Integrating a package with the libSBML source tree

This document describes the mechanism that integrates a new libSBML package
with the libSBML 5 CMake build system. This integration will allow to:

e Build the package for testing purposes against a prior build of libsbml5
e Integrate the package sources with the libSBML5 source tree.
¢ Remove the package sources from the libSBML5 source tree.

This document does not describe how to write LibSBML 5 packages. For information
on this please see Akiya’s documentation here:

http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-5/docs/

The directory structure

Packages should use the following directory structure:

<package root>
-examples
---C++
---csharp
---java
---perl
---python
---ruby
-src
---bindings
————— csharp

This directory structure separates examples that use the package, from the
implementation (which is found in the ‘src’ folder). The implementation itself is
separated into code necessary for the creation of language bindings (through the
use of SWIG) and the actual package code (in the folders common, extension, sbml
and test). The ‘common’ folder is the place for holding forward declarations for all
package classes, the ‘extension’ folder holds the code for all extension points the
package defines. In the ‘sbml’ folder all package specific SBML classes are defined.
Finally the ‘util’ folder allows placing any miscellaneous code. Each of these folders
may optionally contain ‘test’ folders, which may contain unit tests to test the
package code.

http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-5/docs/

There are several packages available that can be used for reference; they are kept in
the SVN branch:

http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-packages/

The files

The following files are necessary for integrating a package with the build system. In
the explanation below we detail the integration based on the ‘layout’ package. In
order to transfer the information to another package, simply replace ‘layout’ with
the package name of your package (i.e.: ‘groups’, ‘spatial’, ‘req’ ...).

Two types of files are used:

1. Package integration files: that is files that perform the actual integration,
allow the removal of the package from the source tree or allow testing of
the package.

2. Package build files: these are the files that when integrated with the
libSBML source tree provide build options to build and test the package
with libSBML.

Package integration files
There are two package integration files:

e (CMakelLists.txt in the package root directory
e (CMakelLists.txt in the package src directory

The first sets up the integration process and allows package developers to add a
compilation and test step for the package. The second contains the copy / removal
steps that enable integration of the package with the libSBML source tree, or
removal of the files.

CMakelists.txt in package root

Below is the listing for the CMakeLists.txt file of the package root directory. There is
one MODE option defined. This option can take the values ‘integrate’ (to integrate
with the source tree), ‘compile’ (to test the package code) and ‘remove’ (to remove
the package from the source tree).

The LIBSBML_SOURCE variable is set to the location of the libSBML 5 source with
which to integrate the package.

The rest of the file is taken up with the compilation of the package code for testing
purposes against an installed version of libSBML 5. For this it is only necessary to
locate the existing libsbml5 library as passed to LIBSBML_LIBS. Optionally not only
the library is created but also an example is compiled that uses the library
(WITH_EXAMPLE option).

http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-packages/

#

This CMake Package integrates the SBML Layout Extension
with libsbml 5

#

cmake minimum_ required (VERSION 2.8)

the project name should be the same name as the SBML package
project (layout)

set (MODE "integrate" CACHE STRING
"The operation to perform, valid options are
integrate|compile|remove.")

set (LIBSBML SOURCE "$ENV{HOME}/Development/libsbml—S/" CACHE PATH
"Path to the libsbml source distribution.")

set (EXTRA LIBS "xml2;bz2;z" CACHE STRING
"List of Libraries to link against.")

if (MODE STREQUAL "compile")

compile the package and link it against an existing

libsbml-5 version

set (SOURCE_FILES
"src/extension/LayoutExtension.cpp"
"src/extension/LayoutModelPlugin.cpp"
"src/extension/LayoutSpeciesReferencePlugin.cpp"
"src/sbml/BoundingBox.cpp"
"src/sbml/CompartmentGlyph.cpp"
"src/sbml/CubicBezier.cpp"
"src/sbml/Curve.cpp"
"src/sbml/Dimensions.cpp"
"src/sbml/GraphicalObject.cpp"
"src/sbml/Layout.cpp"
"src/sbml/LineSegment.cpp"
"src/sbml/Point.cpp"
"src/sbml/ReactionGlyph.cpp"
"src/sbml/SpeciesGlyph.cpp"
"src/sbml/SpeciesReferenceGlyph.cpp"
"src/sbml/TextGlyph.cpp"
"src/sbml/Layout.cpp"
"src/util/LayoutAnnotation.cpp"
"src/util/LayoutUtilities.cpp"
)

include directories (${LIBSBML SOURCE}/include)

find library (LIBSBML_ LIBS
NAMES libsbml.lib sbml
PATHS ${LIBSBML_ SOURCE}
${LIBSBML SOURCE/lib}
${LIBSBML SOURCE/src/.libs}
/usr/lib /usr/local/lib
${CMAKE_SOURCE_DIR1
${CMAKE SOURCE DIR}/dependencies/1lib
)

make directory (${CMAKE CURRENT BINARY DIR}/include/sbml/layout)
copy header files to facilitate build
foreach(dir common extension sbml util)

copy files
file (COPY ${CMAKE CURRENT SOURCE DIR}/src/${dir}/
DESTINATION
${CMAKE CURRENT BINARY DIR}/include/sbml/layout

PATTERN ${CMAKE CURRENT SOURCE DIR}/src/${dir}/*.h)

endforeach ()
if (NOT UNIX)

add_definitions(—DWIN32 -DLIBSBML_EXPORTS —DLIBLAX_EXPORTS)
endif ()

include directories (${CMAKE CURRENT BINARY DIR}/include)

include directories ("src/common")
include directories("src/extension")
include directories ("src/sbml")
include directories("src/util")

add library(layout STATIC ${SOURCE FILES})
target link libraries(layout ${LIBSBML LIBS})

option(WITH EXAMPLE "Compile Example File" ON)
if (WITH EXAMPLE)

set (EXAMPLE SOURCE examples/c++/examplel-L3.cpp)
add_executable (layout example ${EXAMPLE SOURCE})
target link libraries(layout example layout ${EXTRA LIBS})

endif ()

else()
add_subdirectory (src)
endif ()

CMakelists.txt in package src

The CMakelLists.txt file in the package src directory is all about integrating the package source with
the libsbml5 source tree. It handles the two cases ‘integrate’ and ‘remove’. Below is a listing of the
file. At the beginning of the file it includes a ‘common.cmake’ file from the libSBML source tree, which
contains a series of utility functions that make it easy to copy the package files. Next two variable
lists are populated; the first one PACKAGE_FILES contains a list of all the files of the package
implementation, the second BINDING_FILES a list of all files that enable the use of the package in the
libSBML language bindings.

Then a check is made as to the value of the MODE variable. Either the package sources and binding
file are copied to the libSBML 5 source tree, where they will be picked up by the 1ibSBML build
system, or the files will be removed from the source tree.

#
This CMake file integrates the binding source with the libsbml
source tree

#

include common functions (used for copying / removing files)
if (NOT EXISTS ${LIBSBML_SOURCE}/common.cmake)

message (FATAL ERROR "Invalid libsbml source directory")
endif ()

include (${LIBSBML_ SOURCE}/common.cmake)

specify the package files
Set(PACKAGE_FILES

forward declaractions
"common/layoutfwd.h"
"common/LayoutExtensionTypes.h"

extension points
"extension/LayoutExtension.cpp"
"extension/LayoutExtension.h"
"extension/LayoutModelPlugin.cpp"
"extension/LayoutModelPlugin.h"
"extension/LayoutSpeciesReferencePlugin.cpp"
"extension/LayoutSpeciesReferencePlugin.cpp"

new SBML classes
"sbml/BoundingBox.cpp"
"sbml/BoundingBox.h"
"sbml/CompartmentGlyph.cpp"
"sbml/CompartmentGlyph.h"
"sbml/CubicBezier.cpp"
"sbml/CubicBezier.h"
"sbml/Curve.cpp"
"sbml/Curve.h"
"sbml/Dimensions.cpp"
"sbml/Dimensions.h"
"sbml/GraphicalObject.cpp"
"sbml/GraphicalObject.h"
"sbml/Layout.cpp"
"sbml/Layout.h"
"sbml/LineSegment .cpp"
"sbml/LineSegment.h"
"sbml/Point.cpp"
"sbml/Point.h"
"sbml/ReactionGlyph.cpp"
"sbml/ReactionGlyph.h"
"sbml/SpeciesGlyph.cpp"
"sbml/SpeciesGlyph.h"
"sbml/SpeciesReferenceGlyph.cpp"
"sbml/SpeciesReferenceGlyph.h"
"sbml/SpeciesReferenceRole.h"
"sbml/TextGlyph.cpp"
"sbml/TextGlyph.h"

test cases
"sbml/test/CMakelLists.txt"
"sbml/test/TestBoundingBox.cpp"
"sbml/test/TestCompartmentGlyph.cpp"
"sbml/test/TestCubicBezier.cpp"
"sbml/test/TestCurve.cpp"
"sbml/test/TestDimensions.cpp"

"sbml/test/TestGraphicalObject.cpp"
"sbml/test/TestLayout.cpp"
"sbml/test/TestLayoutCreation.cpp"
"sbml/test/TestLayoutFormatter.cpp"
"sbml/test/TestLayoutWriting.cpp"
"sbml/test/TestLineSegment.cpp"
"sbml/test/TestPoint.cpp"
"sbml/test/TestReactionGlyph.cpp"
"sbml/test/TestRunner.c"
"sbml/test/TestSBMLHandler.cpp"
"sbml/test/TestSpeciesGlyph.cpp"
"sbml/test/TestSpeciesReferenceGlyph.cpp"
"sbml/test/TestTextGlyph.cpp"
"sbml/test/utility.cpp"
"sbml/test/utility.h"

utility functions
"util/LayoutAnnotation.cpp"
"util/LayoutAnnotation.h"
"util/LayoutUtilities.cpp"
"util/LayoutUtilities.h"

)

specify the files for the language bindings
set (BINDING FILES

C# bindings
"bindings/csharp/local-downcast-extension-layout.i"
"bindings/csharp/local-downcast-namespaces-layout.i"
"bindings/csharp/local-packages-layout.i"

java bindings
"bindings/java/local-downcast-extension-layout.i"
"bindings/java/local-downcast-namespaces-layout.i"
"bindings/java/local-packages-layout.i"

perl bindings
"bindings/perl/local-downcast-extension-layout.cpp"
"bindings/perl/local-downcast-packages-layout.cpp"
"bindings/perl/local-downcast-namespaces-layout.cpp"
"bindings/perl/local-downcast-plugins-layout.cpp"

python bindings
"bindings/python/local-downcast-extension-layout.cpp"
"bindings/python/local-downcast-packages-layout.cpp"
"bindings/python/local-downcast-namespaces-layout.cpp"
"bindings/python/local-downcast-plugins-layout.cpp"
"bindings/python/local-layout.i"

ruby bindings
"bindings/ruby/local-downcast-extension-layout.cpp"
"bindings/ruby/local-downcast-packages-layout.cpp"
"bindings/ruby/local-downcast-namespaces-layout.cpp"
"bindings/ruby/local-downcast-plugins-layout.cpp"
"bindings/ruby/local-layout.i"

generic swig bindings

"bindings/swig/layout-package.h"

"bindings/swig/layout-package.i"
)

if (MODE STREQUAL "integrate")
integrate the package with the specified libsbml source
directory

copy the CMake script that integrates the source files with
libsbml-5

copy file("../layout-package.cmake" "${LIBSBML SOURCE}")

copy flle("layout package.cmake" ${LIBSBML_SOURCE}/src)

copy language binding files
foreach (bindingFile ${BINDING FILES})

copy file to subdir(${bindingFile} ${LIBSBML SOURCE}/src)
endforeach ()

copy package files
foreach (packageFile ${PACKAGE FILES})
copy file to subdir(${packageFile}
${LIBSBML SOURCE}/src/packages/layout)
endforeach ()

copy header files to include directory just in case
foreach (dir common extension sbml)

copy files
copy files(${CMAKE CURRENT SOURCE DIR}/${dir}/
${LIBSBML SOURCE}/include/sbml/layout *.h)

endforeach ()
add_custom_ target (integrate ALL)

message (STATUS "Finished integrating the SBML layout package with
the libsbml source tree in:")
message (STATUS "${LIBSBML SOURCE}")

elseif (MODE STREQUAL "remove")
remove all package files from the specified libsbml source
directory

remove file (${LIBSBML_ SOURCE}/layout-package.cmake)
remove file(${LIBSBML SOURCE}/src/layout-package.cmake)

copy language binding files
foreach (bindingFile ${BINDING FILES})

remove file in subdir(${bindingFile} ${LIBSBML_ SOURCE}/src)
endforeach ()

copy package files
foreach (packageFile ${PACKAGE_ FILES})
remove file in subdir(${packageFile}
${LIBSBML SOURCE}/src/packages/layout)
endforeach ()

delete package directory

file (REMOVE ${LIBSBML SOURCE}/src/packages/layout)

file (REMOVE_ RECURSE $TLIBSBML SOURCE}/include/sbml/layout)
add_custom target (remove ALL)

message (STATUS "Finished removing the SBML layout package from the

libsbml source tree in:")
message (STATUS "${LIBSBML SOURCE}")

endif ()

Package Build Files

Package build files are the files that, when integrated with the libSBML build system,
provide an option to build the package and test the package. The most basic of them
are the -package.cmake files. There are two of them, the first located in the package
root directory, looks as follows:

option (ENABLE LAYOUT "Enable SBML Layout package" OFF)

if (ENABLE LAYOUT)

add definitions(-DUSE_LAYOUT)

list (APPEND SWIG EXTRA ARGS -DUSE LAYOUT)
endif ()

It basically provides the option to build the package (and the default value for it, in
the above the layout package is chosen to be OFF by default). When chosen a flag is
set, which can be checked in code later on (as is done by the language bindings).

The second -package.cmake file, located in the package src directory, is more
elaborate. The full listing below shows how the integration is done. Note first that
this file will have no effect if the ENABLE_LAYOUT option defined in the previous file
is not ON. Then all C++ files in the subfolders are discovered and stored in a variable
LAYOUT_SOURCES. Also all header files are copied into the libsbml/include folder.
Next the header files are marked for installation. And finally the LAYOUT_SOURCES
are added to the LIBSBML_SOURCES. This will cause them to be compiled into the
libsbml library. The file ends with an inclusion of the test cases that test the layout
sbml classes. As these tests have not been ported to windows yet, they can only be
run on UNIX operating systems like Linux and OSX.

if (ENABLE LAYOUT)

#include common macro for copying files
include (${CMAKE SOURCE DIR}/common.cmake)

include (${CMAKE SOURCE DIR}/layout-package.cmake)

#build up sources
set (LAYOUT SOURCES)

go through all directtories: common, extension, sbml and util
foreach(dir common extension sbml util)

add to include directory

include directories (${CMAKE CURRENT SOURCE DIR}/packages/layout/${
dir})

file sources

file (GLOB current
${CMAKE_CURRENT SOURCE DIR}/packages/layout/${dir}/*.cpp)

add sources
set (LAYOUT SOURCES ${LAYOUT SOURCES} ${current})

copy files

copy files(${CMAKE CURRENT SOURCE DIR}/packages/layout/${dir}/
${CMAKE SOURCE DIR}/include/sbml/layout *.h)

endforeach ()

mark header files for installation
file (GLOB layout headers ${CMAKE SOURCE DIR}/include/sbml/layout/*.h)
INSTALL (FILES ${layout headers} DESTINATION include/sbml/layout)

create source group for IDEs
source group (req package FILES ${LAYOUT SOURCES})

add layout sources to SBML sources
SET (LIBSBML SOURCES ${LIBSBML SOURCES} ${LAYOUT SOURCES})

FHAEFHAH A HAHAFH AT HAH AT HA A H AT A H AT A A AT A A A A A A AR
#

add test scripts

#

if (WITH CHECK)

add subdirectory (packages/layout/sbml/test)
endif ()

endif ()

Compile/Integrate/Remove the package

Once the package is in the above form (or you have obtained it from svn:
http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-
packages/layout/) it can be compiled, integrated or removed from the libsbml 5
source tree. This can be done either via the command line, or the graphical cmake-
gui application.

From the command line
Be sure to have cmake installed (and in your PATH). Next, change into the package
directory. Next create the build directory:

mkdir build
cd build

Integrating the package
To integrate the package set the MODE variable to “integrate” and specify the
libsbml source directory. For example (this has to be written in one line!):

cmake
-DMODE : STRING=integrate
-DLIBSBML_ SOURCE:STRING=/Users/fbergmann/Development/libsbml-5/

Note the two dots at the end. They indicate that the main CMakeLists.txt file is
located one folder down. Once this command is issued the package is integrated
with the specified libsbml 5 source tree.

http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-packages/layout/
http://sbml.svn.sourceforge.net/viewvc/sbml/branches/libsbml-packages/layout/

Compiling the package

To compile the package set the MODE variable to “compile” and specify the libsbml
source directory, and a libsbml 5 library you want to link against. For example (this
has to be written in one line!):

cmake
-DMODE : STRING=compile

-DLIBSBML SOURCE:STRING=/Users/fbergmann/Development/libsbml-5/
-DLIBSBML_LIBS:FILEPATH

=/Users/fbergmann/Development/libsbml-5/build/lib/libsbml.dylib

Note the two dots at the end. They indicate that the main CMakeLists.txt file is
located one folder down. Typing make after this will compile the package.

Removing the package

To remove the package set the MODE variable to “remove” and specify the libsbml
source directory. For example (this has to be written in one line!):

cmake
-DMODE : STRING=remove
-DLIBSBML_ SOURCE:STRING=/Users/fbergmann /Development/libsbml-5/

Note the two dots at the end. They indicate that the main CMakeLists.txt file is
located one folder down. Once this command is issued the package is removed from
the specified libsbml 5 source tree.

From CMake GUI

The configuration can also be made in a graphical interface. Here one simply locates
the package directory. Again binaries are built in a separate folder here ‘test’. To
integrate/configure/remove the package the MODE variable is set to its

corresponding value and the user clicks on Configure and then Generate.

ann A CMake 2.8.2 - /Users/fbergmann/Development/libsbml-packages/layout/test

Where is the source code: /Users/fbergmann/Development/libsbml-packages /layout (Browse Source...)
Where to build the binaries: | /Users/fbergmann/Development/libsbml-packages /layout/test L] (_ Browse Build...)
Search: | Grouped [] Advanced | 5P Add Entry Remove Entry

Name Value

CMAKE_BUILD_TYPE

CMAKE_INSTALL_PREFIX fusr/local

CMAKE_OSX_ARCHITECTURES

CMAKE_OSX_DEPLOYMENT_TARGET

CMAKE_OSX_SYSROOT /Developer/SDKs /Mac0SX10.6.5dk

LIBSBML_LIBS
LIBSBML_SOURCE
MODE

/Users /fbergmann/Development/libsbml-5/build/lib/libsbml.dylib
[Users /fbergmann/Development/libsbml-5/
compile

Press Configure to update and display new values in red, then press Generate to generate selected build files.

(Configure) Generate Current Generator: Unix Makefiles

Configuring done
Generating done

If the package is to be compiled and debugged, it might be useful to select an IDE as
generator. To change the generator: go to the File menu and delete the cache. The
next time configure is hit the generator can be chosen from a menu.

References

SWIG: http://www.swig.org/
CMAKE: http://www.cmake.org/

http://www.cmake.org/
http://www.cmake.org/

	Integrating a package with the libSBML source tree
	The directory structure
	The files
	Package integration files
	CMakeLists.txt in package root
	CMakeLists.txt in package src

	Package Build Files

	Compile/Integrate/Remove the package
	From the command line
	Integrating the package
	Compiling the package
	Removing the package

	From CMake GUI

	References

