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Abstract Certain high speed industrial assembly robots share a peculiar
three legged parallel architecture wherein three “hips”, attached to a fixed
upper base or “pelvis”, actuate “thighs” connected by “knees” to “shins”.
Each shin is a parallelogramic four-bar linkage. “Ankles” are connected to
a common end effector “foot” which executes spatial translatory motion.
Inverse and direct kinematic analyses of such manipulators have simple ge-
ometric solutions reducable to intersection of line and sphere. Computation
is carried out efficiently in a common fixed reference frame.

1 Introduction

In 1988 Clavel introduced a three degree of freedom(dof), three identical
legged manipulator he called “Delta”. This device is shown in Fig. 1. Its
end effector(EE) or “foot” executes pure spatial translation.

1.1 Description

The fixed frame(FF) or “pelvis” supports three actuated revolute(R) jointed
“hips”. These R-axes form an equilateral planar triangle. The “knee” end
of each “thigh” supports another R-joint whose axis is parallel to the one
at the hip. The foot also supports three R-joints whose axes form another
triangle which is similar to and maintains the same orientation as the one
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on FF. The EE triangle R-axes are held parallel to those on FF because the
“shin” is a parallelogram four bar linkage whose R-axes are all perpendicular
to the hip, knee and “ankle” R-axes. One pair of linkage R-axes intersects
the knee R-axis while the other pair intersects the ankle R-axis.

1.2 Kinematic Geometry

It is important to note that when a thigh angle is determined by the actuator,
the R-axis of the ankle, if disconnected from EE, would be free to move
in the parallel line bundle of the hip R-axis. Note also the three points
Di, Ei, Ci, i = 1, 2, 3, at hip, knee and ankle of each leg as shown in
Fig. IKDELTA. Di is the midpoint of a FF R-joint axis triangle side. Ei

is the point on a knee R-joint axis midway between the parallel axis R-
joint pair of the four bar linkage while Ci is midway on the opposite link,
coincident with an EE R-joint axis triangle side. If disconnected from the
foot, Ci would move on the sphere centred on Ei. Similarly, if EE were fixed
and Ei were freed at the knee then Ei would describe a sphere of the same
radius centred on Ci.

1.3 Rationale

Why embark on a reprise of old developments? “Delta” is mentioned in a
recent book by Angeles[1]. The elegant symmetry of this robot and its fine,
relatively singularity free simplicity, albeit embedded in apparent complex-
ity, were found to be quite compelling. Clavel’s original work, mentioned at
the outset, was not cited because it was not readily available for examination
however the inverse kinematics of “Delta” was treated by Pierrot[2]. It was
implied that a leg chain closure equation approach described therein rep-
resented substantial improvement in this regard. His outline of the direct
problem relied on three of these quadratic equations. Obviously, numeri-
cal solution is required here. Also relevant is work by Hervé[3] wherein a
geometrically very similar translational robot, using prismatic rather than
revolute actuation, was dealt with. This one, called “Y-Star”, (Notice the
transference of the star-delta transformation from its commonly encountered
connection with three-phase electrical power.) has screw actuated P-jointed
hips. Precise kinematic analysis must be a nightmare because when the
plane of a four bar thigh swings on its screw axis, it introduces a parasitic
P-joint displacement shift! Only an inverse kinematic analysis was done,
this time using the notion of intersecting Schönflies displacement subgoups.
In fact, considering the difficult-to-follow analysis and certain obvious alge-
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braic errors, it seems the purpose of that article was to expose the liason of
groups and not so much to facilitate motion computations. That is the pur-
pose of this article: to provide a clear kinematic analysis useful to those who
may wish to program and employ nice little three legged robots suited to a
line and sphere intersection model. If one is interested in pursuing historical
detail and past research on “Delta” and its cousins, many relavent references
appear in the three documents listed in the bibliography and cited above.

2 Analysis

Now let us examine the inverse and direct kinematics via geometric con-
structions. These are easy to understand. Computation is based on similar,
but not quite identical, geometry.

2.1 Inverse Kinematic Construction

Fig. IKDELTA shows a top view of the two triangular platforms. The nine
key points, Di, Ei, Ci, are clearly visible. The centre of the smaller EE is
displaced by (x, y, z) from origin O at the centre of FF. Note the design
constants. e is the side length of EE, f the side of FF, re the distance CiEi

and rf the distance DiEi. A sphere, radius re, centred on Ci gives the locus
of Ei. Furthermore a second constraint is imposed by the circular trajectory
of Ei at radius rf from centre Di. The plane of this circle is visible as a line.
The plane cuts the sphere in a small circle in the same plane. In the three
auxiliary elevation views one sees this small circle inside the dotted outline of
the sphere. The other solid arc is the circle centred on Di. The intersection
of the arcs yield Ei, the solution external to FF and EE is chosen as the
obviously valid one. The desired actuated R-joint angles are measured from
the edge or line view of FF to DiEi as θi. The leg subscript i is omitted
in all the following equations. It is obvious that a joint angle θ must be
computed separately for each leg.

2.2 Inverse Kinematic Computation

In this case a line will be intersected not with the sphere described above,
centred on ankle C, but with the algebraically simpler one on D. The
homogeneous coordinates E{w : x : y : z} of a point on it are given by

(xdw − x)2 + (ydw − y)2 + (zdw − z)2 − rfw2 = 0 (1)
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where zd = 0 in the frame chosen. Which line? The one through the
two desired solutions for E. It is obtained by intersecting the plane of
a thigh circle centred on D with the plane of a circle produced by the
intersection of the sphere given by Eq. 1 and one of radius re centred on
C. The homogeneous coordinates of the three vertical thigh planes, π{Wπ :
Xπ : Yπ : Zπ} on O can be written by inspection.

π1{0 : 1 : 0 : 0}, π2{0 : 1 : −
√

3 : 0}, π3{0 : 1 :
√

3 : 0}

For those not familiar with homogeneous plane coordinates, the last three
are normal direction numbers, the first is the moment of the normal direction
vector. Since all three planes are on O, the first coordinates Wπ are all zero.
Coordinates of the plane of the circle of intersection between the spheres
centred on C and D are the coefficients of the linear equation which is
the difference between the two sphere equations. Its plane coordinates are
{Wi : Xi : Yi : Zi}. Explicitly, a thigh and shin sphere intersection circle
plane has coordinates

{(r2
e − r2

f + x2
d − x2

c + y2
d − y2

c − z2
c )/2 : (xc − xd) : (yc − yd) : zc}

The next step is to compute radial Plücker coordinates of the line, i.e.,
switching the first and second triplets of the axial coordinates obtained with
plane intersection. Expanding on all 2× 2 minor subdeterminants∣∣∣∣∣ Wπ Xπ Yπ Zπ

W X Y Z

∣∣∣∣∣ ⇒ {p01 : p02 : p03 : p23 : p31 : p12}

Finally, for the second constraint, recall the point-on-line relationship.
0 p23 p31 p12

−p23 0 p03 −p02

−p31 −p03 0 p01

−p12 p02 −p01 0




w
x
y
z

 =


0
0
0
0

 (2)

The second and third lines of Eq. 2, a doubly rank deficient system of four
linear equations, are substituted into Eq. 1 to produce Eq. 3, a quadratic in
z = ze. This is all that is needed to find θ = sin−1(ze/rf ).
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[(
p01

p03

)2

+
(

p02

p03

)2
]

z2

−2
[
p01

p03

(
p31

p03
+ xd

)
− p02

p03

(
p23

p03
− yd

)]
wz

+

[(
p31

p03
+ xd

)2

+
(

p23

p03
− yd

)2

+ z2
d − r2

f

]
w2 = 0 (3)

Simplifications arise due to choice of frame. Note p12 = 0 and for z1, p01 =
p31 = 0 as well. This may be coded at computational expense similar to
that incurred in Pierrot’s[2] solution however the additional trigonometry
of his rotation matrix is not necessary. A programmed example could now
be easily presented but that will be saved for the following direct kinematic
analysis where the algebraic geometric detail above will not be repeated but
the efficacy of a simple algorithm will be shown instead.

2.3 Direct Kinematic Construction

Now consider Fig. DKDELTA. EE pose and manipulator design constants
are identical to those selected for the inverse kinematic example shown in
Fig. IKDELTA. This time the three angles θi are given instead of the po-
sition of the EE centre point, shown as O′, which must be determined.
The geometric key to the direct kinematic solution is the location of points
E′

i which serve as centres of three spheres, radius re. Their two intersec-
tion points define two possible solution poses. The constructive solution is
shown in a second auxiliary view where the circle of intersection on spheres
centered on E′

1 and E′
2 defines a plane which sections the sphere on E′

3 on
a second coplanar circle. The intersections of the two circles are obtained
here by inspection and projected to the first auxiliary view which shows
the FF plane in edge or line view. The lower point is chosen as O′ and
the z-coordinate can be measured here. Projection of this point into the
top view provides the other two coordinates. But how are the points E′i
located? Angles θi fix Ei but the free ankles on the shins centred on the
fixed knees Ei describe spheres that contain Ci, respectively, not O′. Notice
that O′ is located from Ci by three displacement vectors of constant length
and constant direction, pointing inward on EE. Therefore to maintain pure
translation of EE, O′ must move on three spheres whose centres are similarly
displaced, horizontally inward.
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2.4 Direct Kinematic Computation

These three displacement vectors e′i are seen to be

e′1 =

 0
e/(2

√
3)

0

 , e′2 =

 −e/4
−e/(4

√
3)

0

 , e′3 =

 e/4
−e/(4

√
3)

0


and three equations, like Eq. 1, can be written. Differences between the
first and second and second and third provide plane coordinates and the key
line coordinates to be employed in the computationally simplest of the three
sphere equations, like Eq. 3. This is solved for the least z-coordinate and
the second and third lines of Eq. 2 produce the other two coordinates of O′.

2.5 Coded Example

The BASIC program listing below follows the procedure described above
except a quadratic univariate in x was produced by eliminating y and z
from the sphere equation with the third and fourth lines of Eq. 2.

100 INPUT E,F,RE,RF,T1,T2,T3:DTR=3.141592654/180:R3=SQR(3)
110 TR1=DTR*T1:TR2=DTR*T2:TR3=DTR*T3:TR=2*R3
120 EF=(E-F)/TR:E1Y=EF-RF*COS(TR1):E1Z=-RF*SIN(TR1)
130 E2Y=(RF*COS(TR2)-EF)/2:E2X=R3*E2Y:E2Z=-RF*SIN(TR2)
140 E3Y=(RF*COS(TR3)-EF)/2:E3X=-R3*E3Y:E3Z=-RF*SIN(TR3)
150 W1=(EY1^2-E2X^2-EY2^2+E1Z^2-E2Z^2)/2:

X1=E2X:Y1=E2Y-E1Y:Z1=E2Z-E1Z
160 W2=(E2X^2-E3X^2+E2Y^2-E3Y^2+E2Z^2-E3Z^2)/2:

X2=E3X-E2X:Y2=E3Y-E2Y:Z2=E3Z-E2Z
170 P01=Y1*Z2-Y2*Z1:P02=Z1*X2-Z2*X1:P03=X1*Y2-X2*Y1:

IF P01=0 THEN STOP
180 P23=W1*X2-W2*X1:P31=W1*Y2-W2*Y1:P12=W1*Z2-W2*Z1:P2=P01^2
190 A=P2+P02^2+P03^2:T=P12+P01*E1Y:U=P31-P01*E1Z:B=T*P02-U*P03
200 C=T*T+U*U-P2*RE^2:D=B*B-A*C:IF D=0 THEN STOP
210 D=SQR(D):X=(B+D)/A:Y=(P02*X-P12)/P01:Z=(P03*X+P31)/P01
220 PRINT X,Y,Z:STOP:END
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3 Conclusion

It was mentioned at the beginning that this type of manipulator is relatively
free of singularity. The the ones that may occur are readily anticipated, like
if a leg is fully extended or folded, one experiences three coplanar parallel
R-axes. Similarly obvious are the four bar linkage dead-centre singularities.
All seem restricted to conditions confined to a leg. However, due to symme-
try the conditions may arise simultaneously in all three legs. Carrying out a
singularity surface mapping in the kinematic image space may be an inter-
esting exercise but is hardly necessary to achieve fairly trouble free operation
of “Delta” type robots. A more interesting issue is the indication that three
dof, three legged spatial robots have inverse and direct kinematic solutions
of similar complexity. Even six dof robots with three legs, each with two
actuators, have, in general, have eight or fewer assembly modes. More to
the point, one sees the line and sphere solution paradigm in Stewart-Gough
platforms with six P-joint actuated legs where three legs converge to a single
S-joint support and two others meet on a rigid body supporting a second
S-joint thus creating an effective three legged manipulator. Notwithstanding
all this conjecture, it is claimed that the simplest quadratic direct solution
for “Delta” manipulators has been exposed for the first time herein.
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