
1

BAli-Phy User's Guide v2.1.1
Benjamin Redelings

Table of Contents
1. Pre-requisites ... 2
1.1. Linux and UNIX .. 2
1.2. Windows ... 2
1.3. Mac OS X ... 2

2. Compiling BAli-Phy .. 3
2.1. Software requirements ... 3
2.2. Quick Start .. 3
2.3. Options to configure ... 4
2.4. Generating the configure script and Makefiles (git only) ... 5
2.5. Installing when compiling from source ... 5

3. Installation ... 5
3.1. Recommended Additional Software ... 5
3.2. Installing precompiled executables ... 5
3.3. Setting the PATH ... 6

4. Running the program ... 7
4.1. Quick Start .. 7
4.2. Command line options ... 7
4.3. Multiple genes or data partitions ... 7
4.4. Option files (Scripts) ... 8
4.5. Examples .. 9
4.6. Command-line options: An overview ... 9

5. Input ... 11
5.1. Sequence formats .. 11
5.2. Is my data set too large? .. 11

6. Output ... 12
6.1. Output directory .. 12
6.2. Output files .. 12
6.3. Summarizing the output ... 13
6.4. Summarizing the output - scripted .. 15

7. Models .. 16
7.1. Substitution models ... 16
7.2. Insertion/deletion models .. 20
7.3. Genetic Codes .. 21
7.4. Alignment constraints .. 21

8. Convergence and Mixing: Is it done yet? ... 22
8.1. Definition of Convergence .. 22
8.2. Definition of Mixing ... 22
8.3. Diagnostics and multiple independent chains .. 22
8.4. Diagnostics: Variation in split frequencies across runs ... 22
8.5. Diagnostics: Potential Scale Reduction Factors (PSRF) .. 23
8.6. Diagnostics: Effective sample sizes (ESS) ... 23
8.7. Diagnostics: Stabilization ... 24

9. Tuning the Markov Chain ... 25
9.1. Parameters ... 25

10. Auxiliary tools .. 25

BAli-Phy User's Guide v2.1.1

2

10.1. alignment-find ... 25
10.2. alignment-draw ... 25
10.3. alignment-thin ... 25
10.4. alignment-chop-internal .. 26
10.5. alignment-info ... 26
10.6. alignment-indices .. 26
10.7. alignment-cat .. 26
10.8. trees-consensus ... 26
10.9. trees-bootstrap ... 26
10.10. trees-to-SRQ ... 26

11. Frequently Asked Questions (FAQ) .. 27
11.1. Input files .. 27
11.2. Running bali-phy. ... 27
11.3. Run-time error messages ... 28
11.4. Stopping bali-phy. ... 28
11.5. Interpreting the results. ... 29
11.6. How do I... ... 29

1. Pre-requisites
BAli-Phy is a Unix command line program that is developed primarily on Linux. BAli-Phy also runs on Windows and
Mac OS X, but it is not a GUI program and so you must run it in a terminal.

You may need a 64-bit executable and a 64-bit OS version of your OS to be able to analyze large data sets that consume
more that 2Gb of RAM.

We typically run BAli-Phy on Core2 processors with 8Gb of RAM.

Access to a computing cluster is not necessary, but can speed up the analysis. This is because a cluster allows you to run
several independent MCMC chains in parallel and pool the resulting samples. This approach to parallel computation
is sometimes more efficient than MCMCMC-based parallelism involving heated chains.

1.1. Linux and UNIX

On Linux, you should be able to install and run BAli-Phy without any modification. For other UNIX operating systems,
you may need to compile BAli-Phy before running it.

1.2. Windows

On Windows, it is highly recommended that you first install Cygwin [http://www.cygwin.com]. Cygwin is a Unix/
Linux command-line environment for Windows. You can access the Cygwin command line (not the normal windows
command line) through the Start menu.

Installing Cygwin should not be strictly necessary to run the bali-phy program, but it may be necessary for running
the scripts that analyze the output. Furthermore, we recommend installing the binary executables from the Cygwin
prompt, in order to make the files easily accessible from inside Cygwin.

1.3. Mac OS X

We recommend Mac OS X version 10.4 (or higher).

http://www.cygwin.com
http://www.cygwin.com

BAli-Phy User's Guide v2.1.1

3

2. Compiling BAli-Phy
Most users will not need to compile BAli-Phy and can skip this section, because they can use the precompiled
executables from the official website for Linux, Mac, and Windows. However, compiling BAli-Phy is intended to be
a relatively painless process.

If you are compiling "live" source code that you checked out using GIT (and you probably aren't) then you need to
follow the directions in Section 2.4, “Generating the configure script and Makefiles (git only)” before you start
compiling.

2.1. Software requirements

The following software packages are required for compiling BAli-Phy.

• The GNU C++ Compiler (GCC [http://gcc.gnu.org]) version 3.4 (or higher).

Mac OS X issues:

Apple's XCode software works, but only if you use OS X 10.4 (Tiger) or higher, and install XCode 2.2
or higher.

• The GNU Scientific Library (GSL [http://www.gnu.org/software/gsl/]) version 1.8 (or higher).

• The Cairo graphics library (Cairo [http://www.cairographics.org/]) version 1.6 (or higher). (Cairo is not strictly
necessary, but is a requirement for building the tool draw-tree that is used to draw consensus trees.)

See also Section 3.1, “Recommended Additional Software”.

2.2. Quick Start

In order to compile the program on UNIX, first extract the source code archive, using a graphical archive manager,
or the command-line tool tar:

% tar -zxf bali-phy-2.1.0.tgz

Then create a separate build directory, enter it, and run the configure command:

% mkdir build
% cd build
% ../bali-phy-2.1.0/configure

If this command succeeds, then you can simply type

% make
% make install

to build and install bali-phy and its associated tools and install it in /usr/local/. (This requires the GNU version
of make.) To customize the compilation and installation process, read the following sections on supplying arguments
to the configure script.

http://gcc.gnu.org
http://gcc.gnu.org
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.cairographics.org/
http://www.cairographics.org/

BAli-Phy User's Guide v2.1.1

4

2.3. Options to configure

2.3.1. Installing to a location besides /usr/local/

The configure script chooses to install bali-phy in the directory /usr/local/ by default. You can install executables
to another directory dir by passing --prefix=dir. For example, in order to install BAli-Phy under ~/local,
you can enter:

% ../bali-phy-2.1.0/configure --prefix=$HOME/local

This is recommended if you do not have permission to install to /usr/local/.

2.3.2. Specifying where to find libraries and header files (e.g. GSL)

You can instruct the compiler to look for include files in directory dir by passing --with-extra-
includes=dir to the configure script.

You can instruct the compiler to look for libraries files in directory dir by passing --with-extra-libs=dir
to the configure script.

For example, if your system has GSL installed in /usr/local/, then you might need to add "--with-extra-
includes=/usr/local/include --with-extra-libs=/usr/local/lib" to the configure script
arguments so that the compiler can find the GSL include files and libraries.

2.3.3. Selecting a non-default C++ compiler

The default C++ compiler is g++. On some systems, g++ invokes GCC version 3.3, and the correct compiler is called
something else, such as g++-4.2. To use g++-4.2 as the C++ compiler when compiling BAli-Phy, you would set the
CXX environment variable as follows:

% ../bali-phy-2.1.0/configure CXX=g++-4.2

2.3.4. Optimizing for a specific architecture

You can specify optimizing for a specific brand of CPU, by specifying the CHIP variable to configure, as follows:

% ../bali-phy-2.1.0/configure CHIP=cpu

You can set CHIP to any of pentium3, pentium4, nocona, core2, G3, G4, or G5. (On recent versions of GCC,
you can set CHIP=native to auto-detect the type of CPU you have.) This may produce faster executables, but at the
cost of producing executables that may not run on a different kind of chip.

2.3.5. Statically linked executables

Call configure with the flag --enable-static to build static executables. Static executables will be able to run
on other computers with the with the same type of CPU but slightly different versions of the operating system.

2.3.6. Example

All these options to configure can be combined, as follows:

% ../bali-phy-2.1.0/configure --prefix=$HOME/local --enable-static CXX=g++-4.5 CHIP=pentium4

This example uses g++-4.5 to build a pentium4-optimized version of bali-phy with static linkage.

BAli-Phy User's Guide v2.1.1

5

2.4. Generating the configure script and Makefiles (git
only)
Skip this step unless you are compiling a snapshot of the source code that you checked out using GIT. If you
downloaded an official tar.gz archive of the source from the website, then it already includes these files.

To generate these files, you need automake 1.8 (or higher) and autoconf 2.59 (or higher). Run these commands in the
top level directory of the repository that you checked out.

% autoheader
% aclocal -I m4
% automake -a
% autoconf

If your system has multiple versions of automake, then you may have to type e.g. automake-1.11 -a and
aclocal-1.11 instead in order to specify which version to use.

2.5. Installing when compiling from source
After compiling BAli-Phy, you can simply type make install. This will copy the compiled executables to the
installation directory (See Section 2.3.1, “Installing to a location besides /usr/local/”).

3. Installation

3.1. Recommended Additional Software
We recommend that you install some additional software in order to graphically view the simple text files that BALi-
Phy outputs:

• Cygwin (on windows) - to give you a UNIX prompt (Tracer [http://www.cygwin.com])

• Tracer - to analyze MCMC diagnostics (Tracer [http://tree.bio.ed.ac.uk/software/tracer/])

• PERL - to script an analysis of BALi-Phy output files

• The plotting program gnuplot (gnuplot [http://www.gnuplot.info/]) - to script an analysis of BALi-Phy output files

• Mozilla or Mozilla/Firefox - to view the math in the XHTML documentation. (Firefox [http://www.mozilla.org/
products/firefox/])

On Mac OS X, PERL should already be installed, and you should be able to install gnuplot using MacPorts [http://
www.macports.org]. On Windows, you can install PERL and gnuplot using the Cygwin [http://www.cygwin.com]
installer. On Linux, simply use your distribution's package manager.

We additionally recommend the program seaview [http://pbil.univ-lyon1.fr/software/seaview.html] to graphically
view sequence alignments, and the program FigTree [http://tree.bio.ed.ac.uk/software/figtree/] to graphically view
phylogenies.

3.2. Installing precompiled executables
You can extract the compressed archive on the Unix (or Cygwin) command line using the tar command:

http://www.cygwin.com
http://www.cygwin.com
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
http://www.gnuplot.info/
http://www.gnuplot.info/
http://www.mozilla.org/products/firefox/
http://www.mozilla.org/products/firefox/
http://www.mozilla.org/products/firefox/
http://www.macports.org
http://www.macports.org
http://www.macports.org
http://www.cygwin.com
http://www.cygwin.com
http://pbil.univ-lyon1.fr/software/seaview.html
http://pbil.univ-lyon1.fr/software/seaview.html
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/

BAli-Phy User's Guide v2.1.1

6

% tar -zxf bali-phy-version.tgz

On Windows, we recommend that you first install Cygwin, and then extract the compressed archive from the Cygwin
prompt (e.g. instead of simply installing to Program Files/.) While it is not strictly necessary to run bali-phy
from inside Cygwin, this will make it easier to analyze the output files. Also, the manual assumes that you are using
a Unix-type console, like Cygwin.

From the Unix (or Cygwin) prompt, you might choose to extract the compressed archive in the directory /usr/
local if you have root access. If you do not have root access, you could make a directory ~/local in your home
directory and then extract the files there.

3.3. Setting the PATH

3.3.1. I have a path?

If you installed BAli-Phy to the directory /usr/local/, then you can run bali-phy by typing /usr/local/bin/
bali-phy. However, it would be much nicer to simply type bali-phy and let the computer find the executable
for you. This can be achieved by putting the directory that contains the bali-phy executables into your "path". The
"path" is a colon-separated list of directories that is searched to find program names that you type. It is stored in a
variable called PATH.

Setting your PATH is also a pre-requisite for running the bp-analyze.pl script to summarize your runs.

3.3.2. Examining your PATH

You can examine the current value of this variable by typing:

% echo $PATH

We will assume that you extracted the bali-phy archive in /usr/local and so you want to add /usr/local/bin
to your PATH. (If you installed to another directory, replace /usr/local/ with that directory.)

3.3.3. Adding BAli-Phy to your PATH

The commands for doing this depend on what "shell" you are using. Type echo $SHELL to find out. If your shell
is sh or bash then the command looks like this:

% PATH=/usr/local/bin:$PATH

If your shell is csh or tcsh, then the command looks like this:

% setenv PATH /usr/local/bin:$PATH

Note that these commands will only the window you are typing in, and will vanish when you reboot.

3.3.4. Making the change stick

To make this change survive reboots, you can copy the command into a configuration file using a text editor. To find the
right configuration file, look in your $HOME directory for .profile (for the Bourne shell sh), .bash_profile
(for BASH), or .login (for tcsh). You may have to create the file if it is not present.

If you do not know which directory is your home directory, you can find its full name by typing:

% echo $HOME

BAli-Phy User's Guide v2.1.1

7

4. Running the program
Here are some examples and explanations of how to run bali-phy. You can get an overview of command line options
(see Section 4.6, “Command-line options: An overview”) by running bali-phy --help.

We recommend running multiple chains in parallel for each command, because

1. You can combine the samples, leading to faster run times.

2. You can compare the runs to determine if the chains have converged.

4.1. Quick Start
The simplest way to run BAli-Phy is to type all the arguments on the command line:

% bali-phy sequence-file

Here sequence-file is a FastA or PHYLIP file containing the sequences you wish to analyze. The filename should
end in .fasta or .phy to indicate which format it is using.

In this simple example, bali-phy automatically detects whether sequence-file contains DNA, RNA, or Amino-
Acids and uses default values for several command line options. Thus, if sequence-file contains DNA, then this
is equivalent to the more verbose command line

% bali-phy sequence-file --alphabet DNA --smodel TN --imodel RS07 --iterations=100000

Here the substitution model is Tamura-Nei, the insertion/deletion model is RS07, and the number of iterations is
100,000. If sequence-file contains amino acids, then the defaults will be:

% bali-phy sequence-file --alphabet Amino-Acids --smodel LG --imodel RS07 --iterations=100000

4.2. Command line options
You can specify a more complex substitution model as follows (See Section 7.1, “Substitution models”):

% bali-phy sequence-file --smodel WAG+gamma+INV

You may specify an indel model of none to fix the alignment to its initial value, and ignore information in shared
insertions or deletions.

% bali-phy sequence-file --imodel none

If you desire to use a codon model, you must specify the alphabet:

% bali-phy sequence-file --smodel M0 --alphabet Codons

4.3. Multiple genes or data partitions
You may analyze multiple genes by putting each one it its own data partition:

% bali-phy sequence-file1 sequence-file2

You should put the data from the first gene in sequence-file1 and the second gene in sequence-file2.
In this scenario, both genes share the same tree, but their alignments vary independently. Furthermore, the branch

BAli-Phy User's Guide v2.1.1

8

lengths for each gene are scaled by an independent factor. By default, each partition will have its own default alphabet,
substitution model, insertion/deletion model, and tree length.

By default, each partition will recieve an independent copy of the model, and will not share parameter values:

% bali-phy sequence-file1 sequence-file2 --smodel TN --imodel RS07

However, you can select partition-specific values for 5 options: --smodel, --imodel, --alphabet, --same-
scale, and --align-constraint. For example, to specify different substitution models but the same alphabet:

% bali-phy sequence-file1 sequence-file2 --smodel 1:TN --smodel 2:GTR --alphabet 1,2:DNA

You can fix the alignment and ignore insertion/deletion information in one partition, while allowing the alignment to
vary and using insertion/deletion information in another partition:

% bali-phy sequence-file1 sequence-file2 --imodel 1:RS07 --imodel 2:none

You can also specify that two partitions share a single copy of a single substitution model or indel model. This reduces
the number of parameters and also pools information between the partitions:

% bali-phy sequence-file1 sequence-file2 --smodel 1,2:TN --imodel 1,2:RS07

By default each partition has a separate scale, but you can force groups of partitions to share a scale. The name of the
groups for the scale are not currently used, but may be used in later versions of the software:

% bali-phy sequence-file1 sequence-file2 --smodel 1:TN --smodel 2:GTR --same-scale 1,2:groupname

Finally, you may specify the option --traditional, or its short form -t. This is the same as --imodel none
and affects all partitions:

% bali-phy sequence-file1 sequence-file2 --smodel 1:TN --smodel 2:GTR -t

4.4. Option files (Scripts)
In addition to using the command line, you may also specify options in a file. Using an option file can be more
convenient if you are going to run the same analysis many times, or if the number of options is large. Furthermore,
the option file may contain comments and blank lines. Option files are a good to record what options you used in an
analysis, and why.

An option file is specified with the command line option --config file or -cfile. If values for an option are
given both on the command line and in an option file, then the command line value overrides the value in the option file.

4.4.1. Syntax

Option files use the same option names as the command line. However, the syntax is different: each option is given
on its own line using the syntax "option = value" instead of the syntax "--option value". If the option has
no value then it is given using the syntax "option = option".

4.4.2. Example

For example, consider the following option file:

#select a data set to analyze
align = examples/EF-Tu/5d.fasta

#select an substitution model

BAli-Phy User's Guide v2.1.1

9

smodel = log-normal+INV

#fix the alignment and do not model indels
traditional = traditional

The first option, align, is the name of the sequence file, which has no name on the command line. Lines that begin
with # are comments, and blank lines are ignored. The option --traditional uses the option name as the value,
because it does not take a value. Thus, this configuration file corresponds to the command line

%bali-phy examples/EF-Tu/5d.fasta --smodel log-normal+INV --traditional

4.4.3. The configuration file

The file ~/.bali-phy is a special option file called the configuration file. If it exists, it is always loaded. Options
given on the command line or an option file override values given in ~/.bali-phy.

4.5. Examples
Here are some examples which demonstrate how to run BAli-Phy. In order to run these examples, you must find
the examples/ directory which contains the example files. Typically, the examples/ directory will be found at
prefix/share/bali-phy/examples/ if you installed bali-phy in directory prefix.

Also note that bali-phy does not run until it is "finished", but continues to gather samples until the user determines
that enough samples have been gathered, and stops it. Thus, it is useful to continually examine the output files while
the program is running.

Example 1. No frills

Here we analyze the EF-Tu 5-taxon data set provided with the software.

 % bali-phy somewhere/examples/EF-Tu/5d.fasta

Example 2. Multiple-Rate Substitution Model

We now modify the previous example by changing the substitution model to allow log-normal-distributed rate variation
and invariant sites. The amount of rate variation and the fraction of invariant sites are estimated

 % bali-phy somewhere/examples/EF-Tu/5d.fasta --smodel log-normal+INV --randomize-alignment

Example 3. Fixed alignment

Here we use the 5S rRNA 5-taxon data set provided with the software. The alignment is fixed and the traditional
likelihood model is used, making indels non-informative. In addition, the transition kernel which samples nucleotide
frequencies is disabled, thus fixing the nucleotide frequencies to empirical values estimated from the input sequences.

 % bali-phy somewhere/examples/5S-rRNA/5d.fasta --smodel F=constant --traditional

4.6. Command-line options: An overview
You can get an up-to-date overview of these command line options by running bali-phy --help.

4.6.1. General options

-h, --help Show help message.

BAli-Phy User's Guide v2.1.1

10

-v, --version Show version information.

-c file, --config file Option file to read.

--show-only Analyze initial values and exit.

--seed seed Use the specified seed to initialize the random number generator.

--name string Specify the name for the analysis directory.

-t, --traditional Fix the alignment and don't model indels.

4.6.2. MCMC options

-i, --iterations
number=100000

Specify the number of iterations to run.

--pre-burnin
iterations=3

Iterations to refine initial tree.

--subsample factor=1 Specify a factor by which to subsample.

--enable move Enable a comma-separated list of transition kernels.

--disable move Disable a comma-separated list of transition kernels.

4.6.3. Parameter options

--randomize-alignment Randomly re-align sequences before use.

--tree file Specify file with initial tree.

--set parameter=value Specify initial value of parameter.

--fix parameter[=value] Mark parameter fixed, and optionally specify a value.

--unfix
parameter[=value]

Mark parameter not fixed, and optionally specify an initial value.

--frequencies
frequencies

Specify initial frequencies: 'uniform','nucleotides', or a comma-separated list of
frequencies.

4.6.4. Model options

--alphabet name Specify the alphabet: DNA, RNA, Amino-Acids, Amino-Acids+stop, Triplets,
Codons, or Codons + stop.

--smodel name Specify the substitution model.

--imodel name Specify the indel model.

--branch-prior name Exponential or Gamma.

--same-scale
specification

Which partitions have the same scale?

--align-constraint
filename

File with alignment constraints.

BAli-Phy User's Guide v2.1.1

11

5. Input

5.1. Sequence formats
BAli-Phy can read in sequences and alignments in both FastA and PHYLIP formats. Filenames for FastA files should
end in .fasta, .mpfa, .fna, .fas, .fsa, or .fa. Filenames for PHYLIP files should end in .phy. If one of
these extensions is not used, then BAli-Phy will attempt to guess which format is being used.

5.2. Is my data set too large?
Large data sets run more slowly than small data sets. We recommend a conservative starting point with few taxa and
short sequence lengths. You can then increase the size of your data set until a balance between speed and size is reached.

The number of samples that you need depends on whether you are primarily interested in obtaining a point estimate
or in obtaining detailed measures of confidence and uncertainty. For detailed measures of confidence and uncertainty
you should obtain a minimum of 10,000 samples after the Markov chain converges. For an estimate, you don't need
very many samples after convergence. (But you may need many samples to be sure that you've converged!)

Computing clusters can speed up MCMC analysis

Running bali-phy on a computing cluster is not necessary, but can speed up the analysis dramatically. This
is because a cluster allows you to run several independent MCMC chains in parallel and pool the resulting
samples.

This approach to parallel computation is sometimes more efficient than MCMCMC-based parallelism
involving heated chains. It is equivalent to running MCMCMC with no temperature difference between
chains, with the exception that it allows results from all chains to be used, instead of just results from the
single "cold" chain. Thus, if you run 10 independent chains in parallel, then you may gather samples 10 times
faster that a single chain.

5.2.1. Too many taxa?

BAli-Phy is quite CPU intensive, and so we recommend using 50 or fewer taxa in order to limit the time required
to accumulate enough MCMC samples. (Despite this recommendation, data sets with more than 100 taxa have
occasionally been known to converge.) We recommend initially pruning as many taxa as possible from your data set,
then adding some back if the MCMC is not too slow.

5.2.2. Sequences too long?

Aligning just a pair of sequences takes time and memory, where represents the sequence length. Therefore
sequences longer than (say) 1000 letters become increasingly impractical. However, you might try to see how long
you can make your sequences before you run out of memory, or the program becomes too slow.

For multi-gene analyses, two separate data partitions (i.e. genes) of 500 letters will be twice as fast to align as one data
partition of 1000 letters. So, it may be possible to analyze several genes as long as each gene individually is not too long.

You can speed up alignment for long genes by specifying alignment constraints (See Section 7.4, “Alignment
constraints”). Ideally, 10 evenly spaced constraints should reduce the cost of re-aligning a sequence by a factor of 10.

Also, note that you can sometimes speed up the analysis of protein sequences by coding them as amino acids or codons,
rather than nucleotides. This is because it decreases the sequence length.

BAli-Phy User's Guide v2.1.1

12

6. Output

6.1. Output directory
BAli-Phy creates a new directory to store its output files each time it is run. By default, the directory name is the name
of the sequence file, with a number added on the end to make it unique. BAli-Phy first checks if there is already a
directory called file-1/, and then moves on to file-2/, etc. until it finds an unused directory name.

You can specify a different name to use instead of the sequence-file name by using the --name option.

6.2. Output files
BAli-Phy writes the following output files inside the directory that it creates:

C1.out Iteration numbers, probabilities, success probabilities for transition kernels, etc..

C1.Pp.fastas Sampled alignments for partition p

C1.err Log file for hopefully irrelevant error messages.

C1.MAP Successive estimates of the MAP point.

C1.p Scalar parameters: indel and substitution parameters, etc.

C1.trees Tree samples: one sample per line, in Newick format.

For the last two files, each line in these files corresponds to one iteration.

6.2.1. Field names in C1.p

This section explains the meaning of the various field names in the file C1.p.

6.2.1.1. Computed parameter names

prior The log prior probability. This includes the probability of the alignment, since the alignment is not
observed.

prior_An The log of the probability of the alignment of the th partition, given the topology
, the branch lengths , and insertion-deletion process parameters . This log probability is the

probabilistic equivalent of a gap penalty on the alignment given the scoring parameters .

likelihood The log of the likelihood. Conditional on the alignment, this is determined entirely by the substitution
model, and ignores insertions and deletions. This is the probabilistic equivalent of the mismatch
penalty.

logp The log of the probability. The probability is the product of the prior and the likelihood.

|A| The total number of alignment columns across all partitions.

#indelsn The number of indel events in partition n, if we group adjacent indels that occur on the same branch.

#indels The total number of indel events across all partitions, if we group adjacent indels that occur on the
same branch.

|indelsn| The length of indel events in partition n, if we group adjacent indels that occur on the same branch.

BAli-Phy User's Guide v2.1.1

13

|indels| The total length of indel events across all partitions, if we group adjacent indels that occur on the
same branch.

#substsn The unweighted parsimony score for substitutions in partition n.

#substs The total unweighted parsimony score for substitutions across all partitions.

|T| For a single-partition analysis, the sum of branch lengths. For a multi-partition analysis, a weighted
average of this sum across partitions.

6.2.1.2. Model parameter names

The prefixes "Sn::" and "In::" will be dropped if not necessary to disambiguate parameters with the same name in
different sub-models.

mun The average number of substitutions per branch. The nth scale parameter ordinarily applies to the nth
partition, unless multiple partitions are forced to have the same branch lengths using --same-scale.

Sn::name Parameter name in the nth substitution model.

In::name Parameter name in the nth insertion/deletion model.

6.3. Summarizing the output
This section is primarily oriented to extracting estimates from output files. See Section 8, “Convergence and Mixing:
Is it done yet?” for methods of determine effective sample sizes, and for checking mixing and convergence.

6.3.1. Finding the consensus tree (C1.trees)

To compute the majority consensus tree, do the following. (The program FigTree [http://tree.bio.ed.ac.uk/software/
figtree/] allows you to view the resulting tree file graphically.)

% trees-consensus C1.trees > c50.PP.tree

You can (and should) pool results from different MCMC runs by adding multiple tree sample files on the command
line. The different MCMC runs should have the same input files and parameters.

% trees-consensus dir1/C1.trees dir2/C1.trees > c50.PP.tree

By default, the first 10% of tree samples are skipped as burn-in. You can specify the number of samples (e.g. 1000)
to skip by adding the options -s1000 or --skip=1000. You may also specify a percentage of all samples:

% trees-consensus -s20% C1.trees > c50.PP.tree

To discard some samples, keeping (say) every 10th sample, you may add the options -x10 or --sub-sample=10.
This can make the program a lot faster, at the possible expense of some loss in accuracy.

% trees-consensus -s20% -x10 C1.trees > c50.PP.tree

By default, splits are included in the consensus tree if they have a PP greater than 0.5. You can specify a more stringent
level (e.g. 0.66) by adding the option --consensus-PP=0.66 as follows:

% trees-consensus -s20% -x10 --consensus-PP=0.66 C1.trees > c66.PP.tree

You may also make the program write directly to the output file (e.g. c66.PP.tree) by using the more general
form --consensus-PP=0.66:c66.PP.tree. Leaving off the ":c66.PP.tree" part (as we did above) or
specifying ":-" sends the output to the standard output (e.g. the terminal, if not redirected).

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/

BAli-Phy User's Guide v2.1.1

14

% trees-consensus -s20% -x10 C1.trees --consensus-PP=0.66:c66.PP.tree

You can supply multiple levels and filenames separated by commas. This is faster than running the program multiple
times with different consensus levels.

% trees-consensus -s20% -x10 C1.trees --consensus-PP=0.5:c50.PP.tree,0.66:c66.PP.tree

Finally, you may use the option --consensus= instead of the option --consensus-PP= if you do not wish the
resulting tree to contain embedded posterior probabilities on branches, as well as branch lengths.

% trees-consensus -s20% -x10 C1.trees --consensus=0.5:c50.PP.tree,0.66:c66.PP.tree

Both the --consensus= and --consensus-PP= options may be given simultaneously.

See trees-consensus --help for a complete list of options.

6.3.2. Finding the M.A.P. topology (C1.trees)

To compute the maximum a posteriori tree topology do:

% trees-consensus --skip=burnin C1.trees --map-tree=MAP.tree

The MAP topology may be used instead of a consensus tree when a fully resolved (e.g. bifurcating) tree is required.
However, when the topology has many tips, each topology may be sampled only once, leading to low quality estimates
of the MAP topology.

The program FigTree [http://tree.bio.ed.ac.uk/software/figtree/] allows you to view the consensus tree graphically.

6.3.3. Checking topology convergence (C1.trees)

% trees-bootstrap dir1/C1.trees dir2/C1.trees

This command computes the effective sample size for the posterior probability of each split. It also computes the
Average Standard Deviation of Split Frequencies (ASDSF) between two or more independent runs.

See Section 8, “Convergence and Mixing: Is it done yet?” for more information.

6.3.4. Summarizing numerical parameters (C1.p)

This command gives a median and confidence interval, ESS, and a stabilization time:

% statreport C1.p > Report

This command compares multiple runs to give PSRF and joint ESS values as well:

% statreport C1.p C2.p > Report

The program Tracer [http://tree.bio.ed.ac.uk/software/tracer/] allows you to view the same summaries graphically.

See Section 8, “Convergence and Mixing: Is it done yet?” for more information.

6.3.5. Computing an alignment using Posterior Decoding
(C1.Pp.fastas)

% cut-range --skip=burn-in < C1.Pp.fastas | alignment-max > Pp-max.fasta

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/

BAli-Phy User's Guide v2.1.1

15

You can use the program seaview [http://pbil.univ-lyon1.fr/software/seaview.html] to view the alignment graphically.

6.3.6. Find the alignment from the maximum a posterior (MAP) point
(C1.MAP)

% alignment-find < C1.MAP > P1-MAP.fasta

6.3.7. Create an Au (Alignment Uncertainty) plot (C1.Pp.fastas)

To annotate a specific alignment alignment.fasta, choose a fully resolved tree estimate tree:

% cut-range --skip=burn-in < C1.Pp.fastas | alignment-gild alignment.fasta tree > alignment-AU.prob
% alignment-draw alignment.fasta --AU alignment-AU.prob > alignment-AU.html

The majority consensus tree is usually not fully resolved, so we recommend using the MAP topology instead.

6.4. Summarizing the output - scripted
Instead of manually running each of the steps to analyze the output files, you may instead run the PERL script bp-
analyze.pl to execute these commands. You may run it inside the output directory, like this:

% bp-analyze.pl --burnin=iterations

The script will create an HTML page Results/index.html that summarizes the posterior distribution.

You may also run it with one or more output directories as arguments, like this:

% bp-analyze.pl --burnin=iterations directory-1/ directory-2/

In this case, output from multiple runs will be used to assess convergence and mixing, as well as to increase the
precision of the estimates.

6.4.1. Meaning of generated files

The Results/ directory will contain the following useful files:

Report A summary of numerical parameters: credible intervals and mixing.

consensus A summary of supported splits (clades).

c-levels.plot The number of splits (clades) supported at each LOD level.

c50.tree The majority consensus topology + branch lengths (Newick format)

c50.PP.tree The majority consensus topology + branch lengths + Posterior Probabilities (Newick format)

MAP.tree An estimate of the MAP topology + branch lengths (Newick format)

The following files will be generated to summarize alignment uncertainty, unless the analysis uses a fixed alignment.

MAP.fasta An estimate of the MAP alignment.

Pp-max.fasta An estimate of the alignment for partition p using maximum posterior decoding.

MAP-AU.html An AU plot of the MAP alignment (AA/DNA color-cheme).

http://pbil.univ-lyon1.fr/software/seaview.html
http://pbil.univ-lyon1.fr/software/seaview.html

BAli-Phy User's Guide v2.1.1

16

Pp-max-AU.html An AU plot of the maximum posterior decoding alignment for partition p (AA/DNA color-
cheme).

The following files describe convergence and mixing:

partitions.bs Confidence intervals on the support for partitions, generated using a block bootstrap.

partitions.SRQ A collection of SRQ plots for the supported partitions.

c50.SRQ An SRQ plot for the majority consensus tree.

The SRQ plots can be viewed by typing "plot 'file' with lines" in gnuplot.

6.4.2. Mixing/partitions.bs: partition mixing

This file reports the quality of estimates of support for each partition in terms of the posterior probability (PP) and
log-10 odds (LOD). It also reports the auto-correlation time (ACT), the effective sample size (Ne), the number of
samples that support (1) or do not support (0) the partition, and the number of regenerations. Only partitions with PP
> 0.1 are shown by default.

7. Models

7.1. Substitution models
Substitution models in BAli-Phy are specified using a stack, as follows: Model[arg]+Model[arg]+...
+Model[arg] where each model uses the previous models as input. For example, WAG+gamma[4]+INV.
Arguments are optional.

Note

If you are using the C-shell command line shell (csh or tcsh), then it will try to interpret each argument
as an array reference, giving the error message "bali-phy: Not found." To avoid this you may need to
insert backslashes before the left square brackes, like this: Model\[arg]+Model\[arg]+...+Model
\[arg].

7.1.1. Default substitution models

If the substitution model is not specified, then the default model for the alphabet is used. For DNA or RNA, the default
model is TN. For Triplets, the default is TNx3. For Codons, the default model is M0. For Amino-Acids, the default
model is LG.

7.1.2. Basic CTMC models

The basic substitution models in BAli-Phy are continuous-time Markov chains (CTMC). CTMC models can be
characterized by transition rates from letter to letter . After a given time the probability for transition from

state to state is given by

using a matrix exponential. Becase the CTMC models used in BAli-Phy are all reversible, the rate matrix for these
reversible models can be decomposed into a symmetric matrix and equilibrium frequencies as follows:

BAli-Phy User's Guide v2.1.1

17

The matrix is called the exchangability matrix, and represents how exchangeable letters and are, independent
of their frequencies.

The basic CTMC models are EQU, HKY, TN, GTR, HKYx3, TNx3, GTRx3, JTT, WAG, LG, and M0. Each of these
models is a way of specifying the exchangeability matrix .

Table 1. Substitution Models

Model Alphabet Parameters Description

EQU any none for every and .

HKY

Hasegawa, Kishino, Yano
(1985)

DNA or RNA : the ts/tv ratio. for transversions.

 for transitions.

TN

Tamura, Nei (1993)

DNA or RNA : the purine ts/tv ratio.

: the pyrimidine ts/tv
ratio.

 for transversions.

 for purine
transitions.

 for pyrimidine
transitions.

GTR

General Time-Reversible

Tavare (1986)

DNA or RNA .

(5 degrees of freedom).

JTT

Jones, Taylor, Thornton
(1992)

Amino-Acids none.

WAG

Whelan and Goldman
(2001)

Amino-Acids none.

LG

Le and Gascuel (2008)

Amino-Acids none.

Empirical[file] Amino-Acids none. A user-specified empirical
exchangeability matrix may
be used.

The lower-triangular part
of the symmetric matrix
is given, followed by
the estimated equilibrium
frequencies.

HKYx3

TNx3

Triplets nuc-model parameters. If the nuc-model has
transition matrix on
nucleotides, then:

BAli-Phy User's Guide v2.1.1

18

Model Alphabet Parameters Description

GTRx3 for changes of
more than one nucleotide.

 for single

nucleotide changes .

M0

Nielsen and Yang (1998)

Codons : the ts/tv ratio.

: the dN/dS ratio.

 for changes of
more than one nucleotide.

 for synonymous
transversions.

 for non-
synonymous transversions.

 for synonymous
transitions.

 for non-
synonymous transitions.

M0[nuc-model=HKY]

Nielsen and Yang (1998)

Codons nuc-model parameters.

: the dn/ds ratio

If the nuc-model has
transition matrix on
nucleotides, then:

 for changes of
more than one nucleotide.

 for synonymous
changes.

 for non-
synonymous changes.

7.1.3. Substitution Frequency models

The rate matrix can be more generally expressed as

where ranges from to . Here the parameter specifies the relative importance of unequal conservation ()
and unequal replacement () in maintaining the equilibrium frequencies .

In fact, this can be generalized even further to

where

BAli-Phy User's Guide v2.1.1

19

These models can therefore be expressed as a combination of an "exchange model" (for) and a "frequency
model" (for).

Table 2. Frequency Models

Model Alphabet Parameters Description

F

Simple frequency model

any (1)

 ()
.

F=nucleotides

Independent nucleotide
frequency model

Triplets (1)

 (4)

.

F=amino-acids

Amino-acid based codon
frequencies. (no codon bias)

Codons (1)

 (20)
.

7.1.4. Substitution Mixture Models

Complex substitution models in BAli-Phy are constructed as mixtures of reversible CTMC models (see Section 7.1,
“Substitution models”) that run at different rates (e.g.) or have different parameters (e.g. an M2 codon
model).

Model modifiers are gamma, log-normal, INV, M2, M3, and M7.

Table 3. CTMC Mixture Models

Model Alphabet Parameters Description

sm + INV sm alphabet : invariant fraction. A fraction of sites do not
allow substitutions.

sm + gamma[]

Yang (1994)

sm alphabet : noise to signal ratio
for .

rate .

A discrete approximation to
the with bins is used.

sm + log-normal[] sm alphabet : noise to signal ratio
for .

rate

.

A discrete approximation to
the with bins
is used.

M2

sm + M2

Yang, et. al. (2000)

Codons : the ts/tv ratio

: bin frequencies.

: value of in bin 2.

 with probability .

, .

The default for sm is M0.

M3[] Codons : the ts/tv ratio with probability .

BAli-Phy User's Guide v2.1.1

20

Model Alphabet Parameters Description

sm + M3[]

Yang, et. al. (2000)

: bin

frequencies.

: values of .

M7[]

sm + M7[]

Yang, et. al. (2000)

Codons : mean of the Beta
distribution.

: noise to signal ratio
for Beta.

.

A discrete approximation to
the Beta with bins is used.

7.1.5. Substitution model examples

Example: --smodel WAG+F+log-normal+INV

Example: --smodel WAG+log-normal+INV (same as above)

Example: --smodel EQU --alphabet Triplets

Example: --smodel HKY

Example: --smodel TN+F=constant

Example: --smodel M0 --alphabet Codons

Example: --smodel M0+F=nucleotides --alphabet Codons

Example: --smodel M2 --alphabet Codons

Example: --smodel M0[HKY]+M2 --alphabet Codons (same as above)

Example: --smodel M0[TN]+M2 --alphabet Codons

7.2. Insertion/deletion models
The current models are RS05, RS07, and none. The default is RS07. Each of these models is a probability distribution

on pairwise alignments. The probability distribution on multiple sequence alignments is constructed
by factoring the multiple sequence alignment into pairwise alignments along each branch of the tree, as described in
Redelings and Suchard (2005).

Table 4. Substitution Models

Model Parameters Description

RS05

Redelings and Suchard (2005)

: the gap-opening probability

: the gap-extension probability

Gap lengths are geometrically
distributed with extension probability

.

This indel model is independent of the
branch length connecting the ancestor
and descent sequences.

RS07

Redelings and Suchard (2007)

: the insertion and deletion rate

: the gap-extension probability

Gap lengths are geometrically
distributed with extension probability

.

BAli-Phy User's Guide v2.1.1

21

Model Parameters Description

This probability of an indel event
depends on the branch length in this
model.

none Indicates the lack of a model.

Specifying an indel model of none for a given partition results in fixing the alignment for that partition to its initial
value, and ignoring information in shared insertions or deletions.

7.3. Genetic Codes
When using a codon-based substitution model like M0, you may select the genetic code by specifying --alphabet
Codons[genetic-code]. Available genetic codes are standard, mt-vert, mt-invert, mt-yeast, mt-
protozoan.

If the genetic code is not specified, then the standard code is used:

% bali-phy sequence-file --smodel M0 --alphabet Codons

This example specifies the vertebrate mitochondrial code:

% bali-phy sequence-file --smodel M0 --alphabet Codons[mt-vert]

7.4. Alignment constraints
To fix specific columns of the alignment, you may specify alignment constraints in a file as follows:

1. Use the argument --align-constraint filename

2. The filename refers to a file in which each line represents a constraint.

7.4.1. Syntax

The first line of the file is a header consisting of an ordered list of sequence names separated by spaces. Each subsequent
line consists of a space-separated list of sequence positions, with the first position corresponding to the first leaf
sequence, the second position corresponding to the second leaf sequence, etc. Thus, if there are n leaf taxa, then each
line corresponds to a space-separated list of n integers.

7.4.2. Examples

For example, the file

A B C
1 2 2

implies that position 1 of leaf sequence A is aligned to position 2 of leaf sequences B and C. Note that the first position
in a sequence is position 0.

Optionally, one may use a '-' instead of an integer, which denotes a lack of constraint for that sequence. This can be
useful as follows:

A B C D
2 2 - -
- - 2 2

BAli-Phy User's Guide v2.1.1

22

The above constraints force alignment between position 2 of sequences A and B, and between position 2 of sequence
C and D.

7.4.3. Computing the constraints

The program alignment-indices may be used to aid in computing a constraint file from an input alignment. See
Q: 11.6.3.

8. Convergence and Mixing: Is it done yet?
When using Markov chain Monte Carlo (MCMC) programs like MrBayes, BEAST or BAli-Phy, it is hard to determine
in advance how many iterations are required to give a good estimate. The number depends on the specific data set that
is being examined. As a result, BAli-Phy relies on the user to analyze the data in a running chain periodically in order
to determine when enough samples have been obtained. This section describes a number of techniques to diagnose
when more samples must be taken.

Some of the better diagnostics for lack of convergence rely on running at least 4 independent copies of the Markov chain
(preferably 10) from different random starting points to see if the sampled posterior distributions for each chain are the
same. Unfortunately, when the distributions all seem to be this same, this doesn't prove that they have all converged
to the equilibrium distribution. However, if the distributions are different then you can reject either convergence or
good mixing.

8.1. Definition of Convergence
Convergence refers to the the tendency of a Markov chain to to "forget" its starting value and become typical of its
equilibrium distribution. Note that convergence is a property of the Markov chain itself, not of individual runs of
the Markov chain. Ideally a number of individual runs should be examined in order to determine how many initial
iterations to discard as "burnin".

8.2. Definition of Mixing
In MCMC, each sample is not fully independent of previous samples. In fact, even after a Markov chain has converged,
it can get "stuck" in one part of the parameter space for a long time, before jumping to an equally important part. When
this happens, each new sample contributes very little new information, and we need to obtain many more samples to
get good precision on our parameter estimates. In such a case, we say that the chain isn't "mixing" well.

8.3. Diagnostics and multiple independent chains
Many of the following diagnostic measures require that you run the MCMC a number of different times. In the text
that follows, we refer to the different parameter files as C1.p, C2.p, ..., Cn.p and the different tree samples as
C1.trees, C2.trees, ..., Cn.trees. Substitute the actual names of the files.

8.4. Diagnostics: Variation in split frequencies across
runs

8.4.1. ASDSF and MSDSF

To calculate the ASDSF and MSDSF run:

% trees-bootstrap C1.trees C2.trees ... Cn.trees > partitions.bs

BAli-Phy User's Guide v2.1.1

23

For each split, the SDSF value is just the standard deviation across runs of the Posterior Probabilities for that split.
By averaging the resulting SDSF values across splits, we may obtain the ASDSF value (Huelsenbeck and Ronquist
2001). This is commonly considered acceptable if it is < 0.01.

However, it is also useful to consider the maximum of the SDSF values (MSDSF). This represents the range of variation
in PP across the runs for the split with the most variation.

8.4.2. Split-frequency comparison plot

To generate the split-frequency comparison plot, you must have R installed. Locate the script compare-runs.R.
Then run:

% trees-bootstrap C1.trees C2.trees ... Cn.trees --LOD-table=LOD-table > partitions.bs
% R --slave --vanilla --args LOD-table compare-SF.pdf < compare-runs.R

Following Beiko et al (2006) [http://dx.doi.org/10.1080/10635150600812544], this displays the variation in estimates
of split frequencies across runs. Splits are arranged on the x-axis in increasing order of Posterior Probability (PP),
which is obtained by averaging over runs. We then plot a vertical bar from the minimum PP to the maximum PP.

8.5. Diagnostics: Potential Scale Reduction Factors
(PSRF)
Potential Scale Redution Factors check that different runs have similar posterior distributions. Only numerical variables
may have a PSRF. To calculate the PSRF for each numerical parameter, you may run:

% statreport C1.p C2.p ... Cn.p > Report

The PSRF is a ratio of the width of the pooled distribution to the average width of each distribution, and should ideally
be 1. The PSRF is customarily considered to be small enough if it is less than 1.01.

We compare the PSRF based on the length of 80% credible intervals (Brooks and Gelman 1998) and report the result
as PSRF-80%CI. For integer-valued parameters, we avoid excessively large PSRF values by subtracting 1 from the
width of the pooled CI.

We also report a new PSRF that is more sensitive for integer distributions. For each individual distribution, we find
the 80% credible interval. We divide the probability of that interval (which may be more than 80%) by the probability
of the same interval under the pooled distribution. The average of this measure over all distributions gives us a PSRF
that we report as PSRF-RCF.

This convergence diagnostic gives a criterion for detecting when a parameter value has stabilized at different values in
several independent runs, indicating a lack of convergence. This situation might occur if different runs of the Markov
chain were trapped in different modes and failed to adequately mix between modes.

8.6. Diagnostics: Effective sample sizes (ESS)

8.6.1. ESS for numerical values

To calculate the split ESS values, run:

% statreport C1.p C2.p ... Cn.p > Report

We calculate effective sample sizes based on integrated autocorrelation times. This method has the nice property that
simply duplicating every sample does not increase the ESS.

http://dx.doi.org/10.1080/10635150600812544
http://dx.doi.org/10.1080/10635150600812544

BAli-Phy User's Guide v2.1.1

24

The program Tracer [http://evolve.zoo.ox.ac.uk/software/tracer/] also computes ESS values.

8.6.2. ESS for split frequencies

To calculate the split ESS values, run:

% trees-bootstrap C1.trees C2.trees ... Cn.trees > partitions.bs

To compute the ESS for a split, we consider the presence or absence of a split in each iteration as a series of binary
values. We compute the integrated autocorrelation time for this binary sequence, which leads to an ESS. This approach
is similar to dividing the iterations into blocks and computing the ESS on the PP estimates in the blocks. It is also
similar to estimating the variance reduction under a block bootstrap.

8.7. Diagnostics: Stabilization

8.7.1. Stabilization of numerical values

To obtain estimates of the stabilization time for each numerical parameter, you may run:

% statreport C1.p > Report

Each series of values is counted as having stabilized after the series crosses its upper and then lower 95% confidence
bounds twice (if the initial value is below the median) or crosses its lower and then upper confidence bounds twice
(if the initial value is above the median). The confidence bounds are those based on its equilibrium distribution as
calculated from the last third of the values in the sequence.

8.7.2. Stabilization of tree topologies and tree distances

In addition to examining convergence diagnostics for continuous parameters, it is important to examine convergence
diagnostics for the topology as well (Beiko et al 2006 [http://dx.doi.org/10.1080/10635150600812544]). In theory,
we recommend the web tool Are We There Yet (AWTY) [http://ceb.csit.fsu.edu/awty/] (Wilgenbush et al, 2004).
However, AWTY gives incorrect results if you upload plain NEWICK tree samples -- which is what BAli-Phy outputs.
Therefore, if you wish to use AWTY, you must convert the tree samples files to NEXUS before you upload them to
AWTY in order to get correct results.

It is also be possible to assess stabilization of tree topologies using tools distributed with bali-phy by using commands
like the following. Here, sub-sampling and burnin does not apply to the equilibrium tree files. Also, note that you need
to manually construct the equilibrium samples, which we recommend to contain at least 500 trees; you might do this
by sub-sampling using the BAli-Phy tool sub-sample.

1. To report the average distances within and between two tree samples:

% trees-distances --skip=burnin --sub-sample=factor compare C1.trees C2.trees

2. To compute the distance from each tree in C1.trees to all trees equilibrium.trees, as a time series:

% trees-distances --skip=burnin --sub-sample=factor convergence C1.trees equilibrium.trees

3. To assess when the above time series stabilizes:

% trees-distances --skip=burnin --sub-sample=factor converged C1.trees equilibrium.trees

The stabilization criterion is the same one described above for numerical values.

Note that the running time is the product of the number of trees in the two files. Therefore, comparing two complete
tree samples without sub-sampling will take too long.

http://evolve.zoo.ox.ac.uk/software/tracer/
http://evolve.zoo.ox.ac.uk/software/tracer/
http://dx.doi.org/10.1080/10635150600812544
http://dx.doi.org/10.1080/10635150600812544
http://ceb.csit.fsu.edu/awty/
http://ceb.csit.fsu.edu/awty/

BAli-Phy User's Guide v2.1.1

25

9. Tuning the Markov Chain
The Markov chain should be largely self-tuning, since all numerical parameters are now sampled using self-tuning slice
samplers. However, the following parameters still affect the size of Metropolis-Hastings proposals. You can modify
them using the command line syntax "--set parameter=value".

9.1. Parameters

Table 5. Tunable Parameters

Name Variable Default Meaning

log_branch_sigma branch lengths 0.6 Scale of log-proposal.

branch_sigma branch lengths 0.6 Scale of non-log-proposal.

mu_scale_sigma mu 0.6 Width of proposal on log
scale.

kappa_scale_sigma HKY::kappa,
TN::kappa(pur),
TN::kappa(pyr)

0.3 Width of proposal on log
scale.

omega_scale_sigma M0::omega, M2::omega 0.3 Width of proposal on log
scale.

beta::mu_scale_sigma beta::mu 0.2 Width of proposal.

INV::p_shift_sigma INV::p 0.03 Width of proposal.

gamma::sigma_scale_sigma gamma::sigma/mu 0.25 Width of proposal of log
scale.

pi_dirichlet_N pi* 1.0 Tightness of dirichlet
proposal for frequencies.

lambda_shift_sigma delta, lambda 0.35 Width of proposal.

epsilon_shift_sigma epsilon 0.15 Width of proposal.

10. Auxiliary tools
Most of these tools will describe their options if given the "--help" argument on the command line.

10.1. alignment-find
Usage: alignment-find [OPTIONS] < alignments-file

Find the last (or first) FastA alignment in a file.

10.2. alignment-draw
alignment-draw alignment-file [AU-file] [OPTIONS]

Draw an alignment to HTML, optionally coloring residues by AU.

10.3. alignment-thin
alignment-thin alignment-file tree-file [OPTIONS]

BAli-Phy User's Guide v2.1.1

26

Remove taxa from an alignment to preserve the most sequence diversity, as measured by the total length of the tree
for the remaining taxa.

10.4. alignment-chop-internal
alignment-chop-internal alignment-file [OPTIONS]

Remove ancestral sequences from an alignment. (This probably only works for alignments output by bali-phy.)

10.5. alignment-info
alignment-info alignment-file tree-file [OPTIONS]

Display basic information about the alignment, including its length, the number of sequences, columns that are constant
or informative, letter frequencies, etc.

If a tree is supplied, then the unweighted parsimony score is given as well.

10.6. alignment-indices
alignment-indices alignment-file [OPTIONS]

Show the alignment in terms of the index of each character in its sequence. Each line in this file corresponds to one
alignment column. This can be useful in producing alignment constraint files.

Also, you can specify which columns to keep using the --columns option.

10.7. alignment-cat
alignment-cat file1 [file2 ...]

Concatenate several alignments (with the same sequence names) end-to-end.

10.8. trees-consensus
Usage: trees-consensus file [OPTIONS]

This program analyzes the tree sample contained in file. It reports the MAP topology, the supported taxa partitions
(including partial partitions), and the majority consensus topology.

10.9. trees-bootstrap
Usage: trees-bootstrap file1 [file2 ...] --predicates predicate-file [OPTIONS]

This program analyzes the tree samples contained in file1, file2, etc. It gives the support of each tree sample for
each predicate in predicate-file, and reports a confidence interval based on the block bootstrap.

Each predicate is the intersection of a set of partitions, and is specified as a list of partitions or (multifurcating) trees,
one per line. Predicates are separated by blank lines.

10.10. trees-to-SRQ
Usage: trees-to-SRQ predicate-file [OPTIONS] trees-file

BAli-Phy User's Guide v2.1.1

27

This program analyzes the tree samples contained in trees-file. It uses them to produce an SRQ plot for each
predicate in predicate-file. Plots are produced in gnuplot format, with one point per line and with plots separated
by a blank line.

If --mode sum is specified, then a "sum" plot is produced instead of an SRQ plot. In this plot, the slope of the
curve corresponds to the posterior probability of the event. If the --invert option is used then the slope of the curve
correspond to the probability of the inverse event. This is recommended if the probability of the event is near 1.0,
because the sum plot does not distinguish variation in probabilities near 1.0 well.

11. Frequently Asked Questions (FAQ)

11.1. Input files
11.1.1. Does BAli-Phy accept the wildcard characters "N" or "X"? How does it treat them?

Yes, BAli-Phy accepts the wildcard characters "N" (for DNA) and "X" (for proteins). These characters indicate
that some letter is present (as opposed to a gap), but that you don't know which letter it is.

11.1.2. Does BAli-Phy accept "?" characters?

No. "?" characters are often used to indicate either letter presence (e.g. "N", "X") or absence (e.g. "-"). BAli-
phy will insist that you replace each "?" with either "N"/"X" or "-" to indicate which one you mean.

(Most programs ignore indels and consider only substitutions, and in that case "N" and "-" have the same effect
on the likelihood or parsimony score. However, since BAli-Phy takes indels into account, these two alternatives
are quite different.)

11.1.3. Does BAli-Phy accept the characters "R" and "Y", etc.?

Yes. BAli-Phy accepts the characters "Y", "R", "W", and "S" for DNA, RNA, and Codon alphabets. However,
it does not accept the characters "K", "M", "B", "D", "H", and "V". BAli-Phy also accepts the characters "B",
"Z", and "J" for amino acids. These characters indicate partial knowledge about a letter. For example, "R"
indicates that a nucleotide is present, and is a puRine ("A" or "G"). "J" indicates that an amino acid is present
and is either "I" or "L".

(Note that sequences sometimes contain such ambiguity codes because the DNA that was sequenced contains
both values. This might occur when sequencing a heterozygote or when sequencing pooled DNA from several
individuals. However, the model in BAli-Phy (and other phylogeny inference programs) is that only one letter
is correct, but we do not know which one it is. This is probably not problematic when dealing with pooled
sequences, but should be considered.)

11.2. Running bali-phy.
11.2.1. Can I fix the alignment and ignore indel information, like MrBayes and other MCMC programs?

Yes. Add -t or --traditional on the command line. This has the same effect as --imodel none.

11.2.2. Can I fix the tree topology, while allowing the alignment to vary?

Yes. Add --disable=topology --tree=treefile on the command line.

11.2.3. Can I fix the tree topology and relative branch lengths, while allowing the alignment to vary?

Yes. Add --disable=tree --tree=treefile on the command line.

BAli-Phy User's Guide v2.1.1

28

11.2.4. Can I fix the tree topology and absolute branch lengths in all data partitions, while allowing the alignment
to vary?

Yes. Add --disable=tree --tree=treefile --fix=mu1 ... --fix-mun on the command
line.

11.3. Run-time error messages
11.3.1. I tried to use --smodel gamma[6] and I got an error message "bali-phy: No match." What gives?

You are probably using the C-shell as your command line shell. It is trying to interpret gamma[6] as an array
before running the command, and it is not succeeding. Therefore, it doesn't even run bali-phy.

To avoid this, put a backslash in front of the first "[" and write --smodel gamma\[6]. This will keep the
C-shell from interfering with your command.

11.4. Stopping bali-phy.
11.4.1. Why is bali-phy still running? How long will it take?

It runs until you stop it. Stop it when its done.

11.4.2. How do I stop a bali-phy run on my personal computer?

Simply kill the process -- there is no special command to stop bali-phy. If you are running it on your personal
workstation, then you can use the command kill. To do that, you need to find the PID (process ID) of the
running program. You can find this by examining the beginning of the file C1.out. For example:

% less 5d-1/C1.out
command: bali-phy 5d.fasta
start time: Thu Jan 6 02:26:47 2011

VERSION: 2.1.1-alpha [master commit 94d557df+] (Jan 05 2011 13:04:11)
BUILD: Jan 5 2011 14:13:58
ARCH: x86_64-unknown-linux-gnu
COMPILER: GCC 4.5.2
FLAGS: -isystem $(top_srcdir)/boost/include -ffast-math -DNDEBUG -DNDEBUG_DP -funroll-loops -fweb -march=native -pipe -O3 -isystem /usr/lib/openmpi/include -isystem /usr/lib/openmpi/include/openmpi -pthread
directory: /home/bredelings/Devel/bali-phy/Runs
subdirectory: 5d-1
hostname: mutant
PID: 3479
MPI_RANK: 0
MPI_SIZE: 1

random seed = 15356341113359626675

...

Here the PID is 3479. Therefore you can type:

% kill 3479

On some operating systems you can also type:

% killall bali-phy

BAli-Phy User's Guide v2.1.1

29

However, be aware that this will terminate all of your bali-phy runs on that computer.

11.4.3. How do I stop a bali-phy run on a computing cluster?

Simply terminate the submitted job. The specific command to terminate a job will depend on the queue manager
that is installed on your cluster. Examine the documentation for your cluster, or ask your cluster support staff
how to delete running jobs on your cluster.

As an example, if the SGE software is used to submit jobs, then the command qstat should list your jobs and
their job ID numbers (which is different than the process ID number). You can then use the command qdel to
delete jobs by ID number. The SGE documentation describes how to use these commands.

11.4.4. So, how can I know when to stop it?

You can stop when it has both converged and also run for long enough to give you >1000 effectively
independent samples.

11.4.5. How can I tell when the chain has converged?

See section Section 8, “Convergence and Mixing: Is it done yet?”.

11.4.6. How can I check how many iterations the chain has finished?

Run wc -l C1.p inside the output directory, and subtract 2.

11.5. Interpreting the results.
11.5.1. How do I compute the clade support?

Actually, BAli-Phy uses unrooted trees, so it only estimates bi-partition support. A bi-partition is a division of
taxa into two groups, but it does not specify which group contains the root.

11.5.2. How do I compute the split/bi-partition support?

After you analyze the output (Section 6.4, “Summarizing the output - scripted”), the partition support is
indicated in Results/consensus and in Results/c50.PP.tree.

11.6. How do I...
11.6.1. How do I concatenate alignments?

% alignment-cat filename1.fasta filename2.fasta > result.fasta

The alignments must have the same sequence names, but the names need not be in the same order.

11.6.2. How do I select columns from an alignment?

% alignment-cat -c1-10,50-100,600- filename.fasta > result.fasta

The resulting alignment will contain the selected columns in the order you specified.

11.6.3. How do I create an alignment-constraint file from an alignment?

To constrain the alignment to match some alignment file filename.fasta in columns 100, 200-250, and
300, run:

BAli-Phy User's Guide v2.1.1

30

% alignment-indices -c100,200-250,300 filename.fasta > filename.constraint

