZ and .TRAN) to the absolute minimum required to efficiently
characterize the circuit in conjunction with a keen speed/accuracy simulation compromise,
saves precious CPU time in the optimization loop.

Open literature suggests that further gains in terms of convergence speed could be
obtained by first doing a global search to find a good starting point that is latter used
by a local optimization algorithm such as Hooke&Jeeves or Nelder-Mead. This decision is
taken at compilation time by editing the file asco.c around Step4.

5.3 Number of Optimization Variables and Search Space

Fully optimizing from scratch a complex system with a considerable number of variables
might end up being a road block, although being possible to do by the tool. In same cases,
it may be more efficient to steadily increase the number of variables to optimize and learn
from experience. Furthermore, overly increasing the search space with the hope of finding
the very best solution, might once more lead to an endless optimization loop.

5.4 Objectives and Constraints

Too many objectives and/or constraints may require a circuit that is simply not feasible
in theory. A reduced number is advisable whenever wanting to explore a new operating
point that is simply too difficult to derive equations for. Yet, in same situations a given
constraint is paramount to guide the optimizer to a functional solution that otherwise is
difficult to reach. Experience is once more an added value.

5.5 Evaluating Optimization Results

Whenever possible, try to understand the reasons behind the optimization results. Al-
ways proceed with caution unless you can justify the proposed circuit sizes. To increase
confidence, re-run the simulation with the Alter option enabled and/or with a different
range of the search space for the optimization variables. If a similar result is obtained, the
optimizer is probably converging to the global minimum and the circuit is likely working
as desired. In this situation in asco.log, the cost-variance is << 1.

Thoroughly analyze the asco.log file as the circuit can be working on an undesired
operating point or on the edge of stability. Then, explain what the optimizer has found.

Chapter 6

ASCO Tutorials

6.1 Getting Started

This chapter contains a description of examples included with the ASCO tool which are
grouped by simulator name (Table 6.1). The basic step to prepare a new netlist to the
format compatible with the ASCO optimization tool involves:

1. <inputfile>.*

• Prepare a functional SPICE netlist for your simulator.

• Measurement commands that are used to assert circuit performance and/or
correct operation are (preferably) not included in the input SPICE netlist.

• Select the variables to optimize. Replace their value with a unique string and
enclose it in # #.

2. <inputfile>.cfg

• Edit the configuration file. Pay special attention to the category # Parameters #

and # Measurements # in which the symbol and measurement name must
match those in file <inputfile>.* and directory extract/, respectively.

• Adapt the three DE control parameters: NP, F and CR, according to the diffi-
culty of the optimization problem.

• Carefully review if the remaining configuration file suits your needs.

3. Create the necessary measurements, each one in a separate file and place them in the
directory extract/ which is in the same parent directory where the SPICE input
netlist is. If available from a central repository or another simulation, simply copy
the necessary files.

4. Run the asco-test executable to remove any existing error. Only then proceed with
the following steps.

32

CHAPTER 6. ASCO TUTORIALS 33

5. Copy the ASCO executable to the place where your SPICE file is. Start the opti-
mization loop.

6. During the optimization loop, data similar to the one below is printed to the terminal,

asco-0.4.1 - Copyright (c) 1999-2006 Joao Ramos

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

INFO: Current directory on ’linux’: /home/users/asco/examples/inv

INFO: Eldo initialization on ’linux’

INFO: Initialization has finished without errors on ’linux’

PRESS CTRL-C TO ABORT

INFO: Starting global optimizer on ’linux’...

PRESS CTRL-C TO ABORT

Best-so-far cost funct. value=1.6891

best[0]=-4.180591714

best[1]=6.665600201

best[2]=0.03964113694

best[3]=-7.372717493

best[4]=3.691704024

Generation=1 NFEs=80 Strategy: DE/rand-to-best/1/exp

NP=40 F=0.7 CR=0.9 cost-variance=8.2357e+12

which is a summary of the optimization startup procedure. No errors have occurred
during the initialization of the optimization which has 5 optimization variables. The
values of best[], always between -10 and +10, are the values proposed by the DE
algorithm. They are later scaled to the range defined in <inputfile>.cfg.

7. Upon ending the optimization, text similar to the next is printed in the terminal
showing the final optimization results.

Best-so-far cost funct. value=0.40609

best[0]=-5.173398086

best[1]=9.592135291

CHAPTER 6. ASCO TUTORIALS 34

best[2]=9.780050221

best[3]=-8.086606726

best[4]=9.822119525

Generation=51 NFEs=2080 Strategy: DE/rand-to-best/1/exp

NP=40 F=0.7 CR=0.9 cost-variance=0.026777

INFO: de36.c - Maximum number of generations reached (genmax=50)

Ending optimization

INFO: ASCO has ended on ’linux’.

The cause for the optimization ending is also printed, in this case the maximum
number of generations has been reached. The minimum obtained cost of 0.40609 is
achieved after 50 generations and 2080 function evaluations. The optimization has
converged as result of the low value of the cost-variance. Although this may be true,
some of the best[] are close to the search range of [-10, +10]. This can be the result
that toward the minimum and/or maximum value of a given vector lies the optimum
point. Therefore it is advisable to increase the lower bound for best[] vectors close
to -10 and the upper bond for best[] vectors close to +10.

8. Analyze the results stored in asco.log, <hostname>.log and the other simulator
specific output files. If not already created (to increase optimization speed), re-
run one last simulation with the necessary command(s) to save waveforms in an
appropriated binary format suitable for a graphical viewer.

The following ready to use optimization examples can be found in the directory examples/

of the ASCO distribution, grouped for each one of the supported simulators.

Table 6.1: ASCO Examples
Circuit Name Description

inv Digital inverter
amp3 Three stage operational amplifier
classE Class-E power amplifier
bandpass Chebyshev band pass filter

CHAPTER 6. ASCO TUTORIALS 35

6.2 Eldo
TM

Examples

Latest tested version

Up to 2008.

6.2.1 Tutorial #1 – Digital inverter

This simple circuit gives a quick introduction to the procedures that must be executed
before optimizing a circuit. The complete set of files described below can be found in
examples/Eldo/inv.

The fact is that circuits having only one variable makes convergence quite fast on
modern computers. As such, an example will show most of the ASCO present capabilities:
optimize from scratch a circuit to achieve minimum power consumption while fulfilling the
design constraints; guarantee that this is valid for different process corners and also take
into account device parameter mismatch (Monte Carlo).

VoutVin

Mp

Mn

VDD

Figure 6.1: Digital inverter.

Summary

• One optimization variable

• One objective

• Two constraints/performance goals

• Three design corners (ALTER)

• Monte Carlo analysis

Full Netlist

*Digital inverter

.PARAM V_SUPPLY = ’#V_SUPPLY#’

CHAPTER 6. ASCO TUTORIALS 36

.PARAM INP_FREQ = ’#INP_FREQ#’

.PARAM INP_PERIOD = ’1/INP_FREQ’

.PARAM NO_PERIODS = ’4’

.PARAM TMEAS_START = ’(NO_PERIODS-1)*INP_PERIOD’

.PARAM TMEAS_STOP = ’(NO_PERIODS)*INP_PERIOD’

.PARAM TMEAS_1 = ’TMEAS_STOP -3*INP_PERIOD/4’

.PARAM TMEAS_2 = ’TMEAS_STOP -1*INP_PERIOD/4’

*** *** SUPPLY VOLTAGES *** ***

VDD VDD 0 V_SUPPLY

VSS VSS 0 0

*** *** INPUT SIGNAL *** ***

VSIG IN VSS PULSE V_SUPPLY 0 ’INP_PERIOD/2’ ’INP_PERIOD/1000’

+ ’INP_PERIOD/1000’ ’INP_PERIOD/2’ ’INP_PERIOD’

*** *** CIRCUIT *** ***

MP OUT IN VDD VDD PMOS W=’#WP#’ L=#LMIN#

MN OUT IN VSS VSS NMOS W=’#WP#/3’ L=#LMIN#

CL OUT VSS 10p

*** *** ANALYSIS *** ***

.TRAN ’INP_PERIOD/1000’ ’NO_PERIODS*INP_PERIOD’

.MC 2 ALL

.PROBE TRAN V(IN)

.PROBE TRAN V(OUT)

.OPTION EPS=1E-6

.INCLUDE p.typ

.INCLUDE n.typ

.END

The CMOS inverter, in which the transistor width is to be optimized has a 10 pF load
capacitance. All measurements have been removed from the netlist and included in the
extract/ directory.

Configuration File

From the complete configuration file, available at /examples/Eldo/inv, only those cate-
gories that might require extra attention are now discussed.

#Optimization Flow#

Alter:yes $do we want to do corner analysis?

CHAPTER 6. ASCO TUTORIALS 37

MonteCarlo:yes $do we want to do MonteCarlo analysis?

AlterMC cost:3.00 $point at which we want to start ALTER and/or MONTECARLO

ExecuteRF:no $Execute or no the RF module to add RF parasitics?

SomethingElse: $

#

Simulation re-runs are executed immediately upon having a returned cost below 3.00.
Immediately after that, and because the AlterMC cost is smaller than the returned cost
from the simulation, Monte Carlo Simulation is performed. For this to occur, the line .MC

2 ALL has to be present which tells the number of simulations runs, also ALL must exist.

ALTER

.param

+ V_SUPPLY=[2.0 2.1 2.2]

#

As a demonstration, only three process corners are executed. For an extensive list of
possible examples refer to the configuration file.

Parameters

Supply voltage:#V_SUPPLY#:2.0:0:0:LIN_DOUBLE:---

Temperature:#TEMP#:25:0:0:LIN_DOUBLE:---

Minimal gate length:#LMIN#:0.35u:0:0:LIN_DOUBLE:---

Input frequency:#INP_FREQ#:850E6:0:0:LIN_DOUBLE:---

PMOS width:#WP#:10000u:1m:10m:LIN_DOUBLE:OPT

#

The PMOS transistor width is the only optimization variable used. The other param-
eters are used to configure the SPICE input netlist.

Measurements

P_SUPPLY:---:MIN:0

VHIGH:OUT:GE:1.95

VLOW:OUT:LE:0.05

#

In here, minimization of the power supply consumption is the objective. This, while
meeting the constraint of having an output voltage above 1.95 V and below 0.05 V at a
fourth of the signal period.

Command Line

./asco -eldo inv

CHAPTER 6. ASCO TUTORIALS 38

Optimization Results Analysis

An inverter is a rather simple circuit. It can however be used as a good starting point on
the steps required to check that not only the optimization has converged, but above all,
to confirm that the circuit is indeed working according to the initial constraint and in a
stable operating mode.

To verify that the optimization leads to a functional inverter, the binary output file
containing the simulation with the best set of values obtained during the optimization is
checked with the visual display of the saved output.

In the <hostname>.log file, a complete report of all simulations is stored. The last 12
lines refer to the bet test vector (Alter plus Monte Carlo). It is possible that not all lines
start with “+cost”. It should nevertheless be noted that the measured values are indeed
very close to the constraint values. The number of function evaluations, minimum cost
and cost-variance are stored in asco.log file. The reason for ending the optimization and
a brief report of the DE parameters is stored in here for convenience.

The most important place to check correct operation is in the SPICE output log file:
<hostname>.chi. A meticulous analysis is mandatory.

In the event that there is a need for statistical analysis on the simulation output log file,
the tool log available in tools/log/ can be used. It takes as input the optimization log
file and creates a summary of all performed measurements. Should the <inputfile>.cfg

exist, a more complete report is created. To use such tool, type in the command prompt

<PATH_TO_LOG>/log <hostname>.log <hostname>.log.log

to obtain a file with a summary of the measurements and also with a list of param-
eters to use in new optimization. However, it is better to create the new parameter list
(# Parameters #) in the situation where all constraints have been met, i.e., those where
the line start with +cost. Filtering lines matching a pattern is obtained using the *NIX
grep command

cat <hostname>.log | grep +cost > <hostname>_good.log

<PATH_TO_LOG>/log <hostname>_good.log <hostname>_good.log.log

after which a new summary can be obtained, this time with a smaller range for the
parameters. With this in hand, a new re-run can be started, either to fine-tune the design
or for a new and faster optimization having corners.

CHAPTER 6. ASCO TUTORIALS 39

6.2.2 Tutorial #2 – Three stage operational amplifier

This tutorial describes the optimization of a three stage operation amplifier featuring the
frequency compensation technique described in [Ram05]. The necessary files are available
in examples/Eldo/amp3.

Cm1

-gm1 +gm2 -gm3

Cm2

go1 co1 go2 co2 go3

VoutVin

co3

-gmf

CL

V1 V2

(a) Block diagram of the PFC amplifier.

Cm2

Cm1gm1

M20

gmf

gm3

Vin- Vin+

Vout

Vb2

AVSS

AVDD

M11 M12

M15 M18 M21 M23

M22

M30

M31

gm2

M17

M14

M10 M13 M16

Vb1

M00

IBIAS

(b) Schematic diagram of the PFC amplifier.

Figure 6.2: The PFC amplifier [Ram05].

Summary

• 21 optimization variables

• One objective

• Five constraints/performance goals

Full Netlist

*Three stage operational amplifier

*** *** OPAMP SUBCIRCUIT *** ***

.SUBCKT PFC.SUB VP VN VOUT IBIAS VB1 AVDD AVSS

M00 IBIAS IBIAS AVDD AVDD PMOS W=#WM00_10# L=#LM1#

* differential pair

M10 1 IBIAS AVDD AVDD PMOS W=#WM00_10# L=#LM1# M=6

M11 2 VN 1 1 PMOS W=#WM11_12# L=#LM2#

M12 3 VP 1 1 PMOS W=#WM11_12# L=#LM2#

* folded cascode

M13 4 IBIAS AVDD AVDD PMOS W=#WM13_16# L=#LM1# M=3

CHAPTER 6. ASCO TUTORIALS 40

M16 5 IBIAS AVDD AVDD PMOS W=#WM13_16# L=#LM1# M=3

M14 4 VB1 2 AVSS NMOS W=#WM14_17# L=#LM3#

M17 5 VB1 3 AVSS NMOS W=#WM14_17# L=#LM3#

M15 2 4 AVSS AVSS NMOS W=#WM15_18# L=#LM4#

M18 3 4 AVSS AVSS NMOS W=#WM15_18# L=#LM4#

* second stage

M20 6 5 AVDD AVDD PMOS W=#WM20# L=#LM6#

M22 7 IBIAS AVDD AVDD PMOS W=#WM22# L=#LM1#

M21 6 6 AVSS AVSS NMOS W=#WM21_23# L=#LM5#

M23 7 6 AVSS AVSS NMOS W=#WM21_23# L=#LM5#

* third stage

M30 VOUT 5 AVDD AVDD PMOS W=#WM30# L=#LM6# M=22

M31 VOUT 7 AVSS AVSS NMOS W=#WM31# L=#LM7# M=5

* compensation

CM1 5 VOUT #CC1#

CM2 5 7 #CC2#

.ENDS PFC.SUB

*** *** SUPPLY VOLTAGES *** ***

VDD VDD 0 #VSUPPLY#

VSS VSS 0 0

*** *** BIAS VOLTAGE *** ***

VVB1 VB1 VSS DC #VBIAS#

*** *** BIAS CURRENT *** ***

IIBIAS IBIAS VSS #IBIAS#

*** *** SUB-CIRCUIT *** ***

XOPAMP VP VN VOUT IBIAS VB1 VDD VSS PFC.SUB

*** *** LOAD *** ***

RL VOUT VX #RLOAD#

CL VOUT VX #CLOAD#

VX VX VSS ’#VSUPPLY#/2’

*** *** AC LOOP *** ***

CHAPTER 6. ASCO TUTORIALS 41

VIN VP VSS ’#VSUPPLY#/2’ AC 1

RX VN VOUT 1m AC=1E12

CX VN VSS 10

*** *** ANALYSIS *** ***

.AC DEC 100 0.001 1E9

.PZ V(VOUT)

.PROBE AC VDB(VOUT)

.PROBE AC VP(VOUT)

.OP

.OPTION NOBOUND_PHASE

.INCLUDE p.typ

.INCLUDE n.typ

.END

Configuration File

#DE#

choice of method:3

maximum no. of iterations:100

Output refresh cycle:2

No. of parents NP:100

Constant F:0.7

Crossover factor CR:0.9

Seed for pseudo random number generator:3

Minimum Cost Variance:1e-6

Cost objectives:10

Cost constraints:10e6

#

A random starting point is used in combination with a population size of 100 for the
evolutionary optimization algorithm. The number of iterations is arbitrarily set to 100,
which translates into a long optimization time. However, this allows to verify that the
optimal values are no longer changing significantly.

Parameters

Supply voltage:#VSUPPLY#:3.0:2.4:3.3:LIN_DOUBLE:---

Minimal gate length:#LMIN#:0.35U:0.35U:0.35U:LIN_DOUBLE:---

Bias voltage:#VBIAS#:1.25:1:3.0:LIN_DOUBLE:OPT

Bias current:#IBIAS#:5E-6:1E-6:10E-6:LIN_DOUBLE:OPT

Load capacitance:#CLOAD#:100E-12:100E-12:130E-12:LIN_DOUBLE:---

Load resistance:#RLOAD#:25E3:10E3:50E3:LIN_DOUBLE:---

C compensation 1:#CC1#:15p:2p:20p:LIN_DOUBLE:OPT

CHAPTER 6. ASCO TUTORIALS 42

C compensation 2:#CC2#:3p:2p:20p:LIN_DOUBLE:OPT

Length group 1:#LM1#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 2:#LM2#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 3:#LM3#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 4:#LM4#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 5:#LM5#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 6:#LM6#:0.7E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Length group 7:#LM7#:0.5E-6:0.35E-6:7E-6:LIN_DOUBLE:OPT

Width M00_10:#WM00_10#:10E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M11_12:#WM11_12#:40E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M13+16:#WM13_16#:10E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M14_17:#WM14_17#:6E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M15_18:#WM15_18#:11.01E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M20:#WM20#:15E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M22:#WM22#:10E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M21_23:#WM21_23#:2E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M30:#WM30#:1.5E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

Width M31:#WM31#:1.5E-6:0.35E-6:50E-6:LIN_DOUBLE:OPT

#

In order to automatically size the amplifier circuit, the netlist of the PFC amplifier is
parametrized using 21 design variables (one bias voltage and current, two compensation
capacitors, seven transistor lengths and ten transistor widths). The number of transistor
geometry variables is somewhat reduced by taking standard analog design constraints
(e.g. the matching of differential input pairs and current mirrors) into account. However,
constraints on the operating point of the circuit are not included, only the performance
specifications are given as input to the tool. On the one hand, this makes the design space
much more complex, but on the other hand this doesn’t require specific circuit knowledge.

Measurements

ac_power:VDD:MIN:0

dc_gain:VOUT:GE:122

unity_gain_frequency:VOUT:GE:3.15E6

phase_margin:VOUT:GE:51.8

phase_margin:VOUT:LE:70

amp3_slew_rate:VOUT:GE:0.777E6

#

The original performances as in [Ram05] are taken as constraints, except for the power
consumption, which is requested to be minimized.

Command Line

./asco -eldo amp3

CHAPTER 6. ASCO TUTORIALS 43

Optimization Results Analysis

Depending on the computer speed, it may take between 10 and 30 minutes to find the first
circuit that fulfills all design constraints. By comparison, the full optimization procedure
takes much more time. To have a cost-variance << 1 it is necessary to increase the
maximum number of iterations to about 400. Although this optimization can be done in
a single day, a somehow simpler yet accurate representation of the amplifier as depicted
in Fig. 6.2(a) can be used. After obtaining the optimum values for the transconductances
and compensation capacitors in a fraction of the time, proceeding to the optimization of
the transistor level circuit in Fig. 6.2(b) is straightforward.

CHAPTER 6. ASCO TUTORIALS 44

6.2.3 Tutorial #3 – Class-E power amplifier

In this example, a simple class-E amplifier intended for operation in the GSM-850 band is
given. A more realistic model representing a differential two stage power amplifier, includ-
ing all relevant circuit and board parasitics to better describe the circuit measurement per-
formance alongside with measurements from a manufactured chip in a 0.35 um CMOS com-
mercial technology, is given in [Ram05]. All the files are available at examples/Eldo/classE.

L1

VDD

L0 C0

RLM1

Figure 6.3: Class E power amplifier. It consists of CMOS switch M1, the finite dc-feed
inductance L1, the series-tuned (L0-C0) and the load resistance RL.

Summary

• Five optimization variables

• One objective

• Five constraints/performance goals

Full Netlist

*Class-E power amplifier

.PARAM V_SUPPLY = ’#V_SUPPLY#’

.PARAM INP_FREQ = ’#INP_FREQ#’

.PARAM INP_PERIOD = ’1/INP_FREQ’

.PARAM NO_PERIODS = ’#NO_PERIODS#’

.PARAM TMEAS_START = ’(NO_PERIODS-1)*INP_PERIOD’

.PARAM TMEAS_STOP = ’(NO_PERIODS)*INP_PERIOD’

.PARAM T_PERC = 99

.PARAM TMEAS_AUX = (NO_PERIODS-1)*INP_PERIOD

CHAPTER 6. ASCO TUTORIALS 45

+ + T_PERC/100*INP_PERIOD

*** *** SUPPLY VOLTAGES *** ***

* Voltages and currents

VDD VDD 0 V_SUPPLY

VSS VSS 0 0

*** *** INPUT SIGNAL *** ***

VSIG G1 VSS PULSE V_SUPPLY 0 ’INP_PERIOD/2’ ’INP_PERIOD/1000’

+ ’INP_PERIOD/1000’ ’INP_PERIOD/2’ ’INP_PERIOD’

*** *** INDUCTOR *** ***

.SUBCKT LBOND.SUB IN OUT L=1

RBOND IN 1 ’0.135*(L/1n)’ ! 0.135 Ohm/mm; gold

LBOND 1 OUT ’L’ ! 1 nH/mm

.ENDS LBOND.SUB

*** *** OUTPUT STAGE *** ***

* Diffusion length, MOSwidth, MOSlength and multiplier

.PARAM LDIFF=’1.2u’ WS=’#TR1_W#’ LS=’#LMIN#’ MS=’1’

M1 D1 G1 VSS VSS NMOS W=WS L=LS M=MS AD=’WS*LDIFF’ PD=’2*(LDIFF+WS)’

+ AS=’WS*LDIFF’ PS=’2*(LDIFF+WS)’

XL1 VDD D1 LBOND.SUB L=#L1#

XL0 D1 N2 LBOND.SUB L=#L0#

C0 N2 OUT #C0#

.PARAM FILT_RES = #RL#

R OUT VSS FILT_RES

*** *** ANALYSIS *** ***

.TRAN ’INP_PERIOD/1000’ ’NO_PERIODS*INP_PERIOD’

.PROBE TRAN V(G1)

.PROBE TRAN V(D1)

.PROBE TRAN V(OUT)

.OP

.OPTION EPS=1E-6

.INCLUDE n.typ

.END

The above file represents a class-E amplifier with a NMOS transistor acting as a switch-
ing device. Minimum inductor parasitics, using SPICE language, are included by the fact
of the LBOND.SUB sub-circuit.

CHAPTER 6. ASCO TUTORIALS 46

Configuration File

The relevant code from the configuration is now shown:

DE

choice of method:3

maximum no. of iterations:50

Output refresh cycle:2

No. of parents NP:60

Constant F:0.85

Crossover factor CR:1

Seed for pseudo random number generator:3

Minimum Cost Variance:1e-6

Cost objectives:10

Cost constraints:100

#

The three control parameters controlling the optimization algorithm and that must be
chosen by the user: NP, F and CR are set to 60, 0.85 and 1, respectively.

Parameters

Supply voltage:#V_SUPPLY#:2.0:0:0:LIN_DOUBLE:---

Temperature:#TEMP#:25:0:0:LIN_DOUBLE:---

Minimal gate length:#LMIN#:0.35u:0:0:LIN_DOUBLE:---

Input frequency:#INP_FREQ#:850E6:0:0:LIN_DOUBLE:---

No of sim periods:#NO_PERIODS#:50:0:0:LIN_DOUBLE:---

TR1 width:#TR1_W#:1600.0u:5000u:20000u:LIN_DOUBLE:OPT

L1 inductance:#L1#:38.2n:0.1n:10n:LIN_DOUBLE:OPT

L0 inductance:#L0#:14.4n:0.1n:10n:LIN_DOUBLE:OPT

C0 capacitance:#C0#:4.82p:10p:70p:LIN_DOUBLE:OPT

Load resistance:#RL#:27.9:1:10:LIN_DOUBLE:OPT

#

In first three lines above, inputs for the SPICE simulation are shown. The next five
lines configure the parameters to be optimized with the bounding range for each one of the
circuit components.

Measurements

P_SUPPLY:---:MIN:0

P_OUT:OUT:GE:0.5

VDSOFF:D1:LE:0.2

SLOPEOFF:D1:LE:9E9

VDSON:D1:LE:0.2

VMIN:D1:GE:-0.2

#

CHAPTER 6. ASCO TUTORIALS 47

The above category describes minimization of the power supply (the only objective)
while meeting all other five constraints, specifically an output power of at least 0.5 W.
The remaining four performance goals, ensure correct operation of the circuit as a class-E
amplifier.

The minimization of the power supply while constraining the output power to be higher
than 0.5 W is equivalent to maximizing the drain efficiency, thus the cost function has only
one objective.

Command Line

./asco -eldo classE

Optimization Results Analysis

Upon completion, all simulator calls are logged to <hostname>.log. Each one of the lines
contains the cost of the simulation, the power supply and a description of all performance
goals which have the character ”+” added if the constrain has been met, otherwise, have
”-”. The last part of the line have a list of all circuit sizes used in the simulation.

The character separated value makes importing to a spreadsheet easy where perfor-
mance trade-offs among the various optimized circuit solutions can be studied: results in
which the DC-feed inductance (L1) is below a certain threshold although the output power
is less than the desired 0.5 W; all the cases where when transistor turns on, the voltage
across the transistor drain is below than 0.2 V; etc. However, for situations where all
constraints must strictly be met, the simple following shell command can be typed in the
command prompt, to filter only those solution that have met all performance goals.

cat <hostname>.log | grep +cost > good.log

The same spreadsheet can again be used to analyze all results resting assured that only
those where the design constraint have been met are shown.

CHAPTER 6. ASCO TUTORIALS 48

6.2.4 Tutorial #4 – Chebyshev band pass filter

Existing passives, either discrete or integrated have parasitics that must be considered
when doing a design at high-frequency. Yet, accounting for their effect is often tedious and
time consuming. As such, it becomes increasingly difficult to generate equations that are
adequately accurate.

The RF module described in Section 7.5 can be used for situations when is of paramount
importance to consider parasitic effects in a circuit. To this end, the circuit can have the
necessary devices to describe a real world implementation, including chip, packaging and
board parasitics. Considering them during the optimization, leads to a closer match be-
tween simulations and lab measurements. All the files are available at examples/Eldo/bandpass.

(a) Magnitude constraints tolerance scheme.

L0 C0

21

L3L1 C1 C3

(b) Circuit topology.

L0 C0

21

L3L1 C1 C3

(c) Equivalent of (b) with parasitics automati-
cally added by the RF module during the opti-
mization loop.

Figure 6.4: The Chebyshev band pass filter.

Summary

• Six optimization variables

• One objective

• Three constraints/performance goals

CHAPTER 6. ASCO TUTORIALS 49

Full Netlist

*Chebyshev Band Pass Filter

*** *** FILTER CIRCUIT *** ***

C1 1 0 #C1# ! #CSMD_50p80p#

L1 1 0 #L1# ! #LBOND_350p450p#

L2 1 2 #L2# ! #LBOND_60n100n#

C2 2 3 #C2# ! #CSMD_300f340f#

C3 3 0 #C3# ! #CSMD_50p80p#

L3 3 0 #L3# ! #LBOND_350p450p#

*** *** PORT *** ***

V1 1 0 iport=1 rport=50

V2 3 0 iport=2 rport=50

*** *** ANALYSIS *** ***

.AC DEC 1000 800e6 1200E6

.PROBE AC SDB(1,1)

.PROBE AC SDB(2,1)

.END

The above text, describes a three pole Chebyshev band pass filter. The user-defined
device models, are specified after the in-line comment specific to each one of the simulators
used. Refer to Section 7.5 for a detailed description of its usage.

Configuration File

The relevant code from the configuration file is now shown:

#Optimization Flow#

Alter:no $do we want to do corner analysis?

MonteCarlo:no $do we want to do MonteCarlo analysis?

AlterMC cost:1.00 $point at which we want to start ALTER and/or MONTECARLO

ExecuteRF:yes $Execute or no the RF module to add RF parasitics?

SomethingElse:

#

The difference to note is the definition of ExecuteRF setting to require the inclusion of
RF parasitics in the netlist.

CHAPTER 6. ASCO TUTORIALS 50

#DE#

choice of method:3

maximum no. of iterations:100

Output refresh cycle:2

No. of parents NP:30

Constant F:0.7

Crossover factor CR:0.9

Seed for pseudo random number generator:3

Minimum Cost Variance:1e-6

Cost objectives:10

Cost constraints:1000

#

Above, normal settings for an optimization. Increase the number of parents to achieve
better results at the expense of a longer simulation time.

Parameters

C1:#C1#: 64.415p: 50p: 80p:LIN_DOUBLE:OPT

L1:#L1#: 393.233p:350p:450p:LIN_DOUBLE:OPT

L2:#L2#: 79.107n: 60n:100n:LIN_DOUBLE:OPT

C2:#C2#: 320.205f:300f:340f:LIN_DOUBLE:OPT

C3:#C3#: 64.415p: 50p: 80p:LIN_DOUBLE:OPT

L3:#L3#: 393.233p:350p:450p:LIN_DOUBLE:OPT

#

Each one of the filter components is defined as an optimization variable. It is based on
this device value that the parasitics are found and added to the netlist by the RF module.

Measurements

Left_Side_Lobe:---:LE:-20

Pass_Band_Ripple:---:GE:-1

Right_Side_Lobe:---:LE:-20

S11_In_Band:---:MAX:---

#

The first three lines define the magnitude constraints tolerance scheme as shown in
Fig. 6.4(a). The objective, maximization of the in-band S11, is given in the last line.
Considering that in extract/ it is defined as -S11, as result, the optimizer minimizes the
in-band return loss (S11) value.

The other important file is in this case the place where the parasitic definition resides.
In the file rfmodule.cfg, the following information can be found.

* This is the RFModule technology file describing circuit parasitics

*for a given process (CMOS, Bipolar, etc)

CHAPTER 6. ASCO TUTORIALS 51

Possible devices: resistor, capacitor and inductor.

#CSMD#

Device:capacitor

Terminal:IN OUT

CSMD IN 1 C

RSMD 1 2 R

LSMD 2 OUT L

#

At this moment, the first device in each line

must be R for a resistor, C for a capacitor and

L for an inductor. Furthermore, the values in the

first column must be in ascending order, otherwise...

#300f340f#

C=300f R=1m L=0.01n

C=320f R=2m L=0.01n

C=340f R=3m L=0.01n

#

#50p80p#

C=50p R=5m L=0.010n

C=70p R=7m L=0.015n

C=80p R=8m L=0.020n

#

#LBOND#

Device:inductor

Terminal:IN OUT

LBOND IN 1 LS

RBOND 1 OUT RS

#

#350p450p#

LS=350p RS=0.0042

LS=450p RS=0.0054

#

#60n100n#

LS=60n RS=0.718

LS=100n RS=1.196

#

CHAPTER 6. ASCO TUTORIALS 52

Two devices, one capacitor and one inductor are defined in parallel with the sub-
circuit model and device range. Section 7.5 break down the format used in the parasitics
configuration file.

Command Line

./asco -eldo bandpass

Optimization Results Analysis

After about one hour CPU time, which depends on the simulator used, the optimization
ends. It should be noted that with the current settings and parasitic values, the pass-band
ripple is not fulfilled. In this case, the optimizer returns the best found values, i.e., the
sizes the give the minimum cost.

The example is given as a demonstration of capability of using device parasitics during
the optimization loop. The components in the rfmodule.cfg show extremely low parasitics
and do not represent accurate real world values. However, this example has shown how
simple it can be to consider parasitics effects during an optimization loop.

CHAPTER 6. ASCO TUTORIALS 53

6.3 HSPICE R© Examples

Latest tested version

Up to 2004.

6.3.1 Tutorial #1 – Digital inverter

Command Line

./asco -hspice inv

6.3.2 Tutorial #2 – Three stage operational amplifier

Command Line

./asco -hspice amp3

6.3.3 Tutorial #3 – Class-E power amplifier

Command Line

./asco -hspice classE

6.3.4 Tutorial #4 – Chebyshev band pass filter

Command Line

./asco -hspice bandpass

CHAPTER 6. ASCO TUTORIALS 54

6.4 LTspice
TM

Examples

LTspice/SwitcherCAD III is a fully functional SPICE simulator with schematic capture
and waveform display. The program is available as a free download from Linear Technology.

LTspice
TM

runs well under GNU/Linux using (Wine which is an Open Source imple-
mentation of the Microsoft Windows API on top of X and *NIX). A shell script must exist
so that the simulator can be executed by typing ltspice in the command line. As an
example, the following script file can be used:

#! /bin/sh

wine -- "<PATH_TO_SCAD3>/LTC/SwCADIII/scad3.exe" $1 $2

while in a win32 platform, create instead the batch file ltspice.bat with

"C:/Program Files/LTC/SwCADIII/scad3.exe" %1 %2

Only for this particular simulator, the log filename is named <hostname>.log.log

because the output from the simulator already has the .log extension.
If the netlist was created using LTspice

TM
, the end-of-file is different than that used in

*NIX. As such, the text file must be converted. Use for example the following command:

dos2unix <inputfile>.net

Latest tested version

Up to 2011.

6.4.1 Tutorial #1 – Digital inverter

In this example, simulation re-runs (using the .ALTER command) and Monte Carlo analysis
are currently not functional.

Command Line

./asco -ltspice inv

6.4.2 Tutorial #2 – Three stage operational amplifier

Command Line

./asco -ltspice amp3

6.4.3 Tutorial #3 – Class-E power amplifier

Command Line

./asco -ltspice classE

http://linear.com/software/
http://www.winehq.com/

CHAPTER 6. ASCO TUTORIALS 55

6.4.4 Tutorial #4 – Chebyshev band pass filter

Command Line

./asco -ltspice bandpass

CHAPTER 6. ASCO TUTORIALS 56

6.5 Spectre R© Examples

Basic support for Spectre R©, a non SPICE circuit simulator is implemented. As a result of
this, simulation re-runs (using the altergroup command) and Monte Carlo analysis are
currently not functional.

Although the MDL language has the capability to execute multiple simulations, only
one type, currently limited to dc, ac and tran, can exist in the <inputfile>.scs without
manual editing <hostname>.mdl file and changing one (1) line in the C source file. E-mail
the developer if you need assistance.

Latest tested version

Up to 2014.

6.5.1 Tutorial #1 – Digital inverter

Command Line

./asco -spectre inv

6.5.2 Tutorial #2 – Three stage operational amplifier

Command Line

./asco -spectre amp3

6.5.3 Tutorial #3 – Class-E power amplifier

Command Line

./asco -spectre classE

6.5.4 Tutorial #4 – Chebyshev band pass filter

./asco -spectre bandpass

CHAPTER 6. ASCO TUTORIALS 57

6.6 Qucs Examples

This is the first free simulator supported by ASCO. Because the executable is a single
file, in a multiprocessor environment, it is advantageous to copy the simulator to the same
directory where the input files are. This results in the simulator also being copied when
the files are copied to other computers. Consequently, the local copy is used instead which
results in lower demand on the computer network.

The main advantage of this free simulator is allowing both programs to be built as
monolithic executables. The exchange of information can then be performed in memory
resulting in tenfold gain in optimization time for simulations that take a few seconds to
run.

Latest tested version

Version 0.0.17 (June 2013).

6.6.1 Tutorial #1 – Digital inverter

This example is currently not functional,

6.6.2 Tutorial #2 – Three stage operational amplifier

This example is currently not functional due to the lack of BSIM3 suport.

6.6.3 Tutorial #3 – Class-E power amplifier

This example is currently not functional due to the lack of BSIM3 suport.

6.6.4 Tutorial #4 – Chebyshev band pass filter

Command Line

./asco -qucs bandpass

CHAPTER 6. ASCO TUTORIALS 58

6.7 ngspice Examples

The successor of the original SPICE simulator from UC Berkeley is the second free software
simulator to be supported. All the four examples are functional with ASCO via the usage
of both dot commands and control section.

Latest tested version

Release 24 (January 2012)

6.7.1 Tutorial #1 – Digital inverter

Command Line

./asco -ngspice inv

6.7.2 Tutorial #2 – Three stage operational amplifier

Command Line

./asco -ngspice amp3

6.7.3 Tutorial #3 – Class-E power amplifier

Command Line

./asco -ngspice classE

6.7.4 Tutorial #4 – Chebyshev band pass filter

./asco -ngspice bandpass

CHAPTER 6. ASCO TUTORIALS 59

6.8 General Purpose Simulator

As a demonstration of interactions with other programs that are not SPICE/electric simu-
lators, the ASCO tool is used to optimize two parameters in an executable, that also uses
the DE algorithm to solve to Rosenbrock Function (6.1). It is in this case optimizing the
best input F and CR control parameters that originate the minimum error in finding the
zeros.

f(x) = (1− x) + 100(y − x2)2 (6.1)

To allow the usage of different simulators that have distinct input arguments, the shell
script general.sh is executed by ASCO. It is this executable that calls the appropriated
simulator with the necessary options. An example of which is given below.

#! /bin/sh

./rosen $1.txt $2.out > /dev/null

Summary

• 2 optimization variables

• One objective

Full Netlist

Configuration File

Parameters

Constant F:#F#:0:0:2:LIN_DOUBLE:OPT

Crossover factor CR:#CR#:0:0:1:LIN_DOUBLE:OPT

#

Measurements

COST:---:MIN:0

#

Command Line

tar -zxvf ASCO-<version>.tar.gz

cd ASCO-<version>

make -B

cp asco examples/rosen/

Rosenbrock’s function

cd examples/rosen/bin

CHAPTER 6. ASCO TUTORIALS 60

make

cp rosen ..

cd ..

#Execute optimizer

./asco -general rosen.txt

Optimization Results Analysis

In the last line of the <hostname>.log should read

+cost:4.930381E-31: COST:4.930381E-32: F:4.629414E-01:CR:6.327368E-01:

being as such F=4.629414E-01 and CR=6.327368E-01 in conjunction with the other
control parameters in the file rosen.dat, the best set of values to solve the Rosenbrock
Function (6.1).

Chapter 7

Tools and Modules

A set of external functions have been developed as a “plug-and-play” extension of the
original functionality of ASCO. Some of them have been integrated into the optimization
flow, while others are intended to help analyzing the optimization results. Not all simulators
are supported in each one of the tools.

7.1 alter

SPICE syntax that is used to re-run the same netlist with different options using the com-
mand .ALTER (in Eldo

TM
and HSPICE R©), altergroup (in Spectre R©) and altermod/alter

(in ngspice) are entered here.

ALTER

.protect

.inc [slow.mod typ.mod fast.mod]

.unprotect

.temp [-40 +25 +85]

.param V_SUPPLY=[2.0 2.1 2.2]

.param Ibias=[0.7 1.3]

#

The above line format is dependent on the selected SPICE simulator due to the existing
variations in the input format. The exactly same type of parameters, devices and com-
mands available with the SPICE simulator can be used in here. To test PVT corners, the
options must be enclosed in square brackets ([]) with only one space character between
them. For example, if only one line exists and is the following:

.inc [slow.mod typ.mod fast.mod]

upon expansion, three re-runs will be executed for the same netlist:

61

CHAPTER 7. TOOLS AND MODULES 62

.ALTER @1

.inc slow.mod

.ALTER @2

.inc typ.mod

.ALTER @3

.inc fast.mod

A total of 3 × 3 × 3 × 2 = 54 re-runs for the complete above example for Eldo
TM

are
necessary before the cost value can be obtained and returned to the optimizer. Use only the
necessary lines, because upon expansion (to all possible combinations), the total number
of simulation re-runs can rapidly grow, with the consequent increase in the optimization
time. Besides the speed, no other caution seems to exist at this time.

Should a file with the name alter.inc exist in the running directory, this file is included
in the netlist instead of adding the parameters in the category. This is useful in cases where
it is important to use an existing file with re-run commands.

The alter tool can be used integrated in the ASCO optimization flow or as a standalone
program. In this case, a file named alter.inc having the #ALTER# commands is created,
which can then be included in the simulation netlist.

7.1.1 Spectre R©

For Spectre R© a restriction exist in that the command altergroup must be present and
must be also the first line in the configuration file after the #ALTER# category name. Use
for example

ALTER

ag altergroup {

simulatorOptions options temp=[-40 +25 +85]

parameters xvdd=[2.0 2.1 2.2]

include "n.typ" section=[slow typ fast]

}

dcOp_ag dc oppoint=logfile

dcOp dc oppoint=logfile

#

Command Line

./alter -<eldo|hspice|spectre|ngspice> <configfile>

CHAPTER 7. TOOLS AND MODULES 63

7.2 log

The log tool can only be used as a standalone program. To obtain a summary of the
simulation optimization measurements (# Measurements #) alongside with the parameters
(# Parameters #), execute in the command line:

Command Line

./log <hostname>.log <outputfile>

7.3 monte

#Monte Carlo#

NMOS_AVT:12.4mV $ This values will be divided by sqrt(2) by the program

NMOS_ABETA:7.3% $ ’m’ parameter is taken into account

PMOS_AVT:10.9mV $

PMOS_ABETA:3.7% $

SMALL_LENGTH:0.0um $ Small transistors if l<= SMALL_LENGTH

SMALL_NMOS_AVT:20mV $ Small transistors parameters

SMALL_NMOS_ABETA:10% $

SMALL_PMOS_AVT:10mV $

SMALL_PMOS_ABETA:5% $

R_DELTA:0.333% $ Resistors matching at 1 sigma between two resistors

L_DELTA:0.333% $ Inductors matching at 1 sigma between two inductors

C_DELTA:0.333% $ Capacitors matching at 1 sigma between two capacitors

#

Parameters describing device parameter mismatch following the Pelgrom’s MOS tran-
sistor models are defined in here. Only the numerical values between the colon and the
unit can be changed. This is also possible for circuit passives: resistors, inductors and
capacitors.

The monte tool can be used integrated in the ASCO optimization flow or as a standalone
program. In both cases, a file named <inputfile>.mc having the Monte Carlo parameters
is created, which can then be used as the input simulation netlist.

Command Line

./monte -<eldo|hspice> <inputfile>.* <configfile>

7.4 postp

Post Processing

#

CHAPTER 7. TOOLS AND MODULES 64

Sometimes it is necessary to further manipulate a given value to obtain the final mea-
surement. Some situations where this functionality is useful is:

• Take a voltage and divide by a resistance value, or, simply because the SPICE ex-
traction command do not allow further arithmetic.

• The other possibility is to parse information from the netlist that is not possible to
obtain using the SPICE extract command.

• Or when it is necessary to extract/measure data at a given position in the simulation
output file. Data that is readily available in the SPICE output file be default.

To this end, the flexible post-processing language implemented allows to parse data
existing in the output file and manipulate it to obtain values that are otherwise not possible.
The general syntax is implemented in the MEASURE VAR command where the values are
in a colon separated list. The maximum number of measurements, i.e., the number of
MEASURE VAR lines is only limited by the memory available. The value is hardcoded in the
C code and can be changed as desired. Each one of the five parameters that can be used
are now described:

• MEASURE VAR

The name to give to the measurement (arbitrary).

• SEARCH FOR

The string that is to be found. Depending on the measurement type, it must be an
exact match.

• S COL

The beginning column position where the search string specified in SEARCH FOR must
exist to obtain a valid result.

• P LINE

The number of lines (below the line where exists a string match) to read before
extracting the measurement.

• P COL

The number of columns range within which the data is to be measured.

• MATH

Enters in math mode and thus enables manipulation of data already measured.

Four simple type variations have been implemented, being each one of them better
tailored to a given application with the goal to minimize user work.

CHAPTER 7. TOOLS AND MODULES 65

1. General purpose variable extraction: is a generic method to obtain a value, being as
such the one that requires more input parameters. It can extract any number or text
in any point of the file based on a set of keyword values. For example

MEASURE_VAR:UGF: SEARCH_FOR:’ UGF =’: S_COL:01: P_LINE:00: P_COL:09:18

will look for the ’ UGF =’ (without the quotation marks but including the spaces),
starting at position 1, the first character of the line, and print what is in the current
line between columns 9 and 18. As such, 7.6280E-04 will be read to variable UGF if
the following line exist in the text file to be processed:

UGF = 7.6280E+04

As an example, the same measurement can be performed by using instead, each one
of the following examples

MEASURE_VAR:UGF: SEARCH_FOR:’UGF =’: S_COL:02: P_LINE:00: P_COL:09:18

MEASURE_VAR:UGF: SEARCH_FOR:’ UGF = ’: S_COL:01: P_LINE:0: P_COL:8:18

MEASURE_VAR:UGF: SEARCH_FOR:’UGF = ’: S_COL:02: P_LINE:0: P_COL:9:18

MEASURE_VAR:UGF: SEARCH_FOR:’UGF = ’: S_COL:02: P_LINE:0: P_COL:8:18

MEASURE_VAR:UGF: SEARCH_FOR:’GF = ’: S_COL:03: P_LINE:00: P_COL:09:18

2. Fast read: upon finding on a given line a user defined string, the data that follows is
read. The data of interest is assumed to be within the character(s) space(s). Only
parameter SEARCH FOR can exist for syntax correctness. An exact match throughout
the file must be enforced which otherwise would case incorrect data extraction. As
an example, each one the following command line is equivalent to the command lines
in the general purpose variable extraction.

MEASURE_VAR:UGF: SEARCH_FOR:’ UGF =’

MEASURE_VAR:UGF: SEARCH_FOR:’UGF =’

MEASURE_VAR:UGF: SEARCH_FOR:’ UGF = ’

3. MOS transistor variable extraction: given a transistor name and a list of parameters
(id, vgs, vth...), their value is measured. Parameters S COL and P COL cannot exist,
only P LINE). For flexibility, text and line numbers can be used for variables. If
necessary +,-,*,/ can be used as function.

MEASURE_VAR:m00: SEARCH_FOR:’M00’: P_LINE:vth: vgs: id

MEASURE_VAR:m00: SEARCH_FOR:’M00’: P_LINE: 9: 6: 3

MEASURE_VAR:m00: SEARCH_FOR:’M00’: P_LINE:vgs: vth: vds:

MEASURE_VAR:m00: SEARCH_FOR:’M00’: P_LINE:vgs :vgs-vth: vds-vdsat

CHAPTER 7. TOOLS AND MODULES 66

4. Mathematical mode: implements a simplified RPN calculator. It can be used to
do arithmetic manipulation on already measured values. Possible arithmetic func-
tions are: +, -, *, /, ˆ, abs, log10 and sqrt. The syntax is compatible with Oc-
tave/Matlab R© format with the exception of ’ˆ’ which is the square function. MATH
is the only parameter allowed. To access data already in memory the character &

must be used when referring to a variable. For example, upon reading some data

MEASURE_VAR: a: SEARCH_FOR:’M00’: P_LINE:vgs

MEASURE_VAR: b: SEARCH_FOR:’M10’: P_LINE:vth

operations on the previous values are possible as described:

MEASURE_VAR:20*log(a/b): MATH:&a: &b: /: log10: 20: *

MEASURE_VAR:a+b : MATH:&a: &b: +

MEASURE_VAR:abs(a) : MATH:&a: abs

MEASURE_VAR:a^2 : MATH:&a: ^

The postp tool can be used integrated in the ASCO optimization flow or as a standalone
program. In this case, up to three files: nosat.txt, summary.txt and <inputfile>.?jr

can be created. The first has a report of the transistors that are not simultaneously in
strong inversion (VGS <VTH+margin) and saturation (VDS <VDsat+margin); a synopsis of
the measurements is available in the summary.txt; in the last file, the output simulation
file is updated with the operating state of the CMOS transistors. The standalone program,
also accepts a few other parameters that can be added to the correct category.

Post Processing

CREATE_LJR:yes

PRECISION:3

VOVD:150mV

VOFF:100mV

VDST:100mV

SKIP_NOSAT=0:mi1*; 0:mi2/i7; 0:mi3*; 0:mi4/i23

SKIP_NOSAT=0:mi0/i14

#

Each one of the reserved words above can be used to fine-tune the comments and
operating point of the electric simulation output file. A description follows:

• CREATE LJR

Possibilities are yes or no. Useful when it is only necessary to extract the measure-
ments, using the MEASURE VAR command.

CHAPTER 7. TOOLS AND MODULES 67

• PRECISION

Numeric precision of the results printed to summary.txt. Not yet implemented.

• VOVD

Overdrive voltage margin: if VGS <VTH+VOVD, the transistor is in the weak inversion
region.

• VOFF

Off voltage margin: if VGS <VTH-VOFF the transistor if in the off region.

• VDST

Saturation voltage margin: if VDS <VDsat+VDST the transistor is in the linear region.

• SKIP NOSAT

Skips from the nosat.txt file, all transistors in the semicolon separated list, or all
those with the given prefix if the asterisk (*) exists. More than one line can be used.

Command Line

./postp -<eldo|hspice|ltspice|spectre> <inputfile>.* <configfile>

7.5 RF module

Unless there is an accurate and scalable model of passives, the edge is on table lookup
form. This is in spite of their lack of portability and discontinuity. For devices such as
capacitors, pads, interconnections and transistors, the parasitics dependent on the layout
implementation and can, with limited complexity, be manually extracted by the designer.
Coil parasitics, on the other hand, need more attention and must be analyzed by an exter-
nal tool such as FastHenry or ASITIC. Then tables are generated and typically includes
about 10 values around an anticipated value for the target application. Since the tables
are generated only once for each technology the computational time is less important.
Measured results and manufacturer data sheets can also be used if available. Other values
for the devices are then linearly interpolated. Continuity and portability across distinct
electric simulators is created by the RF module, an extension to ASCO. The simulation
overhead is unnoticeable owing to the fact that all the necessary data is read to memory
in the beginning, and taken from there during the optimization loop.

The file format of rfmodule.cfg is composed by groups of subcircuit definition and
variable sets of tabled data to describe either different devices, different maximum operating
current or different layout information.

* This is the RFModule technology file describing circuit parasitics

*for a given process (CMOS, Bipolar, etc)

CHAPTER 7. TOOLS AND MODULES 68

Possible devices: resistor, capacitor and inductor.

#CSMD#

Device:capacitor

Terminal:IN OUT

CSMD IN 1 C

RSMD 1 2 R

LSMD 2 OUT L

#

At this momment, the first device in each line

must be R for a resistor, C for a capacitor and

L for an inductor. Furthermore, the values in the

first column must be in ascending order, otherwise...

#1p5p#

C=1p R=250m L=1n

C=2p R=250m L=1n

C=4p R=250m L=1n

C=5p R=260m L=1.1n

#

#5p7p#

C=5p R=260m L=1.1n

C=7p R=300m L=1.5n

#

#7p9p#

C=7p R=300m L=1.5n

C=9p R=320m L=1.6n

#

The above example describe the device #CSMD# as being a capacitor with IN OUT as
the two nodes of the subcircuit. The next three lines describe the circuit components.
After the subcircuit definition, the tabled values for each one of the devices is given. In the
example, keys #1p5p#, #5p7p# and #7p9p# are different groups of characterization data.
Arbitrary key names can be used, as long as it matches the symbol in the circuit input
netlist file exactly.

The first line in the subcircuit definition is the device having parasitics, while the first
column is always the device value with the following columns representing the parasitics.

To not interfere with the normal electric simulator flow, devices having parasitics have
this instruction after the in-line comment, which is specific for each simulator. As an
example, in the following SPICE input netlist for the case of Eldo

TM
, it must be placed

after the ! character.

CHAPTER 7. TOOLS AND MODULES 69

C0 1 2 3p

C1 1 2 3p !

C2 1 2 3p ! #CSMD_1p5p#

C3 1 2 #C0#

C4 1 2 #C0# !

C5 1 2 #C0# ! #CSMD_1p5p#

C6 1 2 #C0# ! #CFLUX_1p5p#

xC7 1 2 CSMD.SUB C=1 R=1

xC8 1 2 CSMD.SUB C=1 R=1 !

xC9 1 2 CSMD.SUB C=3p R=_RF_ L=_RF_! #1p5p#

xCA 1 2 CSMD.SUB C=#C0# R=_RF_ L=_RF_ ! #1p5p#

xCB 1 2 CFLUX.SUB C=#C0# R=_RF_ L=_RF_ ! #1p5p#

L0 1 2 #L0# ! #LSMD_1nH390nH#

xL1 1 2 LSMD.sub L=390n R2=_RF_ k=_RF_ C1=_RF_ R1=_RF_ ! #1nH390nH#

1. The two first devices in the first group do not have parasitics. Element C2 according
to command #CSMD 1p5p# is a subcircuit as defined in the file rfmodule.cfg with
the tag #CSMD#. The tabled date is to be taken from tag #1p5p#.

2. Only the two last devices of the second group have parasitics. One is of type #CSMD#

while the other is of type #CFLUX#. Both use the same subkey #1p5p#, but this refers
to different tables, as they are local to each one of the existing subcircuits.

3. Should a device be introduced in the subcircuit format, to represent for example a
measurement done on a black box, only the subkey #1p5p# can be defined. String
RF is used to represent the values that are to be obtained from the tabled data.

4. Two different subcircuits are defined, having both the same subkey. Again, despite
having the same name, they represent different sets of data. This is because each
table is local to each subcircuit.

5. In the last group, an example on how to use an inductor having parasitics is given,
for the two possible input formats.

Parameter dependent parasitic

In situations where the device value is the result of function evaluation of the tabled data,
it has to be clearly indicated. An example is given below for a resistance which has its
value equal to k

√
f , but where the input parameter is only k. In this situation, place the

necessary parameter after the in-line comment that is specific to the simulator to use.

CHAPTER 7. TOOLS AND MODULES 70

#LSMD#

Device:inductor

Terminal:IN OUT

LL 3 OUT L

RR2 IN 1 R2

RRV 1 3 VALUE={k*sqrt(FREQ)} ! k

CC1 1 2 C1

RR1 2 OUT R1

#

#1nH390nH#

L=1.6n R1=2 R2=0.001 C1=0.030p k=6.50E-06

L=10.0n R1=35 R2=0.010 C1=0.043p k=2.64E-05

L=21.9n R1=13 R2=0.050 C1=0.054p k=4.80E-05

L=51n R1=30 R2=0.010 C1=0.050p k=1.17E-04

L=100n R1=25 R2=0.010 C1=0.060p k=2.34E-04

L=390n R1=41 R2=1.052 C1=0.059p k=7.69E-04

#

Chapter 8

Adding new Simulators

ASCO is designed to be an encapsulation to a SPICE simulator with the purpose of pre-
senting only a numeric cost to the optimizer. Only a few lines of code are required to add
support to a new simulator but a few requirements must be satisfied:

1. The simulator program must read and write to text files.

2. Without the user intervention, it must be possible to start the simulator which must
exit upon finishing the simulation.

Although designed to be an encapsulation of a SPICE simulator, the netlist parser is
programmable which means it can read any ASCII file and look for a particular sequence of
characters. About 100∼150 new lines of code are required, taking in total less than 2 hours
for a new simulator to be added. Consequently, it is not specific to SPICE simulators.
However, a higher degree of work is necessary if the simulator flow differs from those
simulators that are already implemented.

8.1 Where to start editing

Start by editing the file asco.c around Step3 after the line where it reads spice=0;.
Commercial electronic circuit simulators have a lower numbering (in the variable spice)
since they were first supported. Eldo

TM
is number 1 because this was the first SPICE

simulator to be supported by ASCO. Then came HSPICE R© which has number 2, and so
on. Open source simulators start at number 50 to make possible to add more commercial
simulators in the future, while keeping some logic in the numbering.

Depending on the intended level of support by ASCO, more or less code and files will
have to edited. Basically, all switch(spice) code sections will have to be adapted to the
new simulator. If it bares resemblance to another already supported, just adding a case

will be enough. Otherwise, the difficulty really depends on how well support for the new
simulator is desired.

71

CHAPTER 8. ADDING NEW SIMULATORS 72

8.2 Where to continue editing

Once a new simulator has been added to the file asco.c, next steps simply require following
the code flow and adapting the code in the switch(spice) code sections. No two simulators
are alike but sometimes some things are done exactly the same way. At this moment,
ASCO already covers a reasonable number of different simulators. As such, most of the
switch(spice) code sections are already present. Should this not be the case, a new one
must be started.

Another option is to compile the code, run ASCO and read the file and section were
the programs exits. Correct the code, compile and execute ASCO again and wait until all
things run well. Certainly, not the best way.

Chapter 9

Adding new Optimizers

First you need to find the source code of a free algorithm should you not want to invent
one. Once this happens, edit the file asco.c around the line where it reads

DE(argc, argv); /*Rainer Storn and Ken Price Differential Evolution (DE)*/

Within the optimization algorithm code, replace where appropriate, every call to the
function evaluation by the new evaluation function

evaluate(int D, double x[], char *filename); /* obj. funct. */

Above, D is number of parameters of the cost function, x contains the parameters
proposed by the optimizer routine, and finally, filename is the SPICE file containing the
netlist to optimize.

Edit the Makefile to include the new source file. Then, simply compile the code with
make. The new optimization algorithm is then ready to be used by ASCO.

73

Chapter 10

Development Roadmap

This is still a project in its infancy with the objective of having a modular implementation.
This is the reason why changes in the goals and architecture are quite possible. There are
however a few things that at this moment look certain:

1. Merge the input/output format of the various tools that make up ASCO, to have
an unified script like language. Furthermore, make input and output file names
programmable.

2. Include support for logarithmic search space for the existing variables.

3. Add hybrid optimization algorithm which couples global optimization for the first
steps followed by a local optimization. This can be for example Differential Evolution
in conjunction with Hooke-Jeeves or Levenberg-Marquardt algorithm.

4. Support other common SPICE/electric simulators.

5. Include the possibility to define which tasks and the order they are to be executed
upon an event happening, making thus possible to change to local optimization after
the cost has decreased below a user-defined value; start Monte Carlo analysis at given
time; re-run the simulator with a modified netlist specifying different analysis; i.e., a
user defined optimization flow.

6. Code the RF module, needed for a fast, accurate modeling and optimization of circuit
with passives having parasitics.

7. Implement support for multiprocessor calculations on various architectures. This is
simplified by using the work already done by the MPICH project.

8. Having a considerable amount of simulation results, it would be useful to take the
output from the simulator already available in the file <hostname>.log and automat-
ically generate compact symbolic models or some kind of regression representation.
Your contribution in this item is welcome.

74

http://www-unix.mcs.anl.gov/mpi/mpich/

CHAPTER 10. DEVELOPMENT ROADMAP 75

9. Graphical analysis of the simulation output log file to ease in the discovery of a
suitable design. An easy approach would be to use octave and gnuplot. A more
elaborated one uses its own GUI. Again, your contribution in this item is welcome.

10.1 How You Can Help

Your involvement in the ASCO development can be done in different non programmer
ways. Not restricted to:

• Proofreading this document: which increases readability of the text and clarifies
something that is badly explained, out-of-date or totally wrong.

• Expanding this document: with another section, text reorganization or just submit-
ting a new tutorial. At the end, good documentation is important to clarify doubts
and increase productivity.

• Bug reporting: See Chapter 11 for more information.

• New ideas: You can steer the development by showing where you think it will be
valuable to invest time. Or better, what is missing that without question will make
ASCO more user-friendly.

Obviously, you can also contribute new code, either adding new functionalities or cor-
recting implementation errors.

Chapter 11

Submitting a Bug

Bug reporting is the simplest way you can contribute to the development of ASCO. This is
the reason why this tool is released with a GPL license. Your help is always appreciated,
because you are improving the quality of a tool that has the possibility to benefit all of us.

Simply saying that a bug exist does not help much. Your results have to be adequately
transmitted as well. Also, please understand that we live in a busy world. Your contri-
bution is not forgotten if it takes more time than what you find reasonable. Furthermore,
please understand that you might be asked further clarification. Besides this, follow all
instructions below closely:

1. Update to the most recent version of ASCO.

2. Try to reproduce the bug with a minimum set of files.

3. Remove the files that you cannot distribute, namely the transistor model files.

4. Send to the developer(s) the complete directory tree in tar.gz format with a descrip-
tion of your problem in as much detail as possible.

A useful text on how to ask questions is available in guide How To Ask Questions The
Smart Way by Eric S. Raymond.

76

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html

Chapter 12

FAQ

None yet...

77

Chapter 13

Acknowledgments

Some functions used in the ASCO tool were originally written in 1999 and have been
maintained since then by the author. Nevertheless, the design flow of ASCO is inspired
in the work of [Fra03]. The RF module, of which I’m co-author, is paramount to have
accurate high-frequency simulations in the presence of board and passive parasitics is
already included in ASCO. In conclusion, the goal of ASCO is to extend the well thought
ideas presented in [Fra03], with more functionalities in conjunction with the already existing
and more flexible netlist parser, Alter re-runs, Monte Carlo, support for multiprocessor
calculations and load balancing.

The idea of creating the ASCO project came out of a discussion with S. Xavier-de-
Souza and the concepts around optimization algorithms and its applications. The result
of which being, that although ASCO is intended to interact with zero effort with a SPICE
simulator, only a handful lines of code are necessary to add support to a completely new
simulator, as long as the simulator reads from text files, writes its output in ASCII and it
can be launched from the command line.

The Internet is home to a huge amount of information it is not as nicely presented as
in Wikipedia. No verbatim copy is done but some ideas where developed after reading its
pages.

78

http://www.wikipedia.org/

Bibliography

[Fra03] K. Francken, A Framework for Analyzing and Synthesizing High-Level and
Circuit-Level Analog Blocks. PhD thesis, K. U. Leuven, Belgium, September
2003.

[Ram05] J. Ramos, CMOS Operational and RF Power Amplifiers for Mobile Communi-
cations. PhD thesis, K. U. Leuven, Belgium, March 2005.

[SP95] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces”, Technical report,
Technical Report TR-95-012, ICSI, March 1995.

[Sto96] R. Storn, “On the Usage of Differential Evolution for Function Optimization”,
In NAFIPS, pages 519–523, 1996.

79

http://hdl.handle.net/1979/99
http://hdl.handle.net/1979/99
http://www.icsi.berkeley.edu/~storn/litera.html
http://www.icsi.berkeley.edu/~storn/litera.html
http://www.icsi.berkeley.edu/~storn/litera.html
http://www.icsi.berkeley.edu/~storn/litera.html
http://www.icsi.berkeley.edu/~storn/litera.html

	Preface
	Tool Fitness
	Scope and Audience
	Document Conventions
	Trademarks

	Quick Start Guide
	0 seconds: Compiling
	20 seconds: Running ASCO
	140 seconds: Interpreting ASCO Results
	File asco.log
	File <hostname>.log

	More Information

	Introduction
	Features and Applications

	Installation and Operation
	Installing ASCO
	Building with Autotools
	Building in win32
	Text file format

	Compile time options
	Optimization algorithms
	Work distribution method
	Spectre® BSIM selection

	Using ASCO
	Encapsulation to the SPICE Simulator
	The Cost Function
	Stop Criteria

	Input and Output Files
	SPICE input netlist
	Configuration File
	Optimization Flow Options
	Differential Evolution Options
	Alter Options
	Monte Carlo Options
	Parameter Options
	Measurement Options
	Post Processing Options

	Extract Commands
	Output Files

	Invoking ASCO
	The usefulness of asco-test
	Runtime Messages

	Invoking ASCO with multiprocessor support
	MPICH configure options

	Efficient Usage
	Accuracy
	Convergence Speed
	Number of Optimization Variables and Search Space
	Objectives and Constraints
	Evaluating Optimization Results

	ASCO Tutorials
	Getting Started
	Eldo™ Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Summary
	Full Netlist
	Configuration File
	Command Line
	Optimization Results Analysis

	Tutorial #2 – Three stage operational amplifier
	Summary
	Full Netlist
	Configuration File
	Command Line
	Optimization Results Analysis

	Tutorial #3 – Class-E power amplifier
	Summary
	Full Netlist
	Configuration File
	Command Line
	Optimization Results Analysis

	Tutorial #4 – Chebyshev band pass filter
	Summary
	Full Netlist
	Configuration File
	Command Line
	Optimization Results Analysis

	HSPICE® Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Command Line

	Tutorial #2 – Three stage operational amplifier
	Command Line

	Tutorial #3 – Class-E power amplifier
	Command Line

	Tutorial #4 – Chebyshev band pass filter
	Command Line

	LTspice™ Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Command Line

	Tutorial #2 – Three stage operational amplifier
	Command Line

	Tutorial #3 – Class-E power amplifier
	Command Line

	Tutorial #4 – Chebyshev band pass filter
	Command Line

	Spectre® Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Command Line

	Tutorial #2 – Three stage operational amplifier
	Command Line

	Tutorial #3 – Class-E power amplifier
	Command Line

	Tutorial #4 – Chebyshev band pass filter

	Qucs Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Tutorial #2 – Three stage operational amplifier
	Tutorial #3 – Class-E power amplifier
	Tutorial #4 – Chebyshev band pass filter
	Command Line

	ngspice Examples
	Latest tested version
	Tutorial #1 – Digital inverter
	Command Line

	Tutorial #2 – Three stage operational amplifier
	Command Line

	Tutorial #3 – Class-E power amplifier
	Command Line

	Tutorial #4 – Chebyshev band pass filter

	General Purpose Simulator
	Summary
	Full Netlist
	Configuration File
	Command Line
	Optimization Results Analysis

	Tools and Modules
	alter
	Spectre®
	Command Line

	log
	Command Line

	monte
	Command Line

	postp
	Command Line

	RF module
	Parameter dependent parasitic

	Adding new Simulators
	Where to start editing
	Where to continue editing

	Adding new Optimizers
	Development Roadmap
	How You Can Help

	Submitting a Bug
	FAQ
	Acknowledgments

